ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Solution Structure of Ln(III) Complexes with Macrocyclic Ligands Through Theoretical Evaluation of 1H NMR Contact Shifts

View Author Information
Departamento de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain.
Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “Amedeo Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
§ Université de Bretagne Occidentale, UMR-CNRS 6521, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238 BREST Cedex 3, France
Cite this: Inorg. Chem. 2012, 51, 24, 13419–13429
Publication Date (Web):December 6, 2012
https://doi.org/10.1021/ic302322r
Copyright © 2012 American Chemical Society

    Article Views

    977

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Herein, we present a new approach that combines DFT calculations and the analysis of TbIII-induced 1H NMR shifts to quantitatively and accurately account for the contact contribution to the paramagnetic shift in LnIII complexes. Geometry optimizations of different GdIII complexes with macrocyclic ligands were carried out using the hybrid meta-GGA TPSSh functional and a 46 + 4f7 effective core potential (ECP) for Gd. The complexes investigated include [Ln(Me-DODPA)]+ (H2Me-DODPA = 6,6′-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid, [Ln(DOTA)(H2O)] (H4DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), [Ln(DOTAM)(H2O)]3+ (DOTAM = 1,4,7,10- tetrakis[(carbamoyl)methyl]-1,4,7,10-tetraazacyclododecane), and related systems containing pyridyl units (Ln = Gd, Tb). Subsequent all-electron relativistic calculations based on the DKH2 approximation, or small-core ECP calculations, were used to compute the 1H hyperfine coupling constants (HFCCs) at the ligand nuclei (Aiso values). The calculated Aiso values provided direct access to contact contributions to the 1H NMR shifts of the corresponding TbIII complexes under the assumption that Gd and Tb complexes with a given ligand present similar HFCCs. These contact shifts were used to obtain the pseudocontact shifts, which encode structural information as they depend on the position of the nucleus with respect to the lanthanide ion. An excellent agreement was observed between the experimental and calculated pseudocontact shifts using the DFT-optimized geometries as structural models of the complexes in solution, which demonstrates that the computational approach used provides (i) good structural models for the complexes, (ii) accurate HFCCs at the ligand nuclei. The methodology presented in this work can be classified in the context of model-dependent methods, as it relies on the use of a specific molecular structure obtained from DFT calculations. Our results show that spin polarization effects dominate the 1H Aiso values. The X-ray crystal structures of [Ln(Me-DODPA)](PF6)·2H2O (Ln = Eu or Lu) are also reported.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Absolute deviations (Δδ) of experimental and calculated TbIII-induced 1H NMR shifts in [Tb(Py2N4Py4)]3+ and [Tb(DOTAM)(H2O)]3+ complexes, and optimized cartesian coordinates (Å) of the complexes investigated in this work. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 42 publications.

    1. Charlene Harriswangler, Fátima Lucio-Martínez, Léna Godec, Lohona Kevin Soro, Sandra Fernández-Fariña, Laura Valencia, Aurora Rodríguez-Rodríguez, David Esteban-Gómez, Loïc J. Charbonnière, Carlos Platas-Iglesias. Effect of Magnetic Anisotropy on the 1H NMR Paramagnetic Shifts and Relaxation Rates of Small Dysprosium(III) Complexes. Inorganic Chemistry 2023, 62 (35) , 14326-14338. https://doi.org/10.1021/acs.inorgchem.3c01959
    2. Md. Ashraful Islam, Matthieu Autillo, Laetitia Guérin, Christelle Tamain, Philippe Moisy, Hélène Bolvin, Claude Berthon. Dipolar and Contact Paramagnetic NMR Chemical Shifts in AnIV Complexes with Dipicolinic Acid Derivatives. Inorganic Chemistry 2022, 61 (27) , 10329-10341. https://doi.org/10.1021/acs.inorgchem.2c00845
    3. Goretti Castro, Gaoji Wang, Tanja Gambino, David Esteban-Gómez, Laura Valencia, Goran Angelovski, Carlos Platas-Iglesias, Paulo Pérez-Lourido. Lanthanide(III) Complexes Based on an 18-Membered Macrocycle Containing Acetamide Pendants. Structural Characterization and paraCEST Properties. Inorganic Chemistry 2021, 60 (3) , 1902-1914. https://doi.org/10.1021/acs.inorgchem.0c03385
    4. Aurora Rodríguez-Rodríguez, Ángela Arnosa-Prieto, Isabel Brandariz, David Esteban-Gómez, Carlos Platas-Iglesias. Axial Ligation in Ytterbium(III) DOTAM Complexes Rationalized with Multireference and Ligand-Field ab Initio Calculations. The Journal of Physical Chemistry A 2020, 124 (7) , 1362-1371. https://doi.org/10.1021/acs.jpca.9b11683
    5. David Esteban-Gómez, Laura A. Büldt, Paulo Pérez-Lourido, Laura Valencia, Michael Seitz, Carlos Platas-Iglesias. Understanding the Optical and Magnetic Properties of Ytterbium(III) Complexes. Inorganic Chemistry 2019, 58 (6) , 3732-3743. https://doi.org/10.1021/acs.inorgchem.8b03354
    6. Carolin Dee, David Esteban-Gómez, Carlos Platas-Iglesias, Michael Seitz. Long Wavelength Excitation of Europium Luminescence in Extended, Carboline-Based Cryptates. Inorganic Chemistry 2018, 57 (12) , 7390-7401. https://doi.org/10.1021/acs.inorgchem.8b01031
    7. Nevenka Cakić, Ben Tickner, Moritz Zaiss, David Esteban-Gómez, Carlos Platas-Iglesias, and Goran Angelovski . Spectrally Undiscerned Isomers Might Lead to Erroneous Determination of Water Exchange Rates of paraCEST Eu(III) Agents. Inorganic Chemistry 2017, 56 (14) , 7737-7745. https://doi.org/10.1021/acs.inorgchem.7b00441
    8. Zhifu Liang, Marko Damjanović, Mritunjoy Kamila, Goulven Cosquer, Brian K. Breedlove, Markus Enders, and Masahiro Yamashita . Proton Control of the Lanthanoid Single-Ion Magnet Behavior of a Double-Decker Complex with an Indolenine-Substituted Annulene Ligand. Inorganic Chemistry 2017, 56 (11) , 6512-6521. https://doi.org/10.1021/acs.inorgchem.7b00626
    9. Goretti Castro, Martín Regueiro-Figueroa, David Esteban-Gómez, Paulo Pérez-Lourido, Carlos Platas-Iglesias, and Laura Valencia . Magnetic Anisotropies in Rhombic Lanthanide(III) Complexes Do Not Conform to Bleaney’s Theory. Inorganic Chemistry 2016, 55 (7) , 3490-3497. https://doi.org/10.1021/acs.inorgchem.5b02918
    10. Daniel Aravena, Frank Neese, and Dimitrios A. Pantazis . Improved Segmented All-Electron Relativistically Contracted Basis Sets for the Lanthanides. Journal of Chemical Theory and Computation 2016, 12 (3) , 1148-1156. https://doi.org/10.1021/acs.jctc.5b01048
    11. Aurora Rodríguez-Rodríguez, Martín Regueiro-Figueroa, David Esteban-Gómez, Raphaël Tripier, Gyula Tircsó, Ferenc Krisztián Kálmán, Attila Csaba Bényei, Imre Tóth, Andrés de Blas, Teresa Rodríguez-Blas, and Carlos Platas-Iglesias . Complexation of Ln3+ Ions with Cyclam Dipicolinates: A Small Bridge that Makes Huge Differences in Structure, Equilibrium, and Kinetic Properties. Inorganic Chemistry 2016, 55 (5) , 2227-2239. https://doi.org/10.1021/acs.inorgchem.5b02627
    12. Luís M. P. Lima, Maryline Beyler, Rita Delgado, Carlos Platas-Iglesias, and Raphaël Tripier . Investigating the Complexation of the Pb2+/Bi3+ Pair with Dipicolinate Cyclen Ligands. Inorganic Chemistry 2015, 54 (14) , 7045-7057. https://doi.org/10.1021/acs.inorgchem.5b01079
    13. Tamás Fodor, István Bányai, Attila Bényei, Carlos Platas-Iglesias, Mihály Purgel, Gábor L. Horváth, László Zékány, Gyula Tircsó, and Imre Tóth . [TlIII(dota)]−: An Extraordinarily Robust Macrocyclic Complex. Inorganic Chemistry 2015, 54 (11) , 5426-5437. https://doi.org/10.1021/acs.inorgchem.5b00458
    14. Goretti Castro, Rufina Bastida, Alejandro Macías, Paulo Pérez-Lourido, Carlos Platas-Iglesias, and Laura Valencia . Lanthanide(III) Complexation with an Amide Derived Pyridinophane. Inorganic Chemistry 2015, 54 (4) , 1671-1683. https://doi.org/10.1021/ic502653r
    15. Roland Meier, Carlos Platas-Iglesias, Frank W. Heinemann, Gerald Linti, Jürgen Schulte, and Sunil K. Srivastava . Secrets of Solid State and Aqueous Solution Structures of [Ni(tmdta)]2–. Inorganic Chemistry 2014, 53 (13) , 6684-6697. https://doi.org/10.1021/ic5004325
    16. Roberto Berardozzi and Lorenzo Di Bari . A Simple and General Method to Determine Reliable Pseudocontact Shifts in Lanthanide Complexes. Inorganic Chemistry 2013, 52 (19) , 11514-11518. https://doi.org/10.1021/ic401825f
    17. Sonia Redhu, Devender Singh, Kapeesha Nehra, Swati Dalal, Sofia Malik, Vandana Aggarwal, Sumit Kumar, Rajender Singh Malik, Parvin Kumar, Jayant Sindhu. NUV-Excitation Dy(III) Complexes: Synthesis, Structural Study and Impact of Secondary Ligands on Optoelectronic Properties. Journal of Molecular Structure 2024, 21 , 138380. https://doi.org/10.1016/j.molstruc.2024.138380
    18. Charlene Harriswangler, Brooke L. McNeil, Isabel Brandariz-Lendoiro, Fátima Lucio-Martínez, Laura Valencia, David Esteban-Gómez, Caterina F. Ramogida, Carlos Platas-Iglesias. Exploring the use of rigid 18-membered macrocycles with amide pendant arms for Pb( ii )-based radiopharmaceuticals. Inorganic Chemistry Frontiers 2024, 11 (4) , 1070-1086. https://doi.org/10.1039/D3QI02354K
    19. Eugeny N. Zapolotsky, Yanyang Qu, Sergey P. Babailov. Lanthanide complexes with polyaminopolycarboxylates as prospective NMR/MRI diagnostic probes: peculiarities of molecular structure, dynamics and paramagnetic properties. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2022, 102 (1-2) , 1-33. https://doi.org/10.1007/s10847-021-01112-3
    20. Richard A. Layfield. Lanthanides. 2021, 418-470. https://doi.org/10.1016/B978-0-08-102688-5.00057-X
    21. D. Joss, R. Vogel, K. Zimmermann, D. Häussinger. Application of Paramagnetic Lanthanoid Chelating Tags in NMR Spectroscopy and Their Use for the Localization of Ligands Within Biomacromolecules. 2021, 617-645. https://doi.org/10.1016/B978-0-12-409547-2.14848-6
    22. Karol Wydra, Michał J. Kobyłka, Tadeusz Lis, Katarzyna Ślepokura, Jerzy Lisowski. Versatile Binding Modes of Chiral Macrocyclic Amine towards Rare Earth Ions. European Journal of Inorganic Chemistry 2020, 2020 (21) , 2096-2104. https://doi.org/10.1002/ejic.202000247
    23. R.B. Lincoln. DOTA, dota. 2020https://doi.org/10.1002/9783527809080.cataz05769
    24. Y. Boncli. DOTAM, dotam. 2020https://doi.org/10.1002/9783527809080.cataz05770
    25. Joop A. Peters, Kristina Djanashvili, Carlos F.G.C. Geraldes, Carlos Platas-Iglesias. The chemical consequences of the gradual decrease of the ionic radius along the Ln-series. Coordination Chemistry Reviews 2020, 406 , 213146. https://doi.org/10.1016/j.ccr.2019.213146
    26. Mateusz Kowalik, Joanna Masternak, Barbara Barszcz. Recent Research Trends on Bismuth Compounds in Cancer Chemoand Radiotherapy. Current Medicinal Chemistry 2019, 26 (4) , 729-759. https://doi.org/10.2174/0929867324666171003113540
    27. Elizaveta A. Suturina, Kevin Mason, Carlos F. G. C. Geraldes, Ilya Kuprov, David Parker. Beyond Bleaney's Theory: Experimental and Theoretical Analysis of Periodic Trends in Lanthanide‐Induced Chemical Shift. Angewandte Chemie 2017, 129 (40) , 12383-12386. https://doi.org/10.1002/ange.201706931
    28. Elizaveta A. Suturina, Kevin Mason, Carlos F. G. C. Geraldes, Ilya Kuprov, David Parker. Beyond Bleaney's Theory: Experimental and Theoretical Analysis of Periodic Trends in Lanthanide‐Induced Chemical Shift. Angewandte Chemie International Edition 2017, 56 (40) , 12215-12218. https://doi.org/10.1002/anie.201706931
    29. Mohamadou Sy, David Esteban‐Gómez, Carlos Platas‐Iglesias, Aurora Rodríguez‐Rodríguez, Raphaël Tripier, Loïc J. Charbonnière. Spectroscopic Properties of a Family of Mono‐ to Trinuclear Lanthanide Complexes. European Journal of Inorganic Chemistry 2017, 2017 (14) , 2122-2129. https://doi.org/10.1002/ejic.201601516
    30. Mateus A. Gonçalves, Lizandro S. Santos, Diego M. Prata, Fernando C. Peixoto, Elaine F. F. da Cunha, Teodorico C. Ramalho. Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: application to thermal and solvent effects of MRI probes. Theoretical Chemistry Accounts 2017, 136 (1) https://doi.org/10.1007/s00214-016-2037-z
    31. Mathieu Frindel, Patricia Le Saëc, Maryline Beyler, Anne-Sophie Navarro, Catherine Saï-Maurel, Cyrille Alliot, Michel Chérel, Jean-François Gestin, Alain Faivre-Chauvet, Raphaël Tripier. Cyclam te1pa for 64 Cu PET imaging. Bioconjugation to antibody, radiolabeling and preclinical application in xenografted colorectal cancer. RSC Advances 2017, 7 (15) , 9272-9283. https://doi.org/10.1039/C6RA26003A
    32. Laura Caneda-Martínez, Laura Valencia, Isabel Fernández-Pérez, Martín Regueiro-Figueroa, Goran Angelovski, Isabel Brandariz, David Esteban-Gómez, Carlos Platas-Iglesias. Toward inert paramagnetic Ni( ii )-based chemical exchange saturation transfer MRI agents. Dalton Transactions 2017, 46 (43) , 15095-15106. https://doi.org/10.1039/C7DT02758C
    33. Yixun Xing, Ashish K. Jindal, Martín Regueiro‐Figueroa, Mariane Le Fur, Nelly Kervarec, Piyu Zhao, Zoltan Kovacs, Laura Valencia, Paulo Pérez‐Lourido, Raphaël Tripier, David Esteban‐Gómez, Carlos Platas‐Iglesias, A. Dean Sherry. The Relationship between NMR Chemical Shifts of Thermally Polarized and Hyperpolarized 89 Y Complexes and Their Solution Structures. Chemistry – A European Journal 2016, 22 (46) , 16657-16667. https://doi.org/10.1002/chem.201602901
    34. Marko Damjanović, Takaumi Morita, Yoji Horii, Keiichi Katoh, Masahiro Yamashita, Markus Enders. How Ions Arrange in Solution: Detailed Insight from NMR Spectroscopy of Paramagnetic Ion Pairs. ChemPhysChem 2016, 17 (21) , 3423-3429. https://doi.org/10.1002/cphc.201600804
    35. Jun Sumaoka, Hiroki Akiba, Makoto Komiyama. Selective Sensing of Tyrosine Phosphorylation in Peptides Using Terbium(III) Complexes. International Journal of Analytical Chemistry 2016, 2016 , 1-14. https://doi.org/10.1155/2016/3216523
    36. Marko Damjanović, Takaumi Morita, Keiichi Katoh, Masahiro Yamashita, Markus Enders. Ligand π‐Radical Interaction with f‐Shell Unpaired Electrons in Phthalocyaninato–Lanthanoid Single‐Molecule Magnets: A Solution NMR Spectroscopic and DFT Study. Chemistry – A European Journal 2015, 21 (41) , 14421-14432. https://doi.org/10.1002/chem.201501944
    37. Mateus A. Gonçalves, Elaine F.F. da Cunha, Fernando C. Peixoto, Teodorico C. Ramalho. Probing thermal and solvent effects on hyperfine interactions and spin relaxation rate of δ-FeOOH(100) and [MnH3buea(OH)]2−: Toward new MRI probes. Computational and Theoretical Chemistry 2015, 1069 , 96-104. https://doi.org/10.1016/j.comptc.2015.07.006
    38. Aurora Rodríguez-Rodríguez, Zoltán Garda, Erika Ruscsák, David Esteban-Gómez, Andrés de Blas, Teresa Rodríguez-Blas, Luís M. P. Lima, Maryline Beyler, Raphaël Tripier, Gyula Tircsó, Carlos Platas-Iglesias. Stable Mn 2+ , Cu 2+ and Ln 3+ complexes with cyclen-based ligands functionalized with picolinate pendant arms. Dalton Transactions 2015, 44 (11) , 5017-5031. https://doi.org/10.1039/C4DT02985B
    39. Y. Zhang, D. Krylov, M. Rosenkranz, S. Schiemenz, A. A. Popov. Magnetic anisotropy of endohedral lanthanide ions: paramagnetic NMR study of MSc 2 N@C 80 -I h with M running through the whole 4f row. Chemical Science 2015, 6 (4) , 2328-2341. https://doi.org/10.1039/C5SC00154D
    40. M. Audras, L. Berthon, N. Martin, N. Zorz, Ph. Moisy. Investigation of actinides(III)-DOTA complexes by electrospray ionization mass spectrometry. Journal of Radioanalytical and Nuclear Chemistry 2014, 250 https://doi.org/10.1007/s10967-014-3672-2
    41. Xiaoli Tan, Xuemei Ren, Changlun Chen, Xiangke Wang. Analytical approaches to the speciation of lanthanides at solid-water interfaces. TrAC Trends in Analytical Chemistry 2014, 61 , 107-132. https://doi.org/10.1016/j.trac.2014.06.010
    42. Luís M. P. Lima, Maryline Beyler, Fatima Oukhatar, Patricia Le Saec, Alain Faivre-Chauvet, Carlos Platas-Iglesias, Rita Delgado, Raphaël Tripier. H2Me-do2pa: an attractive chelator with fast, stable and inert nat Bi 3+ and 213 Bi 3+ complexation for potential α-radioimmunotherapy applications. Chem. Commun. 2014, 50 (82) , 12371-12374. https://doi.org/10.1039/C4CC05529B

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect