Article

Rules for Anionic and Radical Ring Closure of Alkynes

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306-4390, United States
School of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, Florida 32114, United States
J. Am. Chem. Soc., 2011, 133 (32), pp 12608–12623
DOI: 10.1021/ja203191f
Publication Date (Web): June 15, 2011
Copyright © 2011 American Chemical Society
ACS AuthorChoice - This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Abstract

Abstract Image

This work reexamined the stereoelectronic basis for the “favored attack trajectories” regarding the nucleophilic and radical cyclizations of alkynes. In contrast to the original Baldwin rules, the acute attack angle of a nucleophile leading to the proposed endo-dig preference for the formation of small cycles is less favorable stereoelectronically than the alternative obtuse trajectory leading to the formation of exo-dig products. For smaller cycles, this intrinsic stereoelectronic preference can be masked by the greater thermodynamic stability of the less strained endo-products. Unbiased comparison of competing cyclization attacks has been accomplished via dissection of the activation barrier into the intrinsic barrier and thermodynamic component via Marcus theory. Intrinsic barriers of thermoneutral reactions strongly favor exo-dig closures, in full accord with the greater magnitude of two-electron bond forming interactions for the obtuse trajectory. This analysis agrees very well with experimental observations of efficient 3-exo-dig and 4-exo-dig cyclizations predicted to be unfavorable by the Baldwin rules and with the calculated 3-exo-/4-endo-, 4-exo-/5-endo-, and 5-exo-/6-endo-dig selectivities in the cyclizations of carbon-, nitrogen-, and oxygen-centered nucleophiles. The generality of these predictions is confirmed by analogous trends for the related radical cyclizations where the stereoelectronically favorable exo-closures are also preferred kinetically, with a few exceptions where a large difference in product stability skews the intrinsic stereoelectronic trends.

Supporting Information


Calculated activation and reaction energies at different DFT levels in comparison with CCSD(T) data; relative energies for different conformations of starting materials; Cartesian coordinates of all geometries (including their total energy) which involve in this study. This material is available free of charge via the Internet at http://pubs.acs.org.

Citation data is made available by participants in CrossRef's Cited-by Linking service. For a more comprehensive list of citations to this article, users are encouraged to perform a search in SciFinder.

Metrics

Article Views: 4,191 Times
Received 7 April 2011
Published online 15 June 2011
Published in print 17 August 2011
Learn more about these metrics Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
+
More Article Metrics
Explore by: