Article

Dramatic Acceleration of Olefin Epoxidation in Fluorinated Alcohols:  Activation of Hydrogen Peroxide by Multiple H-Bond Networks

Contribution from the Institut für Organische Chemie, Universität zu Köln, Greinstrasse 4, D-50939 Köln, Germany
J. Am. Chem. Soc., 2006, 128 (41), pp 13412–13420
DOI: 10.1021/ja0620181
Publication Date (Web): September 22, 2006
Copyright © 2006 American Chemical Society

Abstract

Abstract Image

In 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as solvent, the epoxidation of olefins by hydrogen peroxide is accelerated up to ca. 100 000-fold (relative to that in 1,4-dioxane as solvent). The mechanistic basis of this effect was investigated kinetically and theoretically. The kinetics of the epoxidation of Z-cyclooctene provided evidence that higher-order solvent aggregates (rate order in HFIP ca. 3) are responsible for the rate acceleration. Activation parameters (ΔS = −39 cal/mol·K) indicated a highly ordered transition state in the rate-determining step. In line with these findings, DFT simulations revealed a pronounced decrease of the activation barrier for oxygen transfer from H2O2 to ethene with increasing number of (specifically) coordinated HFIP molecules. The oxygen transfer was unambiguously identified as a polar concerted process. Simulations (combined DFT and MP2) of the epoxidation of Z-butene were in excellent agreement with the experimental data obtained in the epoxidation of Z-cyclooctene (activation enthalpy, entropy, and kinetic rate order in HFIP of 3), supporting the validity of our mechanistic model.

Citation data is made available by participants in CrossRef's Cited-by Linking service. For a more comprehensive list of citations to this article, users are encouraged to perform a search in SciFinder.

Metrics

Article Views: 1,174 Times
Received 23 March 2006
Published online 22 September 2006
Published in print 1 October 2006
Learn more about these metrics Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
+
More Article Metrics
Explore by: