ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Optical Manipulation of Rashba Spin–Orbit Coupling at SrTiO3-Based Oxide Interfaces

View Author Information
International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
§ National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062, China
Cite this: Nano Lett. 2017, 17, 11, 6534–6539
Publication Date (Web):October 2, 2017
https://doi.org/10.1021/acs.nanolett.7b02128
Copyright © 2017 American Chemical Society

    Article Views

    2412

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Spin–orbit coupling (SOC) plays a crucial role for spintronics applications. Here we present the first demonstration that the Rashba SOC at the SrTiO3-based interfaces is highly tunable by photoinduced charge doping, that is, optical gating. Such optical manipulation is nonvolatile after the removal of the illumination in contrast to conventional electrostatic gating and also erasable via a warming–cooling cycle. Moreover, the SOC evolutions tuned by illuminations with different wavelengths at various gate voltages coincide with each other in different doping regions and collectively form an upward-downward trend curve: In response to the increase of conductivity, the SOC strength first increases and then decreases, which can be attributed to the orbital hybridization of Ti 3d subbands. More strikingly, the optical manipulation is effective enough to tune the interferences of Bloch wave functions from constructive to destructive and therefore to realize a transition from weak localization to weak antilocalization. The present findings pave a way toward the exploration of photoinduced nontrivial quantum states and the design of optically controlled spintronic devices.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.7b02128.

    • Details of the WL/WAL analysis, as well as additional figures (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 31 publications.

    1. Hang Yin, Shuanhu Wang, Kexin Jin. Enhanced Rashba Spin Orbit Coupling and Magnetic Behavior at Oxide Heterointerfaces by Optical Gating. The Journal of Physical Chemistry Letters 2023, 14 (38) , 8684-8690. https://doi.org/10.1021/acs.jpclett.3c01811
    2. Yongda Chen, Ruxin Liu, Xu Zhang, Wenzhuo Zhuang, Chong Zhang, Wei Niu, Chunchen Zhang, Peng Wang, Wensheng Yan, Li Pi, Fengqi Song, Yunzhong Chen, Yongbing Xu, Rong Zhang, Xuefeng Wang. Enhancement of Spin Polarization in Two-Dimensional Electron Gases at Patterned LaAlO3/SrTiO3 Interfaces. The Journal of Physical Chemistry C 2022, 126 (44) , 19002-19010. https://doi.org/10.1021/acs.jpcc.2c06582
    3. Wei Niu, Yue-Wen Fang, Ruxin Liu, Zhenqi Wu, Yongda Chen, Yulin Gan, Xiaoqian Zhang, Chunhui Zhu, Lixia Wang, Yongbing Xu, Yong Pu, Yunzhong Chen, Xuefeng Wang. Fully Optical Modulation of the Two-Dimensional Electron Gas at the γ-Al2O3/SrTiO3 Interface. The Journal of Physical Chemistry Letters 2022, 13 (13) , 2976-2985. https://doi.org/10.1021/acs.jpclett.2c00384
    4. Ming Li, Ruishu Yang, Xiangyang Wei, Hang Yin, Shuanhu Wang, Kexin Jin. Display of Spin–Orbit Coupling at ReAlO3/SrTiO3 (Re = La, Pr, Nd, Sm, and Gd) Heterointerfaces. ACS Applied Materials & Interfaces 2021, 13 (18) , 21964-21970. https://doi.org/10.1021/acsami.1c02295
    5. Jine Zhang, Hui Zhang, Hongrui Zhang, Yang Ma, Xiaobing Chen, Fanqi Meng, Shaojin Qi, Yuansha Chen, Fengxia Hu, Qinghua Zhang, Banggui Liu, Baogen Shen, Weisheng Zhao, Wei Han, Jirong Sun. Long-Range Magnetic Order in Oxide Quantum Wells Hosting Two-Dimensional Electron Gases. ACS Applied Materials & Interfaces 2020, 12 (25) , 28775-28782. https://doi.org/10.1021/acsami.0c05332
    6. Jiesu Wang, Hongbao Yao, Kuijuan Jin, Er-Jia Guo, Qinghua Zhang, Chao Ma, Lin Gu, Pazhanivelu Venkatachalam, Jiali Zhao, Jiaou Wang, Hassen Riahi, Haizhong Guo, Chen Ge, Can Wang, Guozhen Yang. Magnetoresistance in Metallic Ferroelectrics. ACS Applied Electronic Materials 2019, 1 (7) , 1225-1232. https://doi.org/10.1021/acsaelm.9b00197
    7. Hui Zhang, Xi Yan, Xuejing Zhang, Shuai Wang, Changmin Xiong, Hongrui Zhang, Shaojin Qi, Jine Zhang, Furong Han, Ning Wu, Banggui Liu, Yuansha Chen, Baogen Shen, Jirong Sun. Unusual Electric and Optical Tuning of KTaO3-Based Two-Dimensional Electron Gases with 5d Orbitals. ACS Nano 2019, 13 (1) , 609-615. https://doi.org/10.1021/acsnano.8b07622
    8. Xu Zhang, Tongshuai Zhu, Shuai Zhang, Zhongqiang Chen, Anke Song, Chong Zhang, Rongzheng Gao, Wei Niu, Yequan Chen, Fucong Fei, Yilin Tai, Guoan Li, Binghui Ge, Wenkai Lou, Jie Shen, Haijun Zhang, Kai Chang, Fengqi Song, Rong Zhang, Xuefeng Wang. Light-induced giant enhancement of nonreciprocal transport at KTaO3-based interfaces. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-47231-6
    9. Liqian Xiong, Yanpeng Hong, Haoran Chen, Yi Yang, Weijie Duan, Qingyan Rong, Qiao Chen, Yonghe Deng, Xiangli Zhong, Jinbin Wang. Conductivity and photo-response of amorphous-LaAlO3/SrTiO3 (001) grown by on-axis radio-frequency magnetron sputtering. Vacuum 2024, 220 , 112840. https://doi.org/10.1016/j.vacuum.2023.112840
    10. Maria D’Antuono, Yu Chen, Roberta Caruso, Benoit Jouault, Marco Salluzzo, Daniela Stornaiuolo. Tuning of the magnetotransport properties of a spin-polarized 2D electron system using visible light. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-36957-w
    11. Xue Li, Yongmei Li, Hao Yang, Wen Liu, Hailong Wang, Ning Hao, Jiyong Fu, Ping Zhang. Electrical gate assisted optical multisubband spin-orbit control in GaInAs/AlInAs quantum wells with tilted nonresonant laser fields. Physical Review B 2023, 108 (23) https://doi.org/10.1103/PhysRevB.108.235429
    12. Xiaohan Wang, Qi Chen, Ruxin Liu, Hao Wang, Xu Zhang, Liang Ma, Yanqiu Guan, Biao Zhang, Haochen Li, Shuya Guo, Zhuolin Yang, Shun-Li Yu, Xuefeng Wang, Xuecou Tu, Xiaoqing Jia, Qingyuan Zhao, Jian Chen, Lin Kang, Labao Zhang, Peiheng Wu. An energy-sensitive interfacial-superconductor photodetector. 2D Materials 2023, 10 (4) , 045021. https://doi.org/10.1088/2053-1583/acf3fa
    13. Zhen Yang, Kui‐juan Jin, Yulin Gan, Cheng Ma, Zhicheng Zhong, Ye Yuan, Chen Ge, Er‐Jia Guo, Can Wang, Xiulai Xu, Meng He, Dongxiang Zhang, Guozhen Yang. Photoinduced Phase Transition in Infinite‐Layer Nickelates. Small 2023, 19 (43) https://doi.org/10.1002/smll.202304146
    14. Hao Xu, Yulin Gan, Yuchen Zhao, Minghang Li, Xinzhe Hu, Xuanzhuang Chen, Ruwu Wang, Ying Li, Jirong Sun, Fengxia Hu, Yunzhong Chen, Baogen Shen. Two‐Dimensional Electron Gases at the Amorphous and Crystalline SrTiO 3 /KTaO 3 Heterointerfaces. physica status solidi (a) 2023, 220 (13) https://doi.org/10.1002/pssa.202300235
    15. Yulin Gan, Fazhi Yang, Lingyuan Kong, Xuejiao Chen, Hao Xu, Jin Zhao, Gang Li, Yuchen Zhao, Lei Yan, Zhicheng Zhong, Yunzhong Chen, Hong Ding. Light‐Induced Giant Rashba Spin–Orbit Coupling at Superconducting KTaO 3 (110) Heterointerfaces. Advanced Materials 2023, 35 (25) https://doi.org/10.1002/adma.202300582
    16. Jia Liu, Fei Ye, Mingrui Bao, Haiyang Fan, Xinqi Liu, Ziheng Zhang, Zongquan Gu, Long Cheng, Xiaofang Zhai. Confinement‐Enhanced Rashba Spin–Orbit Coupling at the LaAlO 3 /KTaO 3 Interface via LaAlO 3 Thickness Control. physica status solidi (RRL) – Rapid Research Letters 2023, 17 (6) https://doi.org/10.1002/pssr.202200441
    17. M. Michiardi, F. Boschini, H.-H. Kung, M. X. Na, S. K. Y. Dufresne, A. Currie, G. Levy, S. Zhdanovich, A. K. Mills, D. J. Jones, J. L. Mi, B. B. Iversen, Ph. Hofmann, A. Damascelli. Optical manipulation of Rashba-split 2-dimensional electron gas. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-30742-5
    18. Yueqin Wang, Fuzhang Chen, Lili Zheng, Juan Gao, Yin Liu. Oxygen-vacancy-induced structural transition and enhanced magnetism in Sc, Fe-codoped SrTiO3: A theoretical study*. Chemical Physics Letters 2022, 805 , 139943. https://doi.org/10.1016/j.cplett.2022.139943
    19. Gustav Bihlmayer, Paul Noël, Denis V. Vyalikh, Evgueni V. Chulkov, Aurélien Manchon. Rashba-like physics in condensed matter. Nature Reviews Physics 2022, 4 (10) , 642-659. https://doi.org/10.1038/s42254-022-00490-y
    20. Wei Niu, Zhenqi Wu, Yongda Chen, Yulin Gan, Yequan Chen, Hongqi Hu, Xiaoqian Zhang, Yongbing Xu, Youming Zou, Yong Pu, Xuefeng Wang. Evidence of the nontrivial Berry phase at γ -Al2O3/SrTiO3 heterointerfaces. Applied Physics Letters 2022, 121 (10) https://doi.org/10.1063/5.0093903
    21. Dongxing Zheng, Junwei Zhang, Xin He, Yan Wen, Peng Li, Yuchen Wang, Yinchang Ma, Haili Bai, Husam N. Alshareef, Xi-Xiang Zhang. Electrically and optically erasable non-volatile two-dimensional electron gas memory. Nanoscale 2022, 14 (34) , 12339-12346. https://doi.org/10.1039/D2NR01582J
    22. Shaojin Qi, Hui Zhang, Jine Zhang, Yulin Gan, Xiaobing Chen, Baogen Shen, Yuansha Chen, Yunzhong Chen, Jirong Sun. Large Optical Tunability of 5d 2D Electron Gas at the Spinel/Perovskite γ‐Al 2 O 3 /KTaO 3 Heterointerface. Advanced Materials Interfaces 2022, 9 (20) https://doi.org/10.1002/admi.202200103
    23. Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO 3 /SrTiO 3 Heterostructures. Chinese Physics Letters 2020, 37 (7) , 077301. https://doi.org/10.1088/0256-307X/37/7/077301
    24. Yingyi Tian, Shuanhu Wang, Hui Zhang, Hao Li, Shuqin Li, Mehwish Khalid Butt, Yang Zhao, Jianyuan Wang, Kexin Jin. Modulated in-plane carrier distribution of oxide two-dimensional electron gas systems by light assisted electrostatic gating. Journal of Physics D: Applied Physics 2020, 53 (22) , 225102. https://doi.org/10.1088/1361-6463/ab7ca1
    25. Hongjun Xu, Jinwu Wei, Hengan Zhou, Jiafeng Feng, Teng Xu, Haifeng Du, Congli He, Yuan Huang, Junwei Zhang, Yizhou Liu, Han‐Chun Wu, Chenyang Guo, Xiao Wang, Yao Guang, Hongxiang Wei, Yong Peng, Wanjun Jiang, Guoqiang Yu, Xiufeng Han. High Spin Hall Conductivity in Large‐Area Type‐II Dirac Semimetal PtTe 2. Advanced Materials 2020, 32 (17) https://doi.org/10.1002/adma.202000513
    26. Weinan Lin, Lei Li, Fatih Doğan, Changjian Li, Hélène Rotella, Xiaojiang Yu, Bangmin Zhang, Yangyang Li, Wen Siang Lew, Shijie Wang, Wilfrid Prellier, Stephen J. Pennycook, Jingsheng Chen, Zhicheng Zhong, Aurelien Manchon, Tom Wu. Interface-based tuning of Rashba spin-orbit interaction in asymmetric oxide heterostructures with 3d electrons. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10961-z
    27. Dennis Valbjørn Christensen, Felix Trier, Wei Niu, Yulin Gan, Yu Zhang, Thomas Sand Jespersen, Yunzhong Chen, Nini Pryds. Stimulating Oxide Heterostructures: A Review on Controlling SrTiO 3 ‐Based Heterointerfaces with External Stimuli. Advanced Materials Interfaces 2019, 6 (21) https://doi.org/10.1002/admi.201900772
    28. D. Arnold, D. Fuchs, K. Wolff, R. Schäfer. Tuning the superconducting transition of SrTiO3-based 2DEGs with light. Applied Physics Letters 2019, 115 (12) https://doi.org/10.1063/1.5119417
    29. Yuedong Yan, Laiming Wei, Linhai Guo, Fan Zhang, Jiyan Dai, Changgan Zeng. Gate-tunable anomalous transverse voltage at the superconducting LaAlO3/SrTiO3 interface. Applied Physics Letters 2019, 115 (6) https://doi.org/10.1063/1.5113584
    30. Flavio Y. Bruno, Siobhan McKeown Walker, Sara Riccò, Alberto de la Torre, Zhiming Wang, Anna Tamai, Timur K. Kim, Moritz Hoesch, Mohammad S. Bahramy, Felix Baumberger. Band Structure and Spin–Orbital Texture of the (111)‐KTaO 3 2D Electron Gas. Advanced Electronic Materials 2019, 5 (5) https://doi.org/10.1002/aelm.201800860
    31. Hong Yan, Zhaoting Zhang, Shuanhu Wang, Kexin Jin. Review of photoresponsive properties at SrTiO 3 -based heterointerfaces. Chinese Physics B 2018, 27 (11) , 117804. https://doi.org/10.1088/1674-1056/27/11/117804

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect