ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Effective Density and Mixing State of Aerosol Particles in a Near-Traffic Urban Environment

View Author Information
Ergonomics and Aerosol Technology, Division of Nuclear Physics, and §Solid State Physics, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden
Section of Environmental Health, Dept. of Public Health, University of Copenhagen, Postboks 209, 1014 København K, Denmark
*E-mail: [email protected]. Phone: +46-(0)46-2220534. Mobile: +46-(0)70-1518426. Fax: +46-(0)46-2224709.
Cite this: Environ. Sci. Technol. 2014, 48, 11, 6300–6308
Publication Date (Web):May 5, 2014
https://doi.org/10.1021/es5000353

Copyright © 2014 American Chemical Society. This publication is licensed under CC-BY.

  • Open Access

Article Views

6502

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (6 MB)
Supporting Info (1)»

Abstract

Abstract Image

In urban environments, airborne particles are continuously emitted, followed by atmospheric aging. Also, particles emitted elsewhere, transported by winds, contribute to the urban aerosol. We studied the effective density (mass-mobility relationship) and mixing state with respect to the density of particles in central Copenhagen, in wintertime. The results are related to particle origin, morphology, and aging. Using a differential mobility analyzer-aerosol particle mass analyzer (DMA-APM), we determined that particles in the diameter range of 50–400 nm were of two groups: porous soot aggregates and more dense particles. Both groups were present at each size in varying proportions. Two types of temporal variability in the relative number fraction of the two groups were found: soot correlated with intense traffic in a diel pattern and dense particles increased during episodes with long-range transport from polluted continental areas. The effective density of each group was relatively stable over time, especially of the soot aggregates, which had effective densities similar to those observed in laboratory studies of fresh diesel exhaust emissions. When heated to 300 °C, the soot aggregate volatile mass fraction was ∼10%. For the dense particles, the volatile mass fraction varied from ∼80% to nearly 100%.

Supporting Information

ARTICLE SECTIONS
Jump To

More detailed information about the study in general, the setup, and details of the results. Several illustrative figures are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 96 publications.

  1. Jani Leskinen, Anni Hartikainen, Sampsa Väätäinen, Mika Ihalainen, Aki Virkkula, Arunas Mesceriakovas, Petri Tiitta, Mirella Miettinen, Heikki Lamberg, Hendryk Czech, Pasi Yli-Pirilä, Jarkko Tissari, Gert Jakobi, Ralf Zimmermann, Olli Sippula. Photochemical Aging Induces Changes in the Effective Densities, Morphologies, and Optical Properties of Combustion Aerosol Particles. Environmental Science & Technology 2023, 57 (13) , 5137-5148. https://doi.org/10.1021/acs.est.2c04151
  2. Hong-Beom Kwon, Woo-Young Song, Tae-Hoon Lee, Seung-Soo Lee, Yong-Jun Kim. Monitoring the Effective Density of Airborne Nanoparticles in Real Time Using a Microfluidic Nanoparticle Analysis Chip. ACS Sensors 2021, 6 (1) , 137-147. https://doi.org/10.1021/acssensors.0c01986
  3. Beatrix Rosette Go Mabato, Masao Gen, Yangxi Chu, Chak K. Chan. Reactive Uptake of Glyoxal by Methylaminium-Containing Salts as a Function of Relative Humidity. ACS Earth and Space Chemistry 2019, 3 (2) , 150-157. https://doi.org/10.1021/acsearthspacechem.8b00154
  4. Chong Han, Shao-Meng Li, Peter Liu, Patrick Lee. Size Dependence of the Physical Characteristics of Particles Containing Refractory Black Carbon in Diesel Vehicle Exhaust. Environmental Science & Technology 2019, 53 (1) , 137-145. https://doi.org/10.1021/acs.est.8b04603
  5. Tingting Xie, Liming Cao, Jinyi Zheng, Peng Xuan, Xiaofeng Huang. Characterization of size-resolved effective density of atmospheric particles in an urban atmosphere in Southern China. Journal of Environmental Sciences 2024, 141 , 194-204. https://doi.org/10.1016/j.jes.2023.09.021
  6. Sara Janhäll, Bo Strandberg, Viveca Wallqvist, Jenny Rissler. A new method and first results for comparing emissions of fumes during construction of asphalt surfaces. Construction and Building Materials 2024, 422 , 135736. https://doi.org/10.1016/j.conbuildmat.2024.135736
  7. Jiayuan Lu, Xiaojing Shen, Qianli Ma, Aoyuan Yu, Xinyao Hu, Yangmei Zhang, Quan Liu, Shuo Liu, Huizheng Che, Xiaoye Zhang, Junying Sun. Size-resolved effective density of ambient aerosols measured by an AAC–SMPS tandem system in Beijing. Atmospheric Environment 2024, 318 , 120226. https://doi.org/10.1016/j.atmosenv.2023.120226
  8. Zenon Nieckarz, Krzysztof Pawlak, Jerzy A. Zoladz. Health risks for children exercising in an air-polluted environment can be reduced by monitoring air quality with low-cost particle sensors. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-45426-3
  9. D. P. Gubanova, M. A. Iordanskii, A. A. Vinogradova, I. B. Belikov, V. A. Belousov. Particle Density Values for Numerical Estimation of Mass Concentration of Near-Surface Submicron and Micron Aerosol. Atmospheric and Oceanic Optics 2023, 36 (6) , 670-684. https://doi.org/10.1134/S102485602306009X
  10. Che-An Wu, Yu-Ting Chen, Li-Hao Young, Po-Kai Chang, Li-Ti Chou, Albert Y. Chen, Ta-Chih Hsiao. Ultrafine particles in urban settings: A combined study of volatility and effective density revealed by VT-DMA-APM. Atmospheric Environment 2023, 312 , 120054. https://doi.org/10.1016/j.atmosenv.2023.120054
  11. Yongjoo Choi, Chang Hoon Jung, Junyoung Ahn, Seung-Myung Park, Kyung Man Han, Jongbyeok Jun, Giyeol Lee, Jiyoung Kim, Yongjae Lim, Kyeong-Sik Kang, Ilkwon Nam, Sumin Kim. Empirical estimation of size-resolved scavenging coefficients derived from in-situ measurements at background sites in Korea during 2013–2020. Atmospheric Research 2023, 295 , 106971. https://doi.org/10.1016/j.atmosres.2023.106971
  12. Yan Peng, Li-Ming Cao, Jing Wei, Yong Cheng, Kuangyou Yu, Ke Du, Xiao-Feng Huang. Key drivers to heterogeneity evolution of black carbon-containing particles in real atmosphere. Science of The Total Environment 2023, 897 , 166394. https://doi.org/10.1016/j.scitotenv.2023.166394
  13. Timothy A. Sipkens, Adam Boies, Joel C. Corbin, Rajan K. Chakrabarty, Jason Olfert, Steven N. Rogak. Overview of methods to characterize the mass, size, and morphology of soot. Journal of Aerosol Science 2023, 173 , 106211. https://doi.org/10.1016/j.jaerosci.2023.106211
  14. Hang Liu, Xiaole Pan, Shandong Lei, Yuting Zhang, Aodong Du, Yu Tian, Weijie Yao, Jinyuan Xin, Jie Li, Yele Sun, Junji Cao, Zifa Wang. Microphysical characteristics of black carbon from various emission sources. Atmospheric Environment 2023, 307 , 119825. https://doi.org/10.1016/j.atmosenv.2023.119825
  15. Teemu Lepistö, Luis M.F. Barreira, Aku Helin, Jarkko V. Niemi, Niina Kuittinen, Henna Lintusaari, Ville Silvonen, Lassi Markkula, Hanna E. Manninen, Hilkka Timonen, Pasi Jalava, Sanna Saarikoski, Topi Rönkkö. Snapshots of wintertime urban aerosol characteristics: Local sources emphasized in ultrafine particle number and lung deposited surface area. Environmental Research 2023, 231 , 116068. https://doi.org/10.1016/j.envres.2023.116068
  16. Ziyi Han, Lina Wang, Yueyan Liu, Tatleung Chan, Zhandong Shi, Mingzhou Yu. How do three-layer surgical masks prevent SARS-CoV-2 aerosol transmission?. Separation and Purification Technology 2023, 314 , 123574. https://doi.org/10.1016/j.seppur.2023.123574
  17. Véronique Perraud, James N. Smith, Jason Olfert. High-accuracy effective density measurements of sodium methanesulfonate and aminium chloride nanoparticles using a particulate calibration standard. Aerosol Science and Technology 2023, 57 (4) , 355-366. https://doi.org/10.1080/02786826.2023.2176739
  18. Yuner Pang, Minghao Chen, Yuanyuan Wang, Xiyao Chen, Xiaomi Teng, Shaofei Kong, Zhonghua Zheng, Weijun Li. Morphology and Fractal Dimension of Size‐Resolved Soot Particles Emitted From Combustion Sources. Journal of Geophysical Research: Atmospheres 2023, 128 (6) https://doi.org/10.1029/2022JD037711
  19. Aodong Du, Jiaxing Sun, Hang Liu, Weiqi Xu, Wei Zhou, Yuting Zhang, Lei Li, Xubing Du, Yan Li, Xiaole Pan, Zifa Wang, Yele Sun. Mixing state and effective density of aerosol particles during the Beijing 2022 Olympic Winter Games. Atmospheric Chemistry and Physics 2023, 23 (21) , 13597-13611. https://doi.org/10.5194/acp-23-13597-2023
  20. Erik Ahlberg, Stina Ausmeel, Lovisa Nilsson, Mårten Spanne, Julija Pauraite, Jacob Klenø Nøjgaard, Michele Bertò, Henrik Skov, Pontus Roldin, Adam Kristensson, Erik Swietlicki, Axel Eriksson. Measurement report: Black carbon properties and concentrations in southern Sweden urban and rural air – the importance of long-range transport. Atmospheric Chemistry and Physics 2023, 23 (5) , 3051-3064. https://doi.org/10.5194/acp-23-3051-2023
  21. Jingye Ren, Lu Chen, Jieyao Liu, Fang Zhang. The density of ambient black carbon retrieved by a new method: implications for cloud condensation nuclei prediction. Atmospheric Chemistry and Physics 2023, 23 (7) , 4327-4342. https://doi.org/10.5194/acp-23-4327-2023
  22. Aneta Wierzbicka, Yuliya Omelekhina, Anne Thoustrup Saber, Erica Bloom, Louise Gren, Sarah Søs Poulsen, Bo Strandberg, Joakim Pagels, Nicklas Raun Jacobsen. Indoor PM 2.5 from occupied residences in Sweden caused higher inflammation in mice compared to outdoor PM 2.5. Indoor Air 2022, 32 (12) https://doi.org/10.1111/ina.13177
  23. Zezhen Cheng, Andrey Liyu, Darielle Dexheimer, Nurun Nahar Lata, Gourihar Kulkarni, Casey Michael Longbottom, Fan Mei, Swarup China. An automated size and time-resolved aerosol collector platform integrated with environmental sensors to study the vertical profile of aerosols. Environmental Science: Atmospheres 2022, 2 (6) , 1263-1276. https://doi.org/10.1039/D2EA00097K
  24. Thomas Y. Wu, Stefan Horender, Georgi Tancev, Konstantina Vasilatou. Evaluation of aerosol-spectrometer based PM2.5 and PM10 mass concentration measurement using ambient-like model aerosols in the laboratory. Measurement 2022, 201 , 111761. https://doi.org/10.1016/j.measurement.2022.111761
  25. Woo-Young Song, Seung-Soo Lee, Yong-Jun Kim. Airborne nanoparticle analysis mini-system using a parallel-type inertial impaction technique for real-time monitoring size distribution and effective density. Sensors and Actuators A: Physical 2022, 341 , 113591. https://doi.org/10.1016/j.sna.2022.113591
  26. Long Peng, Yonglin Liu. Theoretical Foundation of the Relationship between Three Definitions of Effective Density and Particle Size. Atmosphere 2022, 13 (4) , 564. https://doi.org/10.3390/atmos13040564
  27. Teemu Lepistö, Heino Kuuluvainen, Henna Lintusaari, Niina Kuittinen, Laura Salo, Aku Helin, Jarkko V. Niemi, Hanna E. Manninen, Hilkka Timonen, Pasi Jalava, Sanna Saarikoski, Topi Rönkkö. Connection between lung deposited surface area (LDSA) and black carbon (BC) concentrations in road traffic and harbour environments. Atmospheric Environment 2022, 272 , 118931. https://doi.org/10.1016/j.atmosenv.2021.118931
  28. Kazuki Kurihara, Ayumi Iwata, Samuel Gray Murray Horwitz, Kako Ogane, Tomoki Sugioka, Atsushi Matsuki, Tomoaki Okuda. Contribution of Physical and Chemical Properties to Dithiothreitol-Measured Oxidative Potentials of Atmospheric Aerosol Particles at Urban and Rural Sites in Japan. Atmosphere 2022, 13 (2) , 319. https://doi.org/10.3390/atmos13020319
  29. Antti Joonas Koivisto, Benedetta Del Secco, Sara Trabucco, Alessia Nicosia, Fabrizio Ravegnani, Marko Altin, Joan Cabellos, Irini Furxhi, Magda Blosi, Anna Costa, Jesús Lopez de Ipiña, Franco Belosi. Quantifying Emission Factors and Setting Conditions of Use According to ECHA Chapter R.14 for a Spray Process Designed for Nanocoatings—A Case Study. Nanomaterials 2022, 12 (4) , 596. https://doi.org/10.3390/nano12040596
  30. Alimata Sidibe, Yosuke Sakamoto, Kentaro Murano, Ousmane A. Koita, Ibrahim Traore, Yacouba Dansoko, Yoshizumi Kajii. Personal Exposure to Fine Particles (PM2.5) in Northwest Africa: Case of the Urban City of Bamako in Mali. International Journal of Environmental Research and Public Health 2022, 19 (1) , 611. https://doi.org/10.3390/ijerph19010611
  31. Yaqing Zhou, Nan Ma, Qiaoqiao Wang, Zhibin Wang, Chunrong Chen, Jiangchuan Tao, Juan Hong, Long Peng, Yao He, Linhong Xie, Shaowen Zhu, Yuxuan Zhang, Guo Li, Wanyun Xu, Peng Cheng, Uwe Kuhn, Guangsheng Zhou​​​​​​​, Pingqing Fu, Qiang Zhang, Hang Su, Yafang Cheng. Bimodal distribution of size-resolved particle effective density: results from a short campaign in a rural environment over the North China Plain. Atmospheric Chemistry and Physics 2022, 22 (3) , 2029-2047. https://doi.org/10.5194/acp-22-2029-2022
  32. Petra Pokorná, Naděžda Zíková, Petr Vodička, Radek Lhotka, Saliou Mbengue, Adéla Holubová Šmejkalová, Véronique Riffault, Jakub Ondráček, Jaroslav Schwarz, Vladimír Ždímal. Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM1 measured at a rural background site in central Europe. Atmospheric Chemistry and Physics 2022, 22 (9) , 5829-5858. https://doi.org/10.5194/acp-22-5829-2022
  33. Yu Yao, Jeffrey H. Curtis, Joseph Ching, Zhonghua Zheng, Nicole Riemer. Quantifying the effects of mixing state on aerosol optical properties. Atmospheric Chemistry and Physics 2022, 22 (14) , 9265-9282. https://doi.org/10.5194/acp-22-9265-2022
  34. Yu Yao, Matthew L. Dawson, Donald Dabdub, Nicole Riemer. Evaluating the Impacts of Cloud Processing on Resuspended Aerosol Particles After Cloud Evaporation Using a Particle‐Resolved Model. Journal of Geophysical Research: Atmospheres 2021, 126 (24) https://doi.org/10.1029/2021JD034992
  35. Daniel Moran-Zuloaga, Wilson Merchan-Merchan, Emilio Rodríguez-Caballero, Philip Hernick, Julio Cáceres, Mauricio H. Cornejo. Overview and Seasonality of PM10 and PM2.5 in Guayaquil, Ecuador. Aerosol Science and Engineering 2021, 5 (4) , 499-515. https://doi.org/10.1007/s41810-021-00117-2
  36. Kazuki Kurihara, Ayumi Iwata, Miho Kiriya, Ayako Yoshino, Akinori Takami, Atsushi Matsuki, Chiharu Nishita-Hara, Keiichiro Hara, Masahiko Hayashi, Naoki Kaneyasu, Takafumi Seto, Yuji Fujitani, Koji Funato, Kozo Inoue, Tomoaki Okuda. Lung deposited surface area of atmospheric aerosol particles at three observatories in Japan. Atmospheric Environment 2021, 262 , 118597. https://doi.org/10.1016/j.atmosenv.2021.118597
  37. Michaela N. Ess, Michele Bertò, Alejandro Keller, Martin Gysel-Beer, Konstantina Vasilatou. Coated soot particles with tunable, well-controlled properties generated in the laboratory with a miniCAST BC and a micro smog chamber. Journal of Aerosol Science 2021, 157 , 105820. https://doi.org/10.1016/j.jaerosci.2021.105820
  38. Bojiang Su, Guohua Zhang, Zeming Zhuo, Qinhui Xie, Xubing Du, YuZhen Fu, Si Wu, Fugui Huang, Xinhui Bi, Xue Li, Lei Li, Zhen Zhou. Different characteristics of individual particles from light-duty diesel vehicle at the launching and idling state by AAC-SPAMS. Journal of Hazardous Materials 2021, 418 , 126304. https://doi.org/10.1016/j.jhazmat.2021.126304
  39. Long Peng, Zongrui Li, Guohua Zhang, Xinhui Bi, Weiwei Hu, Mingjin Tang, Xinming Wang, Ping'an Peng, Guoying Sheng. A review of measurement techniques for aerosol effective density. Science of The Total Environment 2021, 778 , 146248. https://doi.org/10.1016/j.scitotenv.2021.146248
  40. Laura Salo, Antti Hyvärinen, Pasi Jalava, Kimmo Teinilä, Rakesh K. Hooda, Arindam Datta, Sanna Saarikoski, Henna Lintusaari, Teemu Lepistö, Sampsa Martikainen, Antti Rostedt, Ved Prakash Sharma, Md. Hafizur Rahman, Sanjukta Subudhi, Eija Asmi, Jarkko V. Niemi, Heikki Lihavainen, Banwari Lal, Jorma Keskinen, Heino Kuuluvainen, Hilkka Timonen, Topi Rönkkö. The characteristics and size of lung-depositing particles vary significantly between high and low pollution traffic environments. Atmospheric Environment 2021, 255 , 118421. https://doi.org/10.1016/j.atmosenv.2021.118421
  41. Aristeidis Voliotis, Spyridon Bezantakos, Athanasios Besis, Yunqi Shao, Constantini Samara. Mass dose rates of particle-bound organic pollutants in the human respiratory tract: Implications for inhalation exposure and risk estimations. International Journal of Hygiene and Environmental Health 2021, 234 , 113710. https://doi.org/10.1016/j.ijheh.2021.113710
  42. Yuanyuan Wei, Zhengqiang Li, Ying Zhang, Cheng Chen, Yisong Xie, Yang Lv, Oleg Dubovik. Derivation of PM10 mass concentration from advanced satellite retrieval products based on a semi-empirical physical approach. Remote Sensing of Environment 2021, 256 , 112319. https://doi.org/10.1016/j.rse.2021.112319
  43. Rudra P. Pokhrel, Janica Gordon, Marc N. Fiddler, Solomon Bililign. Impact of combustion conditions on physical and morphological properties of biomass burning aerosol. Aerosol Science and Technology 2021, 55 (1) , 80-91. https://doi.org/10.1080/02786826.2020.1822512
  44. Shuo Wang, Suzanne Crumeyrolle, Weixiong Zhao, Xuezhe Xu, Bo Fang, Yevgeny Derimian, Cheng Chen, Weidong Chen, Weijun Zhang, Yong Huang, Xueliang Deng, Yingxiang Tong. Real-time retrieval of aerosol chemical composition using effective density and the imaginary part of complex refractive index. Atmospheric Environment 2021, 245 , 117959. https://doi.org/10.1016/j.atmosenv.2020.117959
  45. Tianren Wu, Brandon E. Boor. Urban aerosol size distributions: a global perspective. Atmospheric Chemistry and Physics 2021, 21 (11) , 8883-8914. https://doi.org/10.5194/acp-21-8883-2021
  46. Xiaodong Wei, Yanhong Zhu, Jianlin Hu, Chao Liu, Xinlei Ge, Song Guo, Dantong Liu, Hong Liao, Huijun Wang. Recent Progress in Impacts of Mixing State on Optical Properties of Black Carbon Aerosol. Current Pollution Reports 2020, 6 (4) , 380-398. https://doi.org/10.1007/s40726-020-00158-0
  47. Evdokia Stratigou, Sébastien Dusanter, Joel Brito, Véronique Riffault. Investigation of PM10, PM2.5, PM1 in an unoccupied airflow-controlled room: How reliable to neglect resuspension and assume unreactive particles?. Building and Environment 2020, 186 , 107357. https://doi.org/10.1016/j.buildenv.2020.107357
  48. Pi-qiang Tan, De-yuan Wang, Chao-jie Yao, Lei Zhu, Yin-huan Wang, Meng-hua Wang, Zhi-yuan Hu, Di-ming Lou. Extended filtration model for diesel particulate filter based on diesel particulate matter morphology characteristics. Fuel 2020, 277 , 118150. https://doi.org/10.1016/j.fuel.2020.118150
  49. Huan Liu, Lijuan Qi, Chunsheng Liang, Fanyuan Deng, Hanyang Man, Kebin He. How aging process changes characteristics of vehicle emissions? A review. Critical Reviews in Environmental Science and Technology 2020, 50 (17) , 1796-1828. https://doi.org/10.1080/10643389.2019.1669402
  50. Poonam Bikkina, Srinivas Bikkina, Kimitaka Kawamura, A. K. Sudheer, G. Mahesh, S. Kuswanth Kumar. Evidence for brown carbon absorption over the Bay of Bengal during the southwest monsoon season: a possible oceanic source. Environmental Science: Processes & Impacts 2020, 22 (8) , 1743-1758. https://doi.org/10.1039/D0EM00111B
  51. Tianren Wu, Brandon E. Boor. Characterization of a thermal aerosol generator for HVAC filtration experiments (RP-1734). Science and Technology for the Built Environment 2020, 26 (6) , 816-834. https://doi.org/10.1080/23744731.2020.1730661
  52. Xiaoxiong Wang, Hongfei Xiang, Chao Song, Dongyang Zhu, Jinxia Sui, Qi Liu, Yunze Long. Highly efficient transparent air filter prepared by collecting-electrode-free bipolar electrospinning apparatus. Journal of Hazardous Materials 2020, 385 , 121535. https://doi.org/10.1016/j.jhazmat.2019.121535
  53. Yan Ma, Congcong Huang, Halim Jabbour, Zewen Zheng, Yibo Wang, Youling Jiang, Wenhui Zhu, Xinlei Ge, Sonya Collier, Jun Zheng. Mixing state and light absorption enhancement of black carbon aerosols in summertime Nanjing, China. Atmospheric Environment 2020, 222 , 117141. https://doi.org/10.1016/j.atmosenv.2019.117141
  54. Anil Kumar Mandariya, S.N. Tripathi, Tarun Gupta, Gaurav Mishra. Wintertime hygroscopic growth factors (HGFs) of accumulation mode particles and their linkage to chemical composition in a heavily polluted urban atmosphere of Kanpur at the Centre of IGP, India: Impact of ambient relative humidity. Science of The Total Environment 2020, 704 , 135363. https://doi.org/10.1016/j.scitotenv.2019.135363
  55. David H. Hagan, Jesse H. Kroll. Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmospheric Measurement Techniques 2020, 13 (11) , 6343-6355. https://doi.org/10.5194/amt-13-6343-2020
  56. Janarjan Bhandari, Swarup China, Kamal Kant Chandrakar, Greg Kinney, Will Cantrell, Raymond A. Shaw, Lynn R. Mazzoleni, Giulia Girotto, Noopur Sharma, Kyle Gorkowski, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, Nicola Zanca, Giulia Pavese, Francesco Esposito, Manvendra K. Dubey, Allison C. Aiken, Rajan K. Chakrabarty, Hans Moosmüller, Timothy B. Onasch, Rahul A. Zaveri, Barbara V. Scarnato, Paulo Fialho, Claudio Mazzoleni. Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-48143-y
  57. Bo-Xi Liao, Wen-Cheng Gong, Ziyi Li, Chuen-Jinn Tsai. A mass correction method for the aerosol particle mass analyzer to measure the particle mass of sub-50 nm nanoparticles. Aerosol Science and Technology 2019, 53 (9) , 1056-1066. https://doi.org/10.1080/02786826.2019.1626345
  58. Tareq Hussein, Shatha Saleh, Vanessa dos Santos, Brandon Boor, Antti Koivisto, Jakob Löndahl. Regional Inhaled Deposited Dose of Urban Aerosols in an Eastern Mediterranean City. Atmosphere 2019, 10 (9) , 530. https://doi.org/10.3390/atmos10090530
  59. Antti Joonas Koivisto, Kirsten Inga Kling, Otto Hänninen, Michael Jayjock, Jakob Löndahl, Aneta Wierzbicka, Ana Sofia Fonseca, Katrine Uhrbrand, Brandon E. Boor, Araceli Sánchez Jiménez, Kaarle Hämeri, Miikka Dal Maso, Susan F. Arnold, Keld A. Jensen, Mar Viana, Lidia Morawska, Tareq Hussein. Source specific exposure and risk assessment for indoor aerosols. Science of The Total Environment 2019, 668 , 13-24. https://doi.org/10.1016/j.scitotenv.2019.02.398
  60. Zezhen Cheng, Khairallah Atwi, Travis Onyima, Rawad Saleh. Investigating the dependence of light-absorption properties of combustion carbonaceous aerosols on combustion conditions. Aerosol Science and Technology 2019, 53 (4) , 419-434. https://doi.org/10.1080/02786826.2019.1566593
  61. Anita M. Avery, Michael S. Waring, Peter F. DeCarlo. Seasonal variation in aerosol composition and concentration upon transport from the outdoor to indoor environment. Environmental Science: Processes & Impacts 2019, 21 (3) , 528-547. https://doi.org/10.1039/C8EM00471D
  62. Qihong Deng, Linjing Deng, Yufeng Miao, Xilong Guo, Yuguo Li. Particle deposition in the human lung: Health implications of particulate matter from different sources. Environmental Research 2019, 169 , 237-245. https://doi.org/10.1016/j.envres.2018.11.014
  63. Nora Els, Kathrin Baumann‐Stanzer, Catherine Larose, Timothy M. Vogel, Birgit Sattler. Beyond the planetary boundary layer: Bacterial and fungal vertical biogeography at Mount Sonnblick, Austria. Geo: Geography and Environment 2019, 6 (1) https://doi.org/10.1002/geo2.69
  64. Mingjin Tang, Chak K. Chan, Yong Jie Li, Hang Su, Qingxin Ma, Zhijun Wu, Guohua Zhang, Zhe Wang, Maofa Ge, Min Hu, Hong He, Xinming Wang. A review of experimental techniques for aerosol hygroscopicity studies. Atmospheric Chemistry and Physics 2019, 19 (19) , 12631-12686. https://doi.org/10.5194/acp-19-12631-2019
  65. Hang Liu, Xiaole Pan, Yu Wu, Dawei Wang, Yu Tian, Xiaoyong Liu, Lu Lei, Yele Sun, Pingqing Fu, Zifa Wang. Effective densities of soot particles and their relationships with the mixing state at an urban site in the Beijing megacity in the winter of 2018. Atmospheric Chemistry and Physics 2019, 19 (23) , 14791-14804. https://doi.org/10.5194/acp-19-14791-2019
  66. Yunfei Wu, Yunjie Xia, Rujin Huang, Zhaoze Deng, Ping Tian, Xiangao Xia, Renjian Zhang. A study of the morphology and effective density of externally mixed black carbon aerosols in ambient air using a size-resolved single-particle soot photometer (SP2). Atmospheric Measurement Techniques 2019, 12 (8) , 4347-4359. https://doi.org/10.5194/amt-12-4347-2019
  67. Zhengqiang Li, Yuanyuan Wei, Ying Zhang, Yisong Xie, Lei Li, Kaitao Li, Yan Ma, Xiaobing Sun, Weixiong Zhao, Xuejun Gu. Retrieval of Atmospheric Fine Particulate Density Based on Merging Particle Size Distribution Measurements: Multi‐instrument Observation and Quality Control at Shouxian. Journal of Geophysical Research: Atmospheres 2018, 123 (21) https://doi.org/10.1029/2018JD028956
  68. Xiang Li, Timothy R. Dallmann, Andrew A. May, Charles O. Stanier, Andrew P. Grieshop, Eric M. Lipsky, Allen L. Robinson, Albert A. Presto. Size distribution of vehicle emitted primary particles measured in a traffic tunnel. Atmospheric Environment 2018, 191 , 9-18. https://doi.org/10.1016/j.atmosenv.2018.07.052
  69. Yingying Cha, Ulf Olofsson. Effective density of airborne particles in a railway tunnel from field measurements of mobility and aerodynamic size distributions. Aerosol Science and Technology 2018, 52 (8) , 886-899. https://doi.org/10.1080/02786826.2018.1476750
  70. Yue Lin, Roya Bahreini, Stephen Zimmerman, Emmanuel A. Fofie, Akua Asa-Awuku, Kihong Park, Seung-Bok Lee, Gwi-Nam Bae, Heejung S. Jung. Investigation of ambient aerosol effective density with and without using a catalytic stripper. Atmospheric Environment 2018, 187 , 84-92. https://doi.org/10.1016/j.atmosenv.2018.05.063
  71. Tuan V. Vu, Stefano Zauli-Sajani, Vanes Poluzzi, Roy M. Harrison. Factors controlling the lung dose of road traffic-generated sub-micrometre aerosols from outdoor to indoor environments. Air Quality, Atmosphere & Health 2018, 11 (6) , 615-625. https://doi.org/10.1007/s11869-018-0568-2
  72. Antti Joonas Koivisto, Kirsten Inga Kling, Ana Sofia Fonseca, Anders Brostrøm Bluhme, Marcel Moreman, Mingzhou Yu, Anna Luisa Costa, Baldi Giovanni, Simona Ortelli, Wouter Fransman, Ulla Vogel, Keld Alstrup Jensen. Dip coating of air purifier ceramic honeycombs with photocatalytic TiO2 nanoparticles: A case study for occupational exposure. Science of The Total Environment 2018, 630 , 1283-1291. https://doi.org/10.1016/j.scitotenv.2018.02.316
  73. Shuqin Jiang, Xingnan Ye, Ruyu Wang, Ye Tao, Zhen Ma, Xin Yang, Jianmin Chen. Measurements of nonvolatile size distribution and its link to traffic soot in urban Shanghai. Science of The Total Environment 2018, 615 , 452-461. https://doi.org/10.1016/j.scitotenv.2017.09.176
  74. Xiangyu Pei, Mattias Hallquist, Axel C. Eriksson, Joakim Pagels, Neil M. Donahue, Thomas Mentel, Birgitta Svenningsson, William Brune, Ravi Kant Pathak. Morphological transformation of soot: investigation of microphysical processes during the condensation of sulfuric acid and limonene ozonolysis product vapors. Atmospheric Chemistry and Physics 2018, 18 (13) , 9845-9860. https://doi.org/10.5194/acp-18-9845-2018
  75. Ta-Chih Hsiao, Li-Hao Young, Yu-Chun Tai, Po-Kai Chang. Effects of temperature, pressure, and carrier gases on the performance of an aerosol particle mass analyser. Atmospheric Measurement Techniques 2018, 11 (8) , 4617-4626. https://doi.org/10.5194/amt-11-4617-2018
  76. A. C. Eriksson, C. Wittbom, P. Roldin, M. Sporre, E. Öström, P. Nilsson, J. Martinsson, J. Rissler, E. Z. Nordin, B. Svenningsson, J. Pagels, E. Swietlicki. Diesel soot aging in urban plumes within hours under cold dark and humid conditions. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-12433-0
  77. Yan Ma, Shizheng Li, Jun Zheng, Alexei Khalizov, Xing Wang, Zhen Wang, Yaoyao Zhou. Size‐resolved measurements of mixing state and cloud‐nucleating ability of aerosols in Nanjing, China. Journal of Geophysical Research: Atmospheres 2017, 122 (17) , 9430-9450. https://doi.org/10.1002/2017JD026583
  78. Kangwei Li, Linghong Chen, Stephen J. White, Ke Han, Biao Lv, Kaiji Bao, Xuecheng Wu, Xiang Gao, Merched Azzi, Kefa Cen. Effect of nitrogen oxides (NO and NO 2 ) and toluene on SO 2 photooxidation, nucleation and growth: A smog chamber study. Atmospheric Research 2017, 192 , 38-47. https://doi.org/10.1016/j.atmosres.2017.03.017
  79. Oleksii Nosko, Ulf Olofsson. Effective density of airborne wear particles from car brake materials. Journal of Aerosol Science 2017, 107 , 94-106. https://doi.org/10.1016/j.jaerosci.2017.02.014
  80. Guido Perricone, Mattia Alemani, Ibrahim Metinöz, Vlastimil Matějka, Jens Wahlström, Ulf Olofsson. Towards the ranking of airborne particle emissions from car brakes – a system approach. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2017, 231 (6) , 781-797. https://doi.org/10.1177/0954407016662800
  81. Kangwei Li, Linghong Chen, Ke Han, Biao Lv, Kaiji Bao, Xuecheng Wu, Xiang Gao, Kefa Cen. Smog chamber study on aging of combustion soot in isoprene/SO2/NOx system: Changes of mass, size, effective density, morphology and mixing state. Atmospheric Research 2017, 184 , 139-148. https://doi.org/10.1016/j.atmosres.2016.10.011
  82. Jianmin Chen, Chunlin Li, Zoran Ristovski, Andelija Milic, Yuantong Gu, Mohammad S. Islam, Shuxiao Wang, Jiming Hao, Hefeng Zhang, Congrong He, Hai Guo, Hongbo Fu, Branka Miljevic, Lidia Morawska, Phong Thai, Yun Fat LAM, Gavin Pereira, Aijun Ding, Xin Huang, Umesh C. Dumka. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of The Total Environment 2017, 579 , 1000-1034. https://doi.org/10.1016/j.scitotenv.2016.11.025
  83. Johan Martinsson, Hafiz Abdul Azeem, Moa K. Sporre, Robert Bergström, Erik Ahlberg, Emilie Öström, Adam Kristensson, Erik Swietlicki, Kristina Eriksson Stenström. Carbonaceous aerosol source apportionment using the Aethalometer model – evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden. Atmospheric Chemistry and Physics 2017, 17 (6) , 4265-4281. https://doi.org/10.5194/acp-17-4265-2017
  84. Yuanyuan Xie, Xingnan Ye, Zhen Ma, Ye Tao, Ruyu Wang, Ci Zhang, Xin Yang, Jianmin Chen, Hong Chen. Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements. Atmospheric Chemistry and Physics 2017, 17 (11) , 7277-7290. https://doi.org/10.5194/acp-17-7277-2017
  85. Jinghao Zhai, Xiaohui Lu, Ling Li, Qi Zhang, Ci Zhang, Hong Chen, Xin Yang, Jianmin Chen. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles. Atmospheric Chemistry and Physics 2017, 17 (12) , 7481-7493. https://doi.org/10.5194/acp-17-7481-2017
  86. Chunlin Li, Yunjie Hu, Jianmin Chen, Zhen Ma, Xingnan Ye, Xin Yang, Lin Wang, Xinming Wang, Abdelwahid Mellouki. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity. Atmospheric Environment 2016, 140 , 94-105. https://doi.org/10.1016/j.atmosenv.2016.05.052
  87. Matthew Dickau, Jason Olfert, Marc E. J. Stettler, Adam Boies, Ali Momenimovahed, Kevin Thomson, Greg Smallwood, Mark Johnson. Methodology for quantifying the volatile mixing state of an aerosol. Aerosol Science and Technology 2016, 50 (8) , 759-772. https://doi.org/10.1080/02786826.2016.1185509
  88. Simonas Kecorius, Niku Kivekäs, Adam Kristensson, Thomas Tuch, David S. Covert, Wolfram Birmili, Heikki Lihavainen, Antti-Pekka Hyvärinen, Johan Martinsson, Moa K. Sporre, Erik Swietlicki, Alfred Wiedensohler, Vidmantas Ulevicius. Significant increase of aerosol number concentrations in air masses crossing a densely trafficked sea area. Oceanologia 2016, 58 (1) , 1-12. https://doi.org/10.1016/j.oceano.2015.08.001
  89. Yuxuan Zhang, Qiang Zhang, Yafang Cheng, Hang Su, Simonas Kecorius, Zhibin Wang, Zhijun Wu, Min Hu, Tong Zhu, Alfred Wiedensohler, Kebin He. Measuring the morphology and density of internally mixed black carbon with SP2 and VTDMA: new insight into the absorption enhancement of black carbon in the atmosphere. Atmospheric Measurement Techniques 2016, 9 (4) , 1833-1843. https://doi.org/10.5194/amt-9-1833-2016
  90. Bighnaraj Sarangi, Shankar G. Aggarwal, Deepak Sinha, Prabhat K. Gupta. Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty. Atmospheric Measurement Techniques 2016, 9 (3) , 859-875. https://doi.org/10.5194/amt-9-859-2016
  91. Jette G Hemmingsen, Jenny Rissler, Jens Lykkesfeldt, Gerd Sallsten, Jesper Kristiansen, Peter Møller P, Steffen Loft. Controlled exposure to particulate matter from urban street air is associated with decreased vasodilation and heart rate variability in overweight and older adults. Particle and Fibre Toxicology 2015, 12 (1) https://doi.org/10.1186/s12989-015-0081-9
  92. C.R. Svensson, L. Ludvigsson, B.O. Meuller, M.L. Eggersdorfer, K. Deppert, M. Bohgard, J.H. Pagels, M.E. Messing, J. Rissler. Characteristics of airborne gold aggregates generated by spark discharge and high temperature evaporation furnace: Mass–mobility relationship and surface area. Journal of Aerosol Science 2015, 87 , 38-52. https://doi.org/10.1016/j.jaerosci.2015.05.004
  93. Jette Gjerke Hemmingsen, Kim Jantzen, Peter Møller, Steffen Loft. No oxidative stress or DNA damage in peripheral blood mononuclear cells after exposure to particles from urban street air in overweight elderly. Mutagenesis 2015, 30 (5) , 635-642. https://doi.org/10.1093/mutage/gev027
  94. P. Markowicz, J. Löndahl, A. Wierzbicka, R. Suleiman, A. Shihadeh, L. Larsson. A study on particles and some microbial markers in waterpipe tobacco smoke. Science of The Total Environment 2014, 499 , 107-113. https://doi.org/10.1016/j.scitotenv.2014.08.055
  95. N. Kivekäs, A. Massling, H. Grythe, R. Lange, V. Rusnak, S. Carreno, H. Skov, E. Swietlicki, Q. T. Nguyen, M. Glasius, A. Kristensson. Contribution of ship traffic to aerosol particle concentrations downwind of a major shipping lane. Atmospheric Chemistry and Physics 2014, 14 (16) , 8255-8267. https://doi.org/10.5194/acp-14-8255-2014
  96. C. Wittbom, A. C. Eriksson, J. Rissler, J. E. Carlsson, P. Roldin, E. Z. Nordin, P. T. Nilsson, E. Swietlicki, J. H. Pagels, B. Svenningsson. Cloud droplet activity changes of soot aerosol upon smog chamber ageing. Atmospheric Chemistry and Physics 2014, 14 (18) , 9831-9854. https://doi.org/10.5194/acp-14-9831-2014

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect