ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Scale-up Synthesis of (R)- and (S)-N-(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)pyrrolidine-2-carboxamide Hydrochloride, A Versatile Reagent for the Preparation of Tailor-Made α- and β-Amino Acids in an Enantiomerically Pure Form

View Author Information
Hamari Chemicals USA, San Diego, California 92121, United States
Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 53300024, Japan
§ Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
Cite this: Org. Process Res. Dev. 2017, 21, 5, 732–739
Publication Date (Web):April 13, 2017
https://doi.org/10.1021/acs.oprd.7b00055
Copyright © 2017 American Chemical Society

    Article Views

    2897

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    Unusual amino acids are of crucial importance to the synthesis of bioactive peptides and new chemical entities. Innovative methodology is always needed for the preparation of enantiomerically pure amino acids that does not rely on tedious resolution procedures. The proline-derived ligands (R)- and (S)-N-(2-benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)pyrrolidine-2-carboxamide are outstanding, versatile, and recyclable reagents for the synthesis of tailor-made α- and β-amino acids. Here we report initial studies of the scale-up synthesis of the HCl salt of these reagents on the 100 g scale. The results demonstrate an increased efficiency and environmental friendliness of the bench-scale procedure and provides a firm foundation for the manufacture on multikilogram and larger scales.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.oprd.7b00055.

    • Full NMR spectra of 12, 3, and 14, as well as HPLC traces of in-progress controls and final products (PDF)

    • Chiral HPLC traces for 3 and 14 with limit of detection information (PDF)

    • Mass spectral information for 12, 3, and 14 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 33 publications.

    1. Thomas Hohmann, Michael Dyrks, Suvrat Chowdhary, Manuela Weber, Duy Nguyen, Johann Moschner, Beate Koksch. Gram-Scale Asymmetric Synthesis of Fluorinated Amino Acids Using a Chiral Nickel(II) Complex. The Journal of Organic Chemistry 2022, 87 (16) , 10592-10604. https://doi.org/10.1021/acs.joc.2c00522
    2. Javier Magano. Large-Scale Amidations in Process Chemistry: Practical Considerations for Reagent Selection and Reaction Execution. Organic Process Research & Development 2022, 26 (6) , 1562-1689. https://doi.org/10.1021/acs.oprd.2c00005
    3. Todd T. Romoff, Bernardo G. Ignacio, Noel Mansour, Andrew B. Palmer, Christopher J. Creighton, Hidenori Abe, Hiroki Moriwaki, Jianlin Han, Hiroyuki Konno, Vadim A. Soloshonok. Large-Scale Synthesis of the Glycine Schiff Base Ni(II) Complex Derived from (S)- and (R)-N-(2-Benzoyl-4-chlorophenyl)-1-[(3,4-dichlorophenyl)methyl]-2-pyrrolidinecarboxamide. Organic Process Research & Development 2020, 24 (2) , 294-300. https://doi.org/10.1021/acs.oprd.9b00399
    4. Haibo Mei, Jianlin Han, Ryosuke Takeda, Tsubasa Sakamoto, Toshio Miwa, Yutaka Minamitsuji, Hiroki Moriwaki, Hidenori Abe, Vadim A. Soloshonok. Practical Method for Preparation of (S)-2-Amino-5,5,5-trifluoropentanoic Acid via Dynamic Kinetic Resolution. ACS Omega 2019, 4 (7) , 11844-11851. https://doi.org/10.1021/acsomega.9b01537
    5. Haibo Mei, Takahiro Hiramatsu, Ryosuke Takeda, Hiroki Moriwaki, Hidenori Abe, Jianlin Han, Vadim A. Soloshonok. Expedient Asymmetric Synthesis of (S)-2-Amino-4,4,4-trifluorobutanoic Acid via Alkylation of Chiral Nucleophilic Glycine Equivalent. Organic Process Research & Development 2019, 23 (4) , 629-634. https://doi.org/10.1021/acs.oprd.8b00404
    6. Alexander Langhans, Michael Krummhaar, Christian Roth, Beate Koksch. Catalytically Competent Fluorinated Barnase Variants. Synlett 2023, https://doi.org/10.1055/a-2219-6830
    7. Guillaume Naulet, Aline Delamare, Gilles Guichard, Guillaume Compain. In Situ Generated DBU⋅HF Acts as a Fluorinating Agent in a Hexafluoroisobutylation Tandem Reaction: An Effective Route to 5,5,5,5’,5’,5’‐Hexafluoroleucine. European Journal of Organic Chemistry 2023, 26 (10) https://doi.org/10.1002/ejoc.202201148
    8. Suvrat Chowdhary, Robert Franz Schmidt, Anil Kumar Sahoo, Tiemo tom Dieck, Thomas Hohmann, Boris Schade, Kerstin Brademann-Jock, Andreas F. Thünemann, Roland R. Netz, Michael Gradzielski, Beate Koksch. Rational design of amphiphilic fluorinated peptides: evaluation of self-assembly properties and hydrogel formation. Nanoscale 2022, 14 (28) , 10176-10189. https://doi.org/10.1039/D2NR01648F
    9. Jianlin Han, Nataliya V. Lyutenko, Alexander E. Sorochinsky, Ayaka Okawara, Hiroyuki Konno, Sarah White, Vadim A. Soloshonok. Tailor‐Made Amino Acids in Pharmaceutical Industry: Synthetic Approaches to Aza‐Tryptophan Derivatives. Chemistry – A European Journal 2021, 27 (70) , 17510-17528. https://doi.org/10.1002/chem.202102485
    10. Keita Nagaoka, Arina Nakano, Jianlin Han, Tsubasa Sakamoto, Hiroyuki Konno, Hiroki Moriwaki, Hidenori Abe, Kunisuke Izawa, Vadim A. Soloshonok. Comparative study of different chiral ligands for dynamic kinetic resolution of amino acids. Chirality 2021, 33 (10) , 685-702. https://doi.org/10.1002/chir.23350
    11. Yupiao Zou, Zizhen Yin, Haibo Mei, Hiroyuki Konno, Hiroki Moriwaki, Vadim Soloshonok, Jianlin Han. Aldol Addition-Cyclization Reaction Cascade on a Platform of Chiral Ni(II) Complex of Glycine Schiff Base. Ukrainica Bioorganica Acta 2021, 16 (1) , 3-9. https://doi.org/10.15407/bioorganica2021.01.003
    12. Yupiao Zou, Ryosuke Takeda, Jianlin Han, Hiroyuki Konno, Hiroki Moriwaki, Hidenori Abe, Kunisuke Izawa, Vadim A. Soloshonok. Asymmetric Synthesis of N ‐Fmoc‐( S )‐7‐aza‐tryptophan via Alkylation of Chiral Nucleophilic Glycine Equivalent. European Journal of Organic Chemistry 2021, 2021 (21) , 2962-2965. https://doi.org/10.1002/ejoc.202100485
    13. Yoshinori Tokairin, Hiroyuki Konno, Angéline Noireau, Caroline West, Hiroki Moriwaki, Vadim A. Soloshonok, Cyril Nicolas, Isabelle Gillaizeau. Asymmetric synthesis of the two enantiomers of β-phosphorus-containing α-amino acids via hydrophosphinylation and hydrophosphonylation of chiral Ni( ii )-complexes. Organic Chemistry Frontiers 2021, 8 (10) , 2190-2195. https://doi.org/10.1039/D1QO00159K
    14. Yuhei Shigeno, Jianlin Han, Vadim A. Soloshonok, Hiroki Moriwaki, Wataru Fujiwara, Hiroyuki Konno. Asymmetric synthesis of ( S )‐3‐methyleneglutamic acid and its N ‐Fmoc derivative via Michael addition–elimination reaction of chiral glycine Ni (II) complex with enol tosylates. Chirality 2021, 33 (3) , 115-123. https://doi.org/10.1002/chir.23291
    15. Mackenzie Bergagnini-Kolev, Mitchell Howe, Emily Burgess, Payton Wright, Samantha Hamburger, Zhennan Zhong, Shawna B. Ellis, Trevor K. Ellis. Synthesis of trifluoromethyl substituted nucleophilic glycine equivalents and the investigation of their potential for the preparation of α-amino acids. Tetrahedron 2021, 77 , 131741. https://doi.org/10.1016/j.tet.2020.131741
    16. Nana Wang, Jingcheng Xu, Haibo Mei, Hiroki Moriwaki, Kunisuke Izawa, Vadim A. Soloshonok, Jianlin Han. Electrochemical Approaches for Preparation of Tailor-Made Amino Acids. Chinese Journal of Organic Chemistry 2021, 41 (8) , 3034. https://doi.org/10.6023/cjoc202102043
    17. Bo Fu, Ryosuke Takeda, Yupiao Zou, Hiroyuki Konno, Hiroki Moriwaki, Hidenori Abe, Jianlin Han, Kunisuke Izawa, Vadim A. Soloshonok. Asymmetric synthesis of ( S )‐α‐(octyl)glycine via alkylation of Ni(II) complex of chiral glycine Schiff base. Chirality 2020, 32 (12) , 1354-1360. https://doi.org/10.1002/chir.23281
    18. Jiang Liu, Jianlin Han, Kunisuke Izawa, Tatsunori Sato, Sarah White, Nicholas A. Meanwell, Vadim A. Soloshonok. Cyclic tailor-made amino acids in the design of modern pharmaceuticals. European Journal of Medicinal Chemistry 2020, 208 , 112736. https://doi.org/10.1016/j.ejmech.2020.112736
    19. Haibo Mei, Jianlin Han, Sarah White, Daniel J. Graham, Kunisuke Izawa, Tatsunori Sato, Santos Fustero, Nicholas A. Meanwell, Vadim A. Soloshonok. Tailor‐Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. Chemistry – A European Journal 2020, 26 (50) , 11349-11390. https://doi.org/10.1002/chem.202000617
    20. Zizhen Yin, Wenfei Hu, Wei Zhang, Hiroyuki Konno, Hiroki Moriwaki, Kunisuke Izawa, Jianlin Han, Vadim A. Soloshonok. Tailor-made amino acid-derived pharmaceuticals approved by the FDA in 2019. Amino Acids 2020, 52 (9) , 1227-1261. https://doi.org/10.1007/s00726-020-02887-4
    21. Kie Oyama, Jianlin Han, Hiroki Moriwaki, Vadim A. Soloshonok, Hiroyuki Konno. Synthesis of Ahod Moiety of Ralstonin A Using Amino Acid Schiff Base Ni(II)‐Complex Chemistry. Helvetica Chimica Acta 2020, 103 (7) https://doi.org/10.1002/hlca.202000077
    22. Oleg A. Levitskiy, Olga I. Aglamazova, Vadim A. Soloshonok, Hiroki Moriwaki, Tatiana V. Magdesieva. Which Stereoinductor Is Better for Asymmetric Functionalization of α‐Amino Acids in a Nickel(II) Coordination Environment? Experimental and DFT Considerations. Chemistry – A European Journal 2020, 26 (31) , 7074-7082. https://doi.org/10.1002/chem.201905708
    23. Keita Nagaoka, Haibo Mei, Yunjie Guo, Jianlin Han, Hiroyuki Konno, Hiroki Moriwaki, Vadim A. Soloshonok. Michael addition reactions of chiral glycine Schiff base Ni (II)‐complex with 1‐(1‐phenylsulfonyl)benzene. Chirality 2020, 32 (6) , 885-893. https://doi.org/10.1002/chir.23203
    24. Yupiao Zou, Jianlin Han, Ashot S. Saghyan, Anna F. Mkrtchyan, Hiroyuki Konno, Hiroki Moriwaki, Kunisuke Izawa, Vadim A. Soloshonok. Asymmetric Synthesis of Tailor-Made Amino Acids Using Chiral Ni(II) Complexes of Schiff Bases. An Update of the Recent Literature. Molecules 2020, 25 (12) , 2739. https://doi.org/10.3390/molecules25122739
    25. Yoshinori Tokairin, Yuhei Shigeno, Jianlin Han, Gerd‐Volker Röschenthaler, Hiroyuki Konno, Hiroki Moriwaki, Vadim A. Soloshonok. Asymmetric Synthesis of 4,4‐(Difluoro)glutamic Acid via Chiral Ni(II)‐Complexes of Dehydroalanine Schiff Bases. Effect of the Chiral Ligands Structure on the Stereochemical Outcome. ChemistryOpen 2020, 9 (1) , 93-96. https://doi.org/10.1002/open.201900343
    26. Haibo Mei, Jianlin Han, Karel D. Klika, Kunisuke Izawa, Tatsunori Sato, Nicholas A. Meanwell, Vadim A. Soloshonok. Applications of fluorine-containing amino acids for drug design. European Journal of Medicinal Chemistry 2020, 186 , 111826. https://doi.org/10.1016/j.ejmech.2019.111826
    27. Jianlin Han, Ryosuke Takeda, Xinyi Liu, Hiroyuki Konno, Hidenori Abe, Takahiro Hiramatsu, Hiroki Moriwaki, Vadim A. Soloshonok. Preparative Method for Asymmetric Synthesis of (S)-2-Amino-4,4,4-trifluorobutanoic Acid. Molecules 2019, 24 (24) , 4521. https://doi.org/10.3390/molecules24244521
    28. Yoshinori Tokairin, Vadim A. Soloshonok, Hiroyuki Konno, Hiroki Moriwaki, Gerd-Volker Röschenthaler. Convenient synthesis of racemic 4,4-difluoro glutamic acid derivatives via Michael-type additions of Ni(II)-complex of dehydroalanine Schiff bases. Journal of Fluorine Chemistry 2019, 227 , 109376. https://doi.org/10.1016/j.jfluchem.2019.109376
    29. Zizhen Yin, Hiroki Moriwaki, Hidenori Abe, Toshio Miwa, Jianlin Han, Vadim A. Soloshonok. Large‐Scale Asymmetric Synthesis of Fmoc‐( S )‐2‐Amino‐6,6,6‐Trifluorohexanoic Acid. ChemistryOpen 2019, 8 (6) , 701-704. https://doi.org/10.1002/open.201900131
    30. Mei, Yin, Miwa, Moriwaki, Abe, Han, Soloshonok. Convenient Asymmetric Synthesis of Fmoc-(S)-6,6,6-Trifluoro-Norleucine. Symmetry 2019, 11 (4) , 578. https://doi.org/10.3390/sym11040578
    31. Yoshinori Tokairin, Vadim A. Soloshonok, Hiroki Moriwaki, Hiroyuki Konno. Asymmetric synthesis of (2S,3S)-3-Me-glutamine and (R)-allo-threonine derivatives proper for solid-phase peptide coupling. Amino Acids 2019, 51 (3) , 419-432. https://doi.org/10.1007/s00726-018-2677-5
    32. Guillaume Laconde, Muriel Amblard, Jean Martinez. Unexpected Reactivity of N ‐Acyl‐Benzotriazoles with Aromatic Amines in Acidic Medium (ABAA Reaction). European Journal of Organic Chemistry 2019, 2019 (1) , 85-90. https://doi.org/10.1002/ejoc.201801567
    33. Shengbin Zhou, Shuni Wang, Jiang Wang, Yong Nian, Panfeng Peng, Vadim A. Soloshonok, Hong Liu. Configurationally Stable ( S )‐ and ( R )‐α‐Methylproline‐Derived Ligands for the Direct Chemical Resolution of Free Unprotected β 3 ‐Amino Acids. European Journal of Organic Chemistry 2018, 2018 (15) , 1821-1832. https://doi.org/10.1002/ejoc.201800120

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect