ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Meta-Holograms with Full Parameter Control of Wavefront over a 1000 nm Bandwidth

View Author Information
Nanophotonics Research Center, Shenzhen University and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China
§ Melbourne Centre for Nanofabrication, Australian National Fabrication Facility, Clayton, VIC 3168, Australia
School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
Cite this: ACS Photonics 2017, 4, 9, 2158–2164
Publication Date (Web):September 4, 2017
https://doi.org/10.1021/acsphotonics.7b00710
Copyright © 2017 American Chemical Society

    Article Views

    1778

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (5)»

    Abstract

    Abstract Image

    Metasurfaces offer promising structures for controlling the wavefront of light. The development of such structures is evidence for numerous ways to alter on demand light properties such as amplitude, phase, and polarization. However, the simultaneous control of all parameters of light over a wide bandwidth is still a great challenge. With polarization multiplexing, we have achieved the lesser goal of simultaneous control of phase and amplitude over a 1000 nm bandwidth using a plasmonic nanoslit array associated with the traditional detour phase. In a proof-of-concept experiment, we demonstrate 3D object reconstruction and polarization multiplexing images at various prescribed wavelengths from 473 to 1550 nm using a specially designed meta-hologram. Benefiting from high controllability of amplitude, phase, and polarization, meta-holograms offer great potential in future applications such as 3D displays, optical communications, and beam shaping.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsphotonics.7b00710.

    • The design of the meta-holograms; Fabrication of the meta-holograms; Experimental methods; Figures S1–S4; and Table S1 (PDF).

    • Video S1: Holograms switching at wavelength of 473 nm (AVI).

    • Video S2: Holograms switching at wavelength of 532 nm (AVI).

    • Video S3: Holograms switching at wavelength of 633 nm (AVI).

    • Video S4: Holograms switching at wavelength of 785 nm (AVI).

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 41 publications.

    1. Danveer Singh, Michal Poplinger, Avraham Twitto, Rafi Snitkoff, Pilkhaz Nanikashvili, Ori Azolay, Adi Levi, Chen Stern, Gili Cohen Taguri, Asaf Albo, Doron Naveh, Tomer Lewi. Chemical Vapor Deposition of Spherical Amorphous Selenium Mie Resonators for Infrared Meta-Optics. ACS Applied Materials & Interfaces 2022, 14 (3) , 4612-4619. https://doi.org/10.1021/acsami.1c17812
    2. Shibiao Wei, Guiyuan Cao, Han Lin, Xiaocong Yuan, Michael Somekh, Baohua Jia. A Varifocal Graphene Metalens for Broadband Zoom Imaging Covering the Entire Visible Region. ACS Nano 2021, 15 (3) , 4769-4776. https://doi.org/10.1021/acsnano.0c09395
    3. Dandan Wen, Jasper J. Cadusch, Jiajun Meng, Kenneth B. Crozier. Vectorial Holograms with Spatially Continuous Polarization Distributions. Nano Letters 2021, 21 (4) , 1735-1741. https://doi.org/10.1021/acs.nanolett.0c04555
    4. Hang Feng, Qitong Li, Weiping Wan, Jung-Hwan Song, Qihuang Gong, Mark L. Brongersma, Yan Li. Spin-Switched Three-Dimensional Full-Color Scenes Based on a Dielectric Meta-hologram. ACS Photonics 2019, 6 (11) , 2910-2916. https://doi.org/10.1021/acsphotonics.9b01017
    5. Inki Kim, Gwanho Yoon, Jaehyuck Jang, Patrice Genevet, Ki Tae Nam, Junsuk Rho. Outfitting Next Generation Displays with Optical Metasurfaces. ACS Photonics 2018, 5 (10) , 3876-3895. https://doi.org/10.1021/acsphotonics.8b00809
    6. Gwanho Yoon, Dasol Lee, Ki Tae Nam, Junsuk Rho. “Crypto-Display” in Dual-Mode Metasurfaces by Simultaneous Control of Phase and Spectral Responses. ACS Nano 2018, 12 (7) , 6421-6428. https://doi.org/10.1021/acsnano.8b01344
    7. Qiu Wang, Quan Xu, Xueqian Zhang, Chunxiu Tian, Yuehong Xu, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Xixiang Zhang, Jiaguang Han, and Weili Zhang . All-Dielectric Meta-Holograms with Holographic Images Transforming Longitudinally. ACS Photonics 2018, 5 (2) , 599-606. https://doi.org/10.1021/acsphotonics.7b01173
    8. Yaqin Zheng, Yanhui Deng, Zhonghong Shi, Yulong Fan, Zhuochao Wang, Dangyuan Lei, Zhang‐Kai Zhou, Xue‐Hua Wang. Enriching Metasurface Functionalities by Fully Employing the Inter‐Meta‐Atom Degrees of Freedom for Double‐Key‐Secured Encryption. Advanced Materials Technologies 2023, 8 (5) https://doi.org/10.1002/admt.202201468
    9. Cheng Zhang, Yujie Zhan, Yongxue Qiu, Leilei Xu, Jianguo Guan. Planar metasurface-based concentrators for solar energy harvest: from theory to engineering. PhotoniX 2022, 3 (1) https://doi.org/10.1186/s43074-022-00074-0
    10. Hafiz Saad Khaliq, Joohoon Kim, Taimoor Naeem, Kashif Riaz, Trevon Badloe, Junhwa Seong, Jehan Akbar, Muhammad Zubair, Muhammad Qasim Mehmood, Yehia Massoud, Junsuk Rho. Broadband Chiro‐Optical Effects for Futuristic Meta‐Holographic Displays. Advanced Optical Materials 2022, 10 (22) https://doi.org/10.1002/adom.202201175
    11. Ruichao Zhu, Jiafu Wang, Chang Ding, Yongfeng Li, Zuntian Chu, Xiaofeng Wang, Tonghao Liu, Yajuan Han, Bo Feng, Shaobo Qu. Vectorial-Holography metasurface empowered by Orthogonality-Simplified Machine learning. Materials & Design 2022, 223 , 111273. https://doi.org/10.1016/j.matdes.2022.111273
    12. Alejandro Velez-Zea, John Fredy Barrera-Ramírez, Roberto Torroba. Improved phase hologram generation of multiple 3D objects. Applied Optics 2022, 61 (11) , 3230. https://doi.org/10.1364/AO.454089
    13. Qinghua Song, Xingsi Liu, Cheng-Wei Qiu, Patrice Genevet. Vectorial metasurface holography. Applied Physics Reviews 2022, 9 (1) https://doi.org/10.1063/5.0078610
    14. Rao Fu, Kuixian Chen, Zile Li, Shaohua Yu, Guoxing Zheng, , , , . Metasurface-based nanoprinting: principle, design and advances. Opto-Electronic Science 2022, 1 (10) , 220011-220011. https://doi.org/10.29026/oes.2022.220011
    15. Shibiao Wei, Guiyuan Cao, Han Lin, Haoran Mu, Wenbo Liu, Xiaocong Yuan, Michael Somekh, Baohua Jia. High tolerance detour-phase graphene-oxide flat lens. Photonics Research 2021, 9 (12) , 2454. https://doi.org/10.1364/PRJ.434599
    16. Dandan Wen, Kenneth B. Crozier. Metasurfaces 2.0: Laser-integrated and with vector field control. APL Photonics 2021, 6 (8) , 080902. https://doi.org/10.1063/5.0057904
    17. Hui Gao, Xuhao Fan, Wei Xiong, Minghui Hong, , . Recent advances in optical dynamic meta-holography. Opto-Electronic Advances 2021, 4 (11) , 210030-210030. https://doi.org/10.29026/oea.2021.210030
    18. Changyu Zhou, Zhenwei Xie, Bin Zhang, Ting Lei, Zhaohui Li, Luping Du, Xiaocong Yuan. Reconfigurable dielectric metasurface for active wavefront modulation based on a phase-change material metamolecule design. Optics Express 2020, 28 (25) , 38241. https://doi.org/10.1364/OE.412787
    19. Zi-Lan Deng, Xuan Ye, Hao-Yang Qiu, Qing-An Tu, Tan Shi, Ze-Peng Zhuang, Yaoyu Cao, Bai-Ou Guan, Naixing Feng, Guo Ping Wang, Polina Kapitanova, Andrea Alù, Jian-Wen Dong, Xiangping Li. Full-visible transmissive metagratings with large angle/wavelength/polarization tolerance. Nanoscale 2020, 12 (40) , 20604-20609. https://doi.org/10.1039/D0NR05745B
    20. Zile Li, Shaohua Yu, Guoxing Zheng. Advances in exploiting the degrees of freedom in nanostructured metasurface design: from 1 to 3 to more. Nanophotonics 2020, 9 (12) , 3699-3731. https://doi.org/10.1515/nanoph-2020-0127
    21. Jingwen He, Tao Dong, Baihong Chi, Sen Wang, Xinke Wang, Yan Zhang. Meta-hologram for three-dimensional display in terahertz waveband. Microelectronic Engineering 2020, 220 , 111151. https://doi.org/10.1016/j.mee.2019.111151
    22. Shuqi Chen, Wenwei Liu, Zhancheng Li, Hua Cheng, Jianguo Tian. Metasurface‐Empowered Optical Multiplexing and Multifunction. Advanced Materials 2020, 32 (3) https://doi.org/10.1002/adma.201805912
    23. Ke Chen, Guowen Ding, Guangwei Hu, Zhongwei Jin, Junming Zhao, Yijun Feng, Tian Jiang, Andrea Alù, Cheng‐Wei Qiu. Directional Janus Metasurface. Advanced Materials 2020, 32 (2) https://doi.org/10.1002/adma.201906352
    24. Zi-Lan Deng, Xiangping Li, Guixin Li. Metasurface Holography. 2020https://doi.org/10.1007/978-3-031-02386-6
    25. Zi-Lan Deng, Xiangping Li, Guixin Li. Phase Modulation Rules of Metasurface Holograms. 2020, 13-27. https://doi.org/10.1007/978-3-031-02386-6_3
    26. Xueqian Zhang, Shumin Yang, Weisheng Yue, Quan Xu, Chunxiu Tian, Xixiang Zhang, Eric Plum, Shuang Zhang, Jiaguang Han, Weili Zhang. Direct polarization measurement using a multiplexed Pancharatnam–Berry metahologram. Optica 2019, 6 (9) , 1190. https://doi.org/10.1364/OPTICA.6.001190
    27. Tomer Lewi, Nikita A. Butakov, Prasad P. Iyer, Hayden A. Evans, David Higgs, Hamid Hamid Chorsi, Juan Trastoy, Javier Del Valle Granda, Ilya Valmianski, Christian Christian Urban, Yoav Kalcheim, Paul Y. Wang, Ivan K. Schuller, Jon A. Schuller, , , . Reconfigurable semiconductor Mie-resonant meta-optics. 2019, 95. https://doi.org/10.1117/12.2528259
    28. Tomer Lewi, Nikita A. Butakov, Hayden A. Evans, Mark W. Knight, Prasad P. Iyer, David Higgs, Hamid Chorsi, Juan Trastoy, Javier Del Valle Granda, Ilya Valmianski, Christian Urban, Yoav Kalcheim, Paul Y. Wang, Philip W.C. Hon, Ivan K. Schuller, Jon A. Schuller. Thermally Reconfigurable Meta-Optics. IEEE Photonics Journal 2019, 11 (2) , 1-16. https://doi.org/10.1109/JPHOT.2019.2916161
    29. Wenjie Chen, Rui Chen, Yi Zhou, Yungui Ma. A Switchable Metasurface Between Meta-Lens and Absorber. IEEE Photonics Technology Letters 2019, 31 (14) , 1187-1190. https://doi.org/10.1109/LPT.2019.2917439
    30. Dapeng Wang, Yongsop Hwang, Yanmeng Dai, Guangyuan Si, Shibiao Wei, Duk‐Yong Choi, Daniel E. Gómez, Arnan Mitchell, Jiao Lin, Xiaocong Yuan. Broadband High‐Efficiency Chiral Splitters and Holograms from Dielectric Nanoarc Metasurfaces. Small 2019, 15 (20) https://doi.org/10.1002/smll.201900483
    31. Tomer Lewi, Nikita A. Butakov, Jon A. Schuller. Thermal tuning capabilities of semiconductor metasurface resonators. Nanophotonics 2019, 8 (2) , 331-338. https://doi.org/10.1515/nanoph-2018-0178
    32. Fang-Zhou Shu, Ren-Hao Fan, Jia-Nan Wang, Ru-Wen Peng, Mu Wang, . Advances in dynamically tunable plasmonic materials and devices. Acta Physica Sinica 2019, 68 (14) , 147303. https://doi.org/10.7498/aps.68.20190469
    33. Qiu Wang, Eric Plum, Quanlong Yang, Xueqian Zhang, Quan Xu, Yuehong Xu, Jiaguang Han, Weili Zhang. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light: Science & Applications 2018, 7 (1) https://doi.org/10.1038/s41377-018-0019-8
    34. Zi-Lan Deng, Junhong Deng, Xin Zhuang, Shuai Wang, Tan Shi, Guo Ping Wang, Yao Wang, Jian Xu, Yaoyu Cao, Xiaolei Wang, Xing Cheng, Guixin Li, Xiangping Li. Facile metagrating holograms with broadband and extreme angle tolerance. Light: Science & Applications 2018, 7 (1) https://doi.org/10.1038/s41377-018-0075-0
    35. Yang Chen, Xiaodong Yang, Jie Gao. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces. Light: Science & Applications 2018, 7 (1) https://doi.org/10.1038/s41377-018-0086-x
    36. Fei Cheng, Lei Ding, Liangyu Qiu, Daniel Nikolov, Aaron Bauer, Jannick P. Rolland, A. Nick Vamivakas. Polarization-switchable holograms based on efficient, broadband multifunctional metasurfaces in the visible regime. Optics Express 2018, 26 (23) , 30678. https://doi.org/10.1364/OE.26.030678
    37. Yoav Blau, Michal Eitan, Victor Egorov, Amir Boag, Yael Hanein, Jacob Scheuer. In situ real-time beam monitoring with dielectric meta-holograms. Optics Express 2018, 26 (22) , 28469. https://doi.org/10.1364/OE.26.028469
    38. Qiong He, Shulin Sun, Shiyi Xiao, Lei Zhou. High‐Efficiency Metasurfaces: Principles, Realizations, and Applications. Advanced Optical Materials 2018, 6 (19) https://doi.org/10.1002/adom.201800415
    39. Shuqi Chen, Zhi Li, Yuebian Zhang, Hua Cheng, Jianguo Tian. Phase Manipulation of Electromagnetic Waves with Metasurfaces and Its Applications in Nanophotonics. Advanced Optical Materials 2018, 6 (13) https://doi.org/10.1002/adom.201800104
    40. Xinbin Cheng, Tao He, Zhou Zhou, Jinlong Zhang, Hongfei Jiao, Zhanshan Wang, , , . Multilayer enhanced metasurfaces with high efficiency and additional functionalities. 2018, 2. https://doi.org/10.1117/12.2309878
    41. Zi-Lan Deng, Guixin Li. Metasurface optical holography. Materials Today Physics 2017, 3 , 16-32. https://doi.org/10.1016/j.mtphys.2017.11.001

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect