ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Lysine-313 of 5-Aminolevulinate Synthase Acts as a General Base during Formation of the Quinonoid Reaction Intermediates

View Author Information
Department of Biochemistry and Molecular Biology, College of Medicine, Institute for Biomolecular Science, and H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612
Cite this: Biochemistry 1999, 38, 12, 3711–3718
Publication Date (Web):March 5, 1999
https://doi.org/10.1021/bi982390w
Copyright © 1999 American Chemical Society

    Article Views

    298

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    5-Aminolevulinate synthase catalyzes the condensation of glycine and succinyl-CoA to form CoA, carbon dioxide, and 5-aminolevulinate. This represents the first committed step of heme biosynthesis in animals and some bacteria. Lysine 313 (K313) of mature murine erythroid 5-aminolevulinate synthase forms a Schiff base linkage to the pyridoxal 5‘-phosphate cofactor. In the presence of glycine and succinyl-CoA, a quinonoid intermediate absorption is transiently observed in the visible spectrum of purified murine erythroid ALAS. Mutant enzymes with K313 replaced by glycine, histidine, or arginine exhibit no spectral evidence of quinonoid intermediate formation in the presence of glycine and succinyl-CoA. The wild-type 5-aminolevulinate synthase additionally forms a stable quinonoid intermediate in the presence of the product, 5-aminolevulinate. Only conservative mutation of K313 to histidine or arginine produces a variant that forms a quinonoid intermediate with 5-aminolevulinate. The quinonoid intermediate absorption of these mutants is markedly less than that of the wild-type enzyme, however. Whereas the wild-type enzyme catalyzes loss of tritium from [2-3H2]-glycine, mutation of K313 to glycine results in loss of this activity. Titration of the quinonoid intermediate formed upon binding of 5-aminolevulinate to the wild-type enzyme indicated that the quinonoid intermediate forms by transfer of a single proton with a pK of 8.1 ± 0.1. Conservative mutation of K313 to histidine raises this value to 8.6 ± 0.1. We propose that K313 acts as a general base catalyst to effect quinonoid intermediate formation during the 5-aminolevulinate synthase catalytic cycle.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was supported by the National Institutes of Health (Grant DK52053 to G.C.F.). G.C.F. is a recipient of a National Science Foundation Young Investigator Award (MCB-9257656). G.A.H. is an American Heart Predoctoral Fellow (#9504006) and recipient of an Institute for Biomolecular Science Summer Research Assistantship.

     College of Medicine.

    *

     Correspondence should be directed to:  Gloria C. Ferreira, Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612. Tel:  (813)-974-5797. Fax:  (813)-974-0504. E-mail:  [email protected].

    §

     Institute for Biomolecular Science and H. Lee Moffitt Cancer Center and Research Institute.

    Cited By

    This article is cited by 35 publications.

    1. Stephanie W. Chun, Alison R. H. Narayan. Biocatalytic, Stereoselective Deuteration of α-Amino Acids and Methyl Esters. ACS Catalysis 2020, 10 (13) , 7413-7418. https://doi.org/10.1021/acscatal.0c01885
    2. Erica J. Fratz, Jerome Clayton, Gregory A. Hunter, Sarah Ducamp, Leonid Breydo, Vladimir N. Uversky, Jean-Charles Deybach, Laurent Gouya, Hervé Puy, and Gloria C. Ferreira . Human Erythroid 5-Aminolevulinate Synthase Mutations Associated with X-Linked Protoporphyria Disrupt the Conformational Equilibrium and Enhance Product Release. Biochemistry 2015, 54 (36) , 5617-5631. https://doi.org/10.1021/acs.biochem.5b00407
    3. Wenjun Zhang, Megan L. Bolla, Daniel Kahne and Christopher T. Walsh. A Three Enzyme Pathway for 2-Amino-3-hydroxycyclopent-2-enone Formation and Incorporation in Natural Product Biosynthesis. Journal of the American Chemical Society 2010, 132 (18) , 6402-6411. https://doi.org/10.1021/ja1002845
    4. Christopher D. Radka, Darcie J. Miller, Matthew W. Frank, Charles O. Rock. Biochemical characterization of the first step in sulfonolipid biosynthesis in Alistipes finegoldii. Journal of Biological Chemistry 2022, 298 (8) , 102195. https://doi.org/10.1016/j.jbc.2022.102195
    5. Tzu-Hsuan Yu, Ying-Chen Yi, I-Tai Shih, I-Son Ng. Enhanced 5-Aminolevulinic Acid Production by Co-expression of Codon-Optimized hemA Gene with Chaperone in Genetic Engineered Escherichia coli. Applied Biochemistry and Biotechnology 2020, 191 (1) , 299-312. https://doi.org/10.1007/s12010-019-03178-9
    6. Bosko M. Stojanovski, Gregory A. Hunter, Insung Na, Vladimir N. Uversky, Rays H.Y. Jiang, Gloria C. Ferreira. 5-Aminolevulinate synthase catalysis: The catcher in heme biosynthesis. Molecular Genetics and Metabolism 2019, 128 (3) , 178-189. https://doi.org/10.1016/j.ymgme.2019.06.003
    7. Jihui Ren, Essa M. Saied, Aaron Zhong, Justin Snider, Christian Ruiz, Christoph Arenz, Lina M. Obeid, Geoffrey D. Girnun, Yusuf A. Hannun. Tsc3 regulates SPT amino acid choice in Saccharomyces cerevisiae by promoting alanine in the sphingolipid pathway. Journal of Lipid Research 2018, 59 (11) , 2126-2139. https://doi.org/10.1194/jlr.M088195
    8. Jihui Ren, Justin Snider, Michael V. Airola, Aaron Zhong, Nadia A. Rana, Lina M. Obeid, Yusuf A. Hannun. Quantification of 3-ketodihydrosphingosine using HPLC-ESI-MS/MS to study SPT activity in yeast Saccharomyces cerevisiae. Journal of Lipid Research 2018, 59 (1) , 162-170. https://doi.org/10.1194/jlr.D078535
    9. Bosko M. Stojanovski, Leonid Breydo, Vladimir N. Uversky, Gloria C. Ferreira. Macromolecular crowders and osmolytes modulate the structural and catalytic properties of alkaline molten globular 5-aminolevulinate synthase. RSC Advances 2016, 6 (115) , 114541-114552. https://doi.org/10.1039/C6RA22533K
    10. Bosko M. Stojanovski, Gloria C. Ferreira. Asn-150 of Murine Erythroid 5-Aminolevulinate Synthase Modulates the Catalytic Balance between the Rates of the Reversible Reaction. Journal of Biological Chemistry 2015, 290 (52) , 30750-30761. https://doi.org/10.1074/jbc.M115.655399
    11. Bosko M. Stojanovski, Leonid Breydo, Gregory A. Hunter, Vladimir N. Uversky, Gloria C. Ferreira. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2014, 1844 (12) , 2145-2154. https://doi.org/10.1016/j.bbapap.2014.09.013
    12. Bosko M. Stojanovski, Gregory A. Hunter, Martina Jahn, Dieter Jahn, Gloria C. Ferreira. Unstable Reaction Intermediates and Hysteresis during the Catalytic Cycle of 5-Aminolevulinate Synthase. Journal of Biological Chemistry 2014, 289 (33) , 22915-22925. https://doi.org/10.1074/jbc.M114.574731
    13. Erica J. Fratz, Gregory A. Hunter, Gloria C. Ferreira, . Expression of Murine 5-Aminolevulinate Synthase Variants Causes Protoporphyrin IX Accumulation and Light-Induced Mammalian Cell Death. PLoS ONE 2014, 9 (4) , e93078. https://doi.org/10.1371/journal.pone.0093078
    14. Gregory A. Hunter, Gloria C. Ferreira. Molecular enzymology of 5-Aminolevulinate synthase, the gatekeeper of heme biosynthesis. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814 (11) , 1467-1473. https://doi.org/10.1016/j.bbapap.2010.12.015
    15. Jordi To-Figueras, Sarah Ducamp, Jerome Clayton, Celia Badenas, Constance Delaby, Cecile Ged, Said Lyoumi, Laurent Gouya, Hubert de Verneuil, Carole Beaumont, Gloria C. Ferreira, Jean-Charles Deybach, Carmen Herrero, Herve Puy. ALAS2 acts as a modifier gene in patients with congenital erythropoietic porphyria. Blood 2011, 118 (6) , 1443-1451. https://doi.org/10.1182/blood-2011-03-342873
    16. Gunhild Layer, Joachim Reichelt, Dieter Jahn, Dirk W. Heinz. Structure and function of enzymes in heme biosynthesis. Protein Science 2010, 19 (6) , 1137-1161. https://doi.org/10.1002/pro.405
    17. Samanta Raboni, Francesca Spyrakis, Barbara Campanini, Alessio Amadasi, Stefano Bettati, Alessio Peracchi, Andrea Mozzarelli, Roberto Contestabile. Pyridoxal 5′-Phosphate-Dependent Enzymes: Catalysis, Conformation, and Genomics. 2010, 273-350. https://doi.org/10.1016/B978-008045382-8.00140-4
    18. Marine C. Raman, Dominic J. Campopiano. Natural and Synthetic Stimulators of the Immune Response. 2009, 137-175. https://doi.org/10.1002/9783527627011.ch6
    19. William E. Karsten, Paul F. Cook. Detection of a gem-diamine and a stable quinonoid intermediate in the reaction catalyzed by serine–glyoxylate aminotransferase from Hyphomicrobium methylovorum. Biochimica et Biophysica Acta (BBA) - General Subjects 2009, 1790 (6) , 575-580. https://doi.org/10.1016/j.bbagen.2009.02.012
    20. Yuka Shiraiwa, Hiroko Ikushiro, Hideyuki Hayashi. Multifunctional Role of His159in the Catalytic Reaction of Serine Palmitoyltransferase. Journal of Biological Chemistry 2009, 284 (23) , 15487-15495. https://doi.org/10.1074/jbc.M808916200
    21. Marine C.C. Raman, Kenneth A. Johnson, Beverley A. Yard, Jonathan Lowther, Lester G. Carter, James H. Naismith, Dominic J. Campopiano. The External Aldimine Form of Serine Palmitoyltransferase. Journal of Biological Chemistry 2009, 284 (25) , 17328-17339. https://doi.org/10.1074/jbc.M109.008680
    22. Dieter Jahn, Dirk W. Heinz. Biosynthesis of 5-Aminolevulinic Acid. 2009, 29-42. https://doi.org/10.1007/978-0-387-78518-9_2
    23. Hiroko Ikushiro, Shigeru Fujii, Yuka Shiraiwa, Hideyuki Hayashi. Acceleration of the Substrate Cα Deprotonation by an Analogue of the Second Substrate Palmitoyl-CoA in Serine Palmitoyltransferase. Journal of Biological Chemistry 2008, 283 (12) , 7542-7553. https://doi.org/10.1074/jbc.M706874200
    24. Philip C. Bevilacqua. Proton Transfer in Ribozyme Catalysis. 2007, 11-36. https://doi.org/10.1039/9781847557988-00011
    25. Gregory A. Hunter, Junshun Zhang, Gloria C. Ferreira. Transient Kinetic Studies Support Refinements to the Chemical and Kinetic Mechanisms of Aminolevulinate Synthase. Journal of Biological Chemistry 2007, 282 (32) , 23025-23035. https://doi.org/10.1074/jbc.M609330200
    26. Beverley A. Yard, Lester G. Carter, Kenneth A. Johnson, Ian M. Overton, Mark Dorward, Huanting Liu, Stephen A. McMahon, Muse Oke, Daphné Puech, Geoffrey J. Barton, James H. Naismith, Dominic J. Campopiano. The Structure of Serine Palmitoyltransferase; Gateway to Sphingolipid Biosynthesis. Journal of Molecular Biology 2007, 370 (5) , 870-886. https://doi.org/10.1016/j.jmb.2007.04.086
    27. Junshun Zhang, Anton V. Cheltsov, Gloria C. Ferreira. Conversion of 5‐aminolevulinate synthase into a more active enzyme by linking the two subunits: Spectroscopic and kinetic properties. Protein Science 2005, 14 (5) , 1190-1200. https://doi.org/10.1110/ps.041258305
    28. Ruby Evande, Sunil Ojha, Ruma Banerjee. Visualization of PLP-bound intermediates in hemeless variants of human cystathionine β-synthase: evidence that lysine 119 is a general base. Archives of Biochemistry and Biophysics 2004, 427 (2) , 188-196. https://doi.org/10.1016/j.abb.2004.04.027
    29. Anton V. Cheltsov, Wayne C. Guida, Gloria C. Ferreira. Circular Permutation of 5-Aminolevulinate Synthase. Journal of Biological Chemistry 2003, 278 (30) , 27945-27955. https://doi.org/10.1074/jbc.M207011200
    30. Peter M. Shoolingin-Jordan, Sooad Al-Daihan, Dmitriy Alexeev, Robert L. Baxter, Sylvia S. Bottomley, I.Donald Kahari, Ipsita Roy, Muhammad Sarwar, Lindsay Sawyer, Shu-Fen Wang. 5-Aminolevulinic acid synthase: mechanism, mutations and medicine. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2003, 1647 (1-2) , 361-366. https://doi.org/10.1016/S1570-9639(03)00095-5
    31. Junshun Zhang, Gloria C. Ferreira. Transient State Kinetic Investigation of 5-Aminolevulinate Synthase Reaction Mechanism. Journal of Biological Chemistry 2002, 277 (47) , 44660-44669. https://doi.org/10.1074/jbc.M203584200
    32. Anton V. Cheltsov, Michael J. Barber, Gloria C. Ferreira. Circular Permutation of 5-Aminolevulinate Synthase. Journal of Biological Chemistry 2001, 276 (22) , 19141-19149. https://doi.org/10.1074/jbc.M100329200
    33. David E. Metzler, Carol M. Metzler, David J. Sauke. Coenzymes. 2001, 719-763. https://doi.org/10.1016/B978-012492543-4/50017-9
    34. Gloria C. Ferreira. 5-Aminolevulinate Synthase: Pre-Steady State Reaction and Functional Role of Specific Active Site Residues. 2000, 257-263. https://doi.org/10.1007/978-3-0348-8397-9_42
    35. . 5-Aminolevulinate synthase. , 538-557. https://doi.org/10.1007/3-540-37716-6_66

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect