ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Atomic Scale Plasmonic Switch

View Author Information
Institute of Electromagnetic Fields (IEF), ETH Zurich, 8092 Zurich, Switzerland
Computational Nanoelectronics Group, ETH Zurich, 8092 Zurich, Switzerland
§ Institute of Applied Physics and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
Cite this: Nano Lett. 2016, 16, 1, 709–714
Publication Date (Web):December 15, 2015
https://doi.org/10.1021/acs.nanolett.5b04537

Copyright © 2015 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

6701

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (2)»

Abstract

Abstract Image

The atom sets an ultimate scaling limit to Moore’s law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.5b04537.

  • Numerical simulations, device fabrication, electro-optical characterization, and discussion (PDF)

  • Supporting movie (AVI)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 118 publications.

  1. Jibo Tang, Quanbing Guo, Yu Wu, Junhao Ge, Shunping Zhang, Hongxing Xu. Light-Emitting Plasmonic Tunneling Junctions: Current Status and Perspectives. ACS Nano 2024, 18 (4) , 2541-2551. https://doi.org/10.1021/acsnano.3c08628
  2. Min-Kyu Song, Ji-Hoon Kang, Xinyuan Zhang, Wonjae Ji, Alon Ascoli, Ioannis Messaris, Ahmet Samil Demirkol, Bowei Dong, Samarth Aggarwal, Weier Wan, Seok-Man Hong, Suma George Cardwell, Irem Boybat, Jae-sun Seo, Jang-Sik Lee, Mario Lanza, Hanwool Yeon, Murat Onen, Ju Li, Bilge Yildiz, Jesús A. del Alamo, Seyoung Kim, Shinhyun Choi, Gianluca Milano, Carlo Ricciardi, Lambert Alff, Yang Chai, Zhongrui Wang, Harish Bhaskaran, Mark C. Hersam, Dmitri Strukov, H.-S. Philip Wong, Ilia Valov, Bin Gao, Huaqiang Wu, Ronald Tetzlaff, Abu Sebastian, Wei Lu, Leon Chua, J. Joshua Yang, Jeehwan Kim. Recent Advances and Future Prospects for Memristive Materials, Devices, and Systems. ACS Nano 2023, 17 (13) , 11994-12039. https://doi.org/10.1021/acsnano.3c03505
  3. Shuyi Liu, Franco P. Bonafe, Heiko Appel, Angel Rubio, Martin Wolf, Takashi Kumagai. Inelastic Light Scattering in the Vicinity of a Single-Atom Quantum Point Contact in a Plasmonic Picocavity. ACS Nano 2023, 17 (11) , 10172-10180. https://doi.org/10.1021/acsnano.3c00261
  4. Marianne Aellen, Aurelio A. Rossinelli, Robert C. Keitel, Raphael Brechbühler, Felipe V. Antolinez, Sergio G. Rodrigo, Jian Cui, David J. Norris. Role of Gain in Fabry–Pérot Surface Plasmon Polariton Lasers. ACS Photonics 2022, 9 (2) , 630-640. https://doi.org/10.1021/acsphotonics.1c01627
  5. Kevin Portner, Manuel Schmuck, Paul Lehmann, Christoph Weilenmann, Christian Haffner, Ping Ma, Juerg Leuthold, Mathieu Luisier, Alexandros Emboras. Analog Nanoscale Electro-Optical Synapses for Neuromorphic Computing Applications. ACS Nano 2021, 15 (9) , 14776-14785. https://doi.org/10.1021/acsnano.1c04654
  6. Anna Rosławska, Pablo Merino, Abhishek Grewal, Christopher C. Leon, Klaus Kuhnke, Klaus Kern. Atomic-Scale Structural Fluctuations of a Plasmonic Cavity. Nano Letters 2021, 21 (17) , 7221-7227. https://doi.org/10.1021/acs.nanolett.1c02207
  7. Adrian Agreda, Sviatlana Viarbitskaya, Igor V. Smetanin, Alexander V. Uskov, Gérard Colas des Francs, Alexandre Bouhelier. Electrostatic Control over Optically Pumped Hot Electrons in Optical Gap Antennas. ACS Photonics 2020, 7 (8) , 2153-2162. https://doi.org/10.1021/acsphotonics.0c00623
  8. Pan Wang, Mazhar E. Nasir, Alexey V. Krasavin, Wayne Dickson, Anatoly V. Zayats. Optoelectronic Synapses Based on Hot-Electron-Induced Chemical Processes. Nano Letters 2020, 20 (3) , 1536-1541. https://doi.org/10.1021/acs.nanolett.9b03871
  9. Paul Johns, Ryan J. Suess, Nicholas Charipar, Jake Fontana. Ultrafast Welding Dynamics of Plasmonic Nanorod Dimers. The Journal of Physical Chemistry C 2019, 123 (24) , 15209-15216. https://doi.org/10.1021/acs.jpcc.9b03197
  10. Mohamed Yousef Hassan, Yu Zhou, Chenjie Gu, Hailong Liu, Joel Kwang Yang, Diing Shenp Ang. Plasmon-Assisted Zone-Selective Repair of Nanoscale Electrical Breakdown Paths in Metal/Oxide/Metal Structures for Near-Field Optical Sensing. ACS Applied Nano Materials 2018, 1 (8) , 4340-4350. https://doi.org/10.1021/acsanm.8b01257
  11. Alexandros Emboras, Alessandro Alabastri, Fabian Ducry, Bojun Cheng, Yannick Salamin, Ping Ma, Samuel Andermatt, Benedikt Baeuerle, Arne Josten, Christian Hafner, Mathieu Luisier, Peter Nordlander, Juerg Leuthold. Atomic Scale Photodetection Enabled by a Memristive Junction. ACS Nano 2018, 12 (7) , 6706-6713. https://doi.org/10.1021/acsnano.8b01811
  12. Upkar Kumar, Sviatlana Viarbitskaya, Aurélien Cuche, Christian Girard, Sreenath Bolisetty, Raffaele Mezzenga, Gérard Colas des Francs, Alexandre Bouhelier, Erik Dujardin. Designing Plasmonic Eigenstates for Optical Signal Transmission in Planar Channel Devices. ACS Photonics 2018, 5 (6) , 2328-2335. https://doi.org/10.1021/acsphotonics.8b00137
  13. Linfeng Chen, Maria Koifman Khristosov, Cecile Saguy, Alex Katsman, Boaz Pokroy. Association Between Gold Grain Orientation and Its Periodic Steps Formed at the Gold/Substrate Interface. The Journal of Physical Chemistry C 2018, 122 (21) , 11364-11370. https://doi.org/10.1021/acs.jpcc.7b12765
  14. Parinda Vasa and Christoph Lienau . Strong Light–Matter Interaction in Quantum Emitter/Metal Hybrid Nanostructures. ACS Photonics 2018, 5 (1) , 2-23. https://doi.org/10.1021/acsphotonics.7b00650
  15. Garikoitz Aguirregabiria, Dana Codruta Marinica, Ruben Esteban, Andrey K. Kazansky, Javier Aizpurua, and Andrei G. Borisov . Electric Field-Induced High Order Nonlinearity in Plasmonic Nanoparticles Retrieved with Time-Dependent Density Functional Theory. ACS Photonics 2017, 4 (3) , 613-620. https://doi.org/10.1021/acsphotonics.6b00953
  16. J. Mertens, A. Demetriadou, R. W. Bowman, F. Benz, M.-E. Kleemann, C. Tserkezis, Y. Shi, H. Y. Yang, O. Hess, J. Aizpurua, and J. J. Baumberg . Tracking Optical Welding through Groove Modes in Plasmonic Nanocavities. Nano Letters 2016, 16 (9) , 5605-5611. https://doi.org/10.1021/acs.nanolett.6b02164
  17. Shi Dong, Kai Zhang, Zhiping Yu, and Jonathan A. Fan . Electrochemically Programmable Plasmonic Antennas. ACS Nano 2016, 10 (7) , 6716-6724. https://doi.org/10.1021/acsnano.6b02031
  18. Federico Marchesin, Peter Koval, Marc Barbry, Javier Aizpurua, and Daniel Sánchez-Portal . Plasmonic Response of Metallic Nanojunctions Driven by Single Atom Motion: Quantum Transport Revealed in Optics. ACS Photonics 2016, 3 (2) , 269-277. https://doi.org/10.1021/acsphotonics.5b00609
  19. Rahul Dev Mishra, Suresh Kumar Pandey, Prem Babu, Santosh Kumar, Ashutosh Kumar, Nikita Mohanta, Mukesh Kumar. Nanophotonic resistive switch based on tapered copper-silicon structure with low power and high extinction ratio. Optics & Laser Technology 2024, 175 , 110833. https://doi.org/10.1016/j.optlastec.2024.110833
  20. Jacob B Khurgin. Energy and Power Requirements for Alteration of the Refractive Index. Laser & Photonics Reviews 2024, 130 https://doi.org/10.1002/lpor.202300836
  21. Kai-Hao Chang, Zhan-Hong Lin, Po-Tsung Lee, Jer-Shing Huang. Enhancing on/off ratio of a dielectric-loaded plasmonic logic gate with an amplitude modulator. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-30823-5
  22. Xuefang Hu, Changgui Lu, Xiangyue Zhao, Yinwei Gu, Mengjia Lu, Dechao Sun. A multi-parameter tunable plasmon modulator. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-38799-y
  23. Giovanni Magno, Vy Yam, Béatrice Dagens. Integration of Plasmonic Structures in Photonic Waveguides Enables Novel Electromagnetic Functionalities in Photonic Circuits. Applied Sciences 2023, 13 (23) , 12551. https://doi.org/10.3390/app132312551
  24. Zhuoran Fang, Bassem Tossoun, Antoine Descos, Di Liang, Xue Huang, Geza Kurczveil, Arka Majumdar, Raymond G. Beausoleil. Fast and Energy‐Efficient Non‐Volatile III‐V‐on‐Silicon Photonic Phase Shifter Based on Memristors. Advanced Optical Materials 2023, 11 (24) https://doi.org/10.1002/adom.202301178
  25. Kalun Bedingfield, Eoin Elliott, Arsenios Gisdakis, Nuttawut Kongsuwan, Jeremy J. Baumberg, Angela Demetriadou. Multi-faceted plasmonic nanocavities. Nanophotonics 2023, Article ASAP.
  26. Hajun Yoo, Hyunwoong Lee, Seongmin Im, Sukhyeon Ka, Gwiyeong Moon, Kyungnam Kang, Donghyun Kim. Switching on Versatility: Recent Advances in Switchable Plasmonic Nanostructures. Small Science 2023, 3 (10) https://doi.org/10.1002/smsc.202300048
  27. Zhuoran Fang, Rui Chen, Bassem Tossoun, Stanley Cheung, Di Liang, Arka Majumdar. Non-volatile materials for programmable photonics. APL Materials 2023, 11 (10) https://doi.org/10.1063/5.0165309
  28. S. Hamdad, K. Malchow, D. Avetisyan, E. Dujardin, A. Bouhelier, Y. Zhou, B. Cheng, T. Zellweger, J. Leuthold. Overbias and Quantum Tunneling in Light-Emitting Memristors. Physical Review Applied 2023, 20 (2) https://doi.org/10.1103/PhysRevApplied.20.024057
  29. Nathan Youngblood, Carlos A. Ríos Ocampo, Wolfram H. P. Pernice, Harish Bhaskaran. Integrated optical memristors. Nature Photonics 2023, 17 (7) , 561-572. https://doi.org/10.1038/s41566-023-01217-w
  30. Alemayehu Nana Koya, Marco Romanelli, Joel Kuttruff, Nils Henriksson, Andrei Stefancu, Gustavo Grinblat, Aitor De Andres, Fritz Schnur, Mirko Vanzan, Margherita Marsili, Mahfujur Rahaman, Alba Viejo Rodríguez, Tlek Tapani, Haifeng Lin, Bereket Dalga Dana, Jingquan Lin, Grégory Barbillon, Remo Proietti Zaccaria, Daniele Brida, Deep Jariwala, László Veisz, Emiliano Cortés, Stefano Corni, Denis Garoli, Nicolò Maccaferri. Advances in ultrafast plasmonics. Applied Physics Reviews 2023, 10 (2) https://doi.org/10.1063/5.0134993
  31. Zhiliang Chen, Wenxiao Liu, Bingying Zhang, Kai Wu, Zhongyang Li, Pibin Bing, Lian Tan, Hongtao Zhang, Jianquan Yao. Nanoscale and ultra-high extinction ratio optical memristive switch based on plasmonic waveguide with square cavity. Applied Optics 2023, 62 (1) , 27. https://doi.org/10.1364/AO.476510
  32. Bojun Cheng, Till Zellweger, Konstantin Malchow, Xinzhi Zhang, Mila Lewerenz, Elias Passerini, Jan Aeschlimann, Ueli Koch, Mathieu Luisier, Alexandros Emboras, Alexandre Bouhelier, Juerg Leuthold. Atomic scale memristive photon source. Light: Science & Applications 2022, 11 (1) https://doi.org/10.1038/s41377-022-00766-z
  33. Ahmed H. Elfarash, Avik Mandal, Behrad Gholipour, , . Waveguide-coupled plasmonic nanogap-integrated phase change metasurfaces. 2022, 60. https://doi.org/10.1117/12.2633266
  34. Gianluca Milano, Masakazu Aono, Luca Boarino, Umberto Celano, Tsuyoshi Hasegawa, Michael Kozicki, Sayani Majumdar, Mariela Menghini, Enrique Miranda, Carlo Ricciardi, Stefan Tappertzhofen, Kazuya Terabe, Ilia Valov. Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications. Advanced Materials 2022, 34 (32) https://doi.org/10.1002/adma.202201248
  35. Dongju Chen, Shuiyuan Wu, Yazhong He, Yuchi Luo, Xiang Wang. A review of simulation and experiment research on cutting mechanism and cutting force in nanocutting process. The International Journal of Advanced Manufacturing Technology 2022, 121 (3-4) , 1533-1574. https://doi.org/10.1007/s00170-022-09051-0
  36. Wallace Jaffray, Soham Saha, Vladimir M. Shalaev, Alexandra Boltasseva, Marcello Ferrera. Transparent conducting oxides: from all-dielectric plasmonics to a new paradigm in integrated photonics. Advances in Optics and Photonics 2022, 14 (2) , 148. https://doi.org/10.1364/AOP.448391
  37. George Dabos, Dimitris V. Bellas, Ripalta Stabile, Miltiadis Moralis-Pegios, George Giamougiannis, Apostolos Tsakyridis, Angelina Totovic, Elefterios Lidorikis, Nikos Pleros. Neuromorphic photonic technologies and architectures: scaling opportunities and performance frontiers [Invited]. Optical Materials Express 2022, 12 (6) , 2343. https://doi.org/10.1364/OME.452138
  38. M. Thomaschewski, S. I. Bozhevolnyi. Pockels modulation in integrated nanophotonics. Applied Physics Reviews 2022, 9 (2) https://doi.org/10.1063/5.0083083
  39. Kalun Bedingfield, Angela Demetriadou. On the excitation and radiative decay rates of plasmonic nanoantennas. Nanophotonics 2022, 11 (10) , 2271-2281. https://doi.org/10.1515/nanoph-2022-0015
  40. Junru An, Xingyu Zhao, Yanan Zhang, Mingxiu Liu, Jian Yuan, Xiaojuan Sun, Zhiyu Zhang, Bin Wang, Shaojuan Li, Dabing Li. Perspectives of 2D Materials for Optoelectronic Integration. Advanced Functional Materials 2022, 32 (14) https://doi.org/10.1002/adfm.202110119
  41. François Aguillon, Dana Codruta Marinica, Andrei G. Borisov. Atomic-scale control of plasmon modes in graphene nanoribbons. Physical Review B 2022, 105 (8) https://doi.org/10.1103/PhysRevB.105.L081401
  42. Ueli Koch, C. Hoessbacher, A. Emboras, J. Leuthold. Optical Memristive Switches. 2022, 355-376. https://doi.org/10.1007/978-3-030-42424-4_15
  43. Alex Gee, Ayoub H. Jaafar, N. T. Kemp. Optical Memristors: Review of Switching Mechanisms and New Computing Paradigms. 2022, 219-244. https://doi.org/10.1007/978-3-030-90582-8_10
  44. Igor Girka, Manfred Thumm. Applications of Surface Wave Propagation. 2022, 367-423. https://doi.org/10.1007/978-3-030-98210-2_11
  45. Kalun Bedingfield, Eoin Elliott, Nuttawut Kongsuwan, Jeremy J. Baumberg, Angela Demetriadou, , . Morphology dependence of nanoparticle-on-mirror geometries: A quasinormal mode analysis. EPJ Applied Metamaterials 2022, 9 , 3. https://doi.org/10.1051/epjam/2022002
  46. Harshit Shukla, Tushar Rajvanshi, Tanish Gupta, Vipin Kumar, Kumar Gaurav, Deepak Kumar. Diamond based power electronic devices for aerospace application. 2022, 030006. https://doi.org/10.1063/5.0117717
  47. Alexandros Emboras, Kevin Portner, Christoph Weilenmann, Till Zellweger, Mila Lewerenz, Bojun Cheng, Elias Passerini, Alessandro Alabastri, Ping Ma, Juerg Leuthold, Mathieu Luisier. Integrated Photonic-Electronic Memristors. 2022, JTh3B.57. https://doi.org/10.1364/CLEO_AT.2022.JTh3B.57
  48. Juerg Leuthold, Bojun Cheng, Ueli Koch, Jasmin Smajic, Till Zellweger, Alexandros Emboras, Mathieu Luisier, Fangqing Xie, Thomas Schimmel. Atomic-Scale Memristive Plasmonics. 2022, IW4B.5. https://doi.org/10.1364/IPRSN.2022.IW4B.5
  49. Jung-Hwan Song, Søren Raza, Jorik van de Groep, Ju-Hyung Kang, Qitong Li, Pieter G. Kik, Mark L. Brongersma. Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-020-20273-2
  50. I. Gayduchenko, S. G. Xu, G. Alymov, M. Moskotin, I. Tretyakov, T. Taniguchi, K. Watanabe, G. Goltsman, A. K. Geim, G. Fedorov, D. Svintsov, D. A. Bandurin. Tunnel field-effect transistors for sensitive terahertz detection. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-020-20721-z
  51. Jibo Tang, Huatian Hu, Xiaobo He, Yuhao Xu, Yuan Zhang, Zhiqiang Guan, Shunping Zhang, Hongxing Xu. Switchable Electrically Driven Optical Antenna Based on Ultrathin Amorphous Silica. Advanced Optical Materials 2021, 9 (19) https://doi.org/10.1002/adom.202100191
  52. Roy Zektzer, Noa Mazurski, Yefim Barash, Uriel levy. Nanoscale atomic suspended waveguides for improved vapour coherence times and optical frequency referencing. Nature Photonics 2021, 15 (10) , 772-779. https://doi.org/10.1038/s41566-021-00853-4
  53. Ye Tian, Saiwen Zhang, Weishi Tan. An Ultra-Compact Design of Plasmonic Memristor with Low Loss and High Extinction Efficiency Based on Enhanced Interaction between Filament and Concentrated Plasmon. Photonics 2021, 8 (10) , 437. https://doi.org/10.3390/photonics8100437
  54. Lalit Singh, Sulabh, Vishal Kaushik, Swati Rajput, Rahul Dev Mishra, Mukesh Kumar. Light Assisted Electro-Metallization in Resistive Switch With Optical Accessibility. Journal of Lightwave Technology 2021, 39 (18) , 5869-5874. https://doi.org/10.1109/JLT.2021.3091970
  55. Jorge Parra, Irene Olivares, Antoine Brimont, Pablo Sanchis. Toward Nonvolatile Switching in Silicon Photonic Devices. Laser & Photonics Reviews 2021, 15 (6) https://doi.org/10.1002/lpor.202000501
  56. Yifei Wang, Patrick Landreman, David Schoen, Kye Okabe, Ann Marshall, Umberto Celano, H.-S. Philip Wong, Junghyun Park, Mark L. Brongersma. Electrical tuning of phase-change antennas and metasurfaces. Nature Nanotechnology 2021, 16 (6) , 667-672. https://doi.org/10.1038/s41565-021-00882-8
  57. Lalit Singh, Sulabh Srivastava, Swati Rajput, Vishal Kaushik, Rahul Dev Mishra, Mukesh Kumar. Optical switch with ultra high extinction ratio using electrically controlled metal diffusion. Optics Letters 2021, 46 (11) , 2626. https://doi.org/10.1364/OL.428710
  58. Thomas Defferriere, Dmitri Kalaev, Jennifer L. M. Rupp, Harry L. Tuller. Impact of Oxygen Non‐Stoichiometry on Near‐Ambient Temperature Ionic Mobility in Polaronic Mixed‐Ionic‐Electronic Conducting Thin Films. Advanced Functional Materials 2021, 31 (14) https://doi.org/10.1002/adfm.202005640
  59. E. Gemo, J. Faneca, S. G.-C. Carrillo, A. Baldycheva, W. H. P. Pernice, H. Bhaskaran, C. D. Wright. A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices. Journal of Applied Physics 2021, 129 (11) https://doi.org/10.1063/5.0042962
  60. Alexandros Emboras, Alessandro Alabastri, Paul Lehmann, Kevin Portner, Christoph Weilenmann, Ping Ma, Bojun Cheng, Mila Lewerenz, Elias Passerini, Ueli Koch, Jan Aeschlimann, Fabian Ducry, Juerg Leuthold, Mathieu Luisier. Opto-electronic memristors: Prospects and challenges in neuromorphic computing. Applied Physics Letters 2020, 117 (23) https://doi.org/10.1063/5.0028539
  61. Tao Gong, Peifen Lyu, Kevin J. Palm, Sarvenaz Memarzadeh, Jeremy N. Munday, Marina S. Leite. Emergent Opportunities with Metallic Alloys: From Material Design to Optical Devices. Advanced Optical Materials 2020, 8 (23) https://doi.org/10.1002/adom.202001082
  62. Behrokh Beiranvand, Alexander S. Sobolev, Arash Sheikhaleh. A proposal for a dual-band tunable plasmonic absorber using concentric-rings resonators and mono-layer graphene. Optik 2020, 223 , 165587. https://doi.org/10.1016/j.ijleo.2020.165587
  63. Juerg Leuthold, Bojun Cheng, Mila Lewerenz, Elias Passerini, Yuriy Fedoryshyn, Ueli Koch, Alexandros Emboras, Mathieu Luisier, Fangqing Xie, Thomas Schimmel, Christian Haffner. MEMS Plasmonics and Memristive Plasmonics for Optical Communications. 2020, 1-4. https://doi.org/10.1109/ECOC48923.2020.9333368
  64. Mark L. Brongersma. The road to atomically thin metasurface optics. Nanophotonics 2020, 10 (1) , 643-654. https://doi.org/10.1515/nanoph-2020-0444
  65. Chenyi Zhang, Jinxin Li, Alex Belianinov, Zhao Ma, C Kyle Renshaw, Ryan M Gelfand. Nanoaperture fabrication in ultra-smooth single-grain gold films with helium ion beam lithography. Nanotechnology 2020, 31 (46) , 465302. https://doi.org/10.1088/1361-6528/abae99
  66. Giuliana Di Martino, Angela Demetriadou, Weiwei Li, Dean Kos, Bonan Zhu, Xuejing Wang, Bart de Nijs, Haiyan Wang, Judith MacManus-Driscoll, Jeremy J. Baumberg. Real-time in situ optical tracking of oxygen vacancy migration in memristors. Nature Electronics 2020, 3 (11) , 687-693. https://doi.org/10.1038/s41928-020-00478-5
  67. Behrokh Beiranvand, Alexander S Sobolev. A proposal for a multi-functional tunable dual-band plasmonic absorber consisting of a periodic array of elliptical grooves. Journal of Optics 2020, 22 (10) , 105005. https://doi.org/10.1088/2040-8986/abb2f3
  68. Saeid Asgarnezhad-Zorgabad, Barry C. Sanders. Nonlinear frequency conversions via weak surface polaritonic wave breaking in a hybrid plasmonic waveguide. Optics Letters 2020, 45 (19) , 5432. https://doi.org/10.1364/OL.402282
  69. Ahsan Habib, Xiangchao Zhu, Sabrina Fong, Ahmet Ali Yanik. Active plasmonic nanoantenna: an emerging toolbox from photonics to neuroscience. Nanophotonics 2020, 9 (12) , 3805-3829. https://doi.org/10.1515/nanoph-2020-0275
  70. Liping Song, Youju Huang, Zhihong Nie, Tao Chen. Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. Nanoscale 2020, 12 (14) , 7433-7460. https://doi.org/10.1039/C9NR09420B
  71. Wuhong Xue, Wenjuan Ci, Xiao-Hong Xu, Gang Liu. Optoelectronic memristor for neuromorphic computing*. Chinese Physics B 2020, 29 (4) , 048401. https://doi.org/10.1088/1674-1056/ab75da
  72. Xue-Feng Cheng, Yao Zhao, Wen Ye, Chuang Yu, Jing-Hui He, Fu-Yi Wang, Jian-Mei Lu. Scaled conductance quantization unravels the switching mechanism in organic ternary resistive memories. Journal of Materials Chemistry C 2020, 8 (9) , 2964-2969. https://doi.org/10.1039/C9TC06948H
  73. Stefan Tappertzhofen, Giuliana Di Martino, Stephan Hofmann. Nanoparticle Dynamics in Oxide‐Based Memristive Devices. physica status solidi (a) 2020, 217 (6) https://doi.org/10.1002/pssa.201900587
  74. Jiadi Zhu, Teng Zhang, Yuchao Yang, Ru Huang. A comprehensive review on emerging artificial neuromorphic devices. Applied Physics Reviews 2020, 7 (1) https://doi.org/10.1063/1.5118217
  75. Wenkun Xie, Fengzhou Fang. Mechanism of atomic and close-to-atomic scale cutting of monocrystalline copper. Applied Surface Science 2020, 503 , 144239. https://doi.org/10.1016/j.apsusc.2019.144239
  76. Parinda Vasa. Coherent Nonlinear Processes in Metal-Semiconductor Hybrid Nanostructures. 2020, 101-120. https://doi.org/10.1007/978-3-030-47098-2_5
  77. Parinda Vasa. Exciton-surface plasmon polariton interactions. Advances in Physics: X 2020, 5 (1) , 1749884. https://doi.org/10.1080/23746149.2020.1749884
  78. Juerg Leuthold, Bojun Cheng, Mila Lewerenz, Elias Passerini, Yuriy Fedoryshyn, Ueli Koch, Alexandros Emboras, Christian Haffner, Mathieu Luisier, Thomas Schimmel. Atomic-Scale Photonic Memristive and Nano-Opto-Electro-Mechanical Devices Enabled by Plasmonics. 2020, FW7D.1. https://doi.org/10.1364/FIO.2020.FW7D.1
  79. Long Tao, Aleksei Anopchenko, Sudip Gurung, Jinqiannan Zhang, Ho Wai Howard Lee. Gate-Tunable Plasmon-Induced Transparency Modulator Based on Stub-Resonator Waveguide with Epsilon-Near-Zero Materials. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-39047-y
  80. Bojun Cheng, Alexandros Emboras, Yannick Salamin, Fabian Ducry, Ping Ma, Yuriy Fedoryshyn, Samuel Andermatt, Mathieu Luisier, Juerg Leuthold. Ultra compact electrochemical metallization cells offering reproducible atomic scale memristive switching. Communications Physics 2019, 2 (1) https://doi.org/10.1038/s42005-019-0125-9
  81. Christian Haffner, Andreas Joerg, Michael Doderer, Felix Mayor, Daniel Chelladurai, Yuriy Fedoryshyn, Cosmin Ioan Roman, Mikael Mazur, Maurizio Burla, Henri J. Lezec, Vladimir A. Aksyuk, Juerg Leuthold. Nano–opto-electro-mechanical switches operated at CMOS-level voltages. Science 2019, 366 (6467) , 860-864. https://doi.org/10.1126/science.aay8645
  82. Giuliana Di Martino, Stefan Tappertzhofen. Optically accessible memristive devices. Nanophotonics 2019, 8 (10) , 1579-1589. https://doi.org/10.1515/nanoph-2019-0063
  83. Wuhong Xue, Shuang Gao, Jie Shang, Xiaohui Yi, Gang Liu, Run‐Wei Li. Recent Advances of Quantum Conductance in Memristors. Advanced Electronic Materials 2019, 5 (9) https://doi.org/10.1002/aelm.201800854
  84. Da Xu, Xiao Xiong, Lin Wu, Xi-Feng Ren, Ching Eng Png, Guang-Can Guo, Qihuang Gong, Yun-Feng Xiao. Quantum plasmonics: new opportunity in fundamental and applied photonics. Advances in Optics and Photonics 2018, 10 (4) , 703. https://doi.org/10.1364/AOP.10.000703
  85. Marie-Maxime Mennemanteuil, Gérard Colas-des-Francs, Mickaël Buret, Arindam Dasgupta, Alexander Cuadrado, Javier Alda, Alexandre Bouhelier. Laser-induced thermoelectric effects in electrically biased nanoscale constrictions. Nanophotonics 2018, 7 (12) , 1917-1927. https://doi.org/10.1515/nanoph-2018-0083
  86. B. H. Robinson, Y. Salamin, B. Baeuerle, A. Josten, M. Ayata, U. Koch, J. Leuthold, L. R. Dalton, L. E. Johnson, D. L. Elder, A. A. Kocherzhenko, C. M. Isborn, C. Haffner, W. Heni, C. Hoessbacher, Y. Fedoryshyn. Optimization of Plasmonic-Organic Hybrid Electro-Optics. Journal of Lightwave Technology 2018, 36 (21) , 5036-5047. https://doi.org/10.1109/JLT.2018.2865882
  87. Juerg Leuthold, Salamin Yannick, Romain Bonjour, Maurizio Burla, Christian Haffner, Wolfgang Heni, Yuriy Fedoryshyn, Masafumi Ayata, Benedikt Baeuerle, Arne Josten, Claudia Hoessbacher, Delwin L. Elder, Larry R. Dalton. What can Plasmonics Bring to Microwave Photonics?. 2018, 1-3. https://doi.org/10.1109/ECOC.2018.8535164
  88. Kacper Pilarczyk, Ewelina Wlaźlak, Dawid Przyczyna, Andrzej Blachecki, Agnieszka Podborska, Vasileios Anathasiou, Zoran Konkoli, Konrad Szaciłowski. Molecules, semiconductors, light and information: Towards future sensing and computing paradigms. Coordination Chemistry Reviews 2018, 365 , 23-40. https://doi.org/10.1016/j.ccr.2018.03.018
  89. Christian Haffner, Daniel Chelladurai, Yuriy Fedoryshyn, Arne Josten, Benedikt Baeuerle, Wolfgang Heni, Tatsuhiko Watanabe, Tong Cui, Bojun Cheng, Soham Saha, Delwin L. Elder, Larry. R. Dalton, Alexandra Boltasseva, Vladimir M. Shalaev, Nathaniel Kinsey, Juerg Leuthold. Low-loss plasmon-assisted electro-optic modulator. Nature 2018, 556 (7702) , 483-486. https://doi.org/10.1038/s41586-018-0031-4
  90. Jihang Lee, Wei D. Lu. On‐Demand Reconfiguration of Nanomaterials: When Electronics Meets Ionics. Advanced Materials 2018, 30 (1) https://doi.org/10.1002/adma.201702770
  91. Volker J Sorger, Rubab Amin, Jacob B Khurgin, Zhizhen Ma, Hamed Dalir, Sikandar Khan. Scaling vectors of attoJoule per bit modulators. Journal of Optics 2018, 20 (1) , 014012. https://doi.org/10.1088/2040-8986/aa9e11
  92. Juerg Leuthold, Romain Bonjour, Yannick Salamin, Claudia Hoessbacher, Wolfgang Heni, Christian Haffner, Arne Josten, Benedikt Baeuerle, Masafumi Ayata, Andreas Messner, Ueli Koch, Tatsuhiko Watanabe, Yuriy Fedoryshyn, Ping Ma, Maurizio Burla, Delwin L. Elder, Larry R. Dalton. Plasmonics for Communications. 2018, M3G.2. https://doi.org/10.1364/OFC.2018.M3G.2
  93. Ueli Koch, Claudia Hoessbacher, Alexandros Emboras, Juerg Leuthold. Optical memristive switches. Journal of Electroceramics 2017, 39 (1-4) , 239-250. https://doi.org/10.1007/s10832-017-0072-3
  94. Vasyl G. Kravets, Owen P. Marshall, Fred Schedin, Francisco J. Rodriguez, Alexander A. Zhukov, Ali Gholinia, Eric Prestat, Sarah J. Haigh, Alexander N. Grigorenko. Plasmon-induced nanoscale quantised conductance filaments. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-02976-7
  95. Dana Codruta Marinica, Andrey K. Kazansky, Andrei G. Borisov. Electrical control of the light absorption in quantum-well functionalized junctions between thin metallic films. Physical Review B 2017, 96 (24) https://doi.org/10.1103/PhysRevB.96.245407
  96. Arash Ahmadivand, Burak Gerislioglu, Nezih Pala. Graphene Optical Switch Based on Charge Transfer Plasmons. physica status solidi (RRL) – Rapid Research Letters 2017, 11 (11) https://doi.org/10.1002/pssr.201700285
  97. ye tian, lianjun jiang, xunjun zhang, guangfu zhang, , , , . Compact plasmonic memristor with high extinction efficiency. 2017, 7. https://doi.org/10.1117/12.2282393
  98. Yanhao Gou, Wei Hou, Dongyang Li, Wenlin Meng, Yicheng Chen, Wei Li. Structural and Optoelectronic Properties of a-SiO x : Ag Films Used for Ag/SiO x /p-Si Memristor. IOP Conference Series: Materials Science and Engineering 2017, 250 , 012027. https://doi.org/10.1088/1757-899X/250/1/012027
  99. A. D. Khan, M. Amin. Polarization Selective Multiple Fano Resonances in Coupled T-Shaped Metasurface. IEEE Photonics Technology Letters 2017, 29 (19) , 1611-1614. https://doi.org/10.1109/LPT.2017.2737331
  100. Krishnan Thyagarajan, Ruzan Sokhoyan, Leonardo Zornberg, Harry A. Atwater. Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance. Advanced Materials 2017, 29 (31) https://doi.org/10.1002/adma.201701044
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect