ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Targeting Abasic Sites and Single Base Bulges in DNA with Metalloinsertors

View Author Information
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
Cite this: J. Am. Chem. Soc. 2008, 130, 24, 7530–7531
Publication Date (Web):May 21, 2008
https://doi.org/10.1021/ja801479y
Copyright © 2008 American Chemical Society

    Article Views

    1085

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The site-specific recognition of abasic sites and single base bulges in duplex DNA by sterically expansive rhodium metalloinsertors has been investigated. Through DNA photocleavage experiments, Rh(bpy)2(chrysi)3+ is shown to bind both abasic sites and single base bulges site-specifically and, upon irradiation, to cleave the backbone of the defect-containing DNA. Photocleavage titrations reveal that the metal complex binds DNA containing an abasic site with high affinity (2.6(5) × 106 M−1), comparably to the metalloinsertor and a CC mismatch. The complex binds single base bulge sites with lower affinity (∼105 M−1). Analysis of cleavage products and the correlation of affinities with helix destabilization suggest that Rh(bpy)2(chrysi)3+ binds both lesions via metalloinsertion, as observed for Rh binding at mismatched sites, a binding mode in which the mismatched or unpaired bases are extruded from the helix and replaced in the base stack by the sterically expansive ligand of the metalloinsertor.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Photocleavage titrations, gel analysis, and mass spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 72 publications.

    1. Charles K. Rono, William K. Chu, James Darkwa, Debra Meyer, Banothile C. E. Makhubela. Triazolyl RuII, RhIII, OsII, and IrIII Complexes as Potential Anticancer Agents: Synthesis, Structure Elucidation, Cytotoxicity, and DNA Model Interaction Studies. Organometallics 2019, 38 (16) , 3197-3211. https://doi.org/10.1021/acs.organomet.9b00440
    2. Yufeng Zhou, Longlong Gao, Xingyu Tong, Qiusha Li, Yifan Fei, Yali Yu, Ting Ye, Xiao-Shun Zhou, Yong Shao. Supramolecularly Multicolor DNA Decoding Using an Indicator Competition Assay. Analytical Chemistry 2018, 90 (22) , 13183-13187. https://doi.org/10.1021/acs.analchem.8b04070
    3. Kelsey M. Boyle, Jacqueline K. Barton. A Family of Rhodium Complexes with Selective Toxicity toward Mismatch Repair-Deficient Cancers. Journal of the American Chemical Society 2018, 140 (16) , 5612-5624. https://doi.org/10.1021/jacs.8b02271
    4. Fan Lin, Yufeng Zhou, Qiusha Li, Xiaoshun Zhou, Yong Shao, Benoit Habermeyer, Hui Wang, Xinghua Shi, and Zhiai Xu . Prototropically Allosteric Probe for Superbly Selective DNA Analysis. Analytical Chemistry 2017, 89 (17) , 9299-9306. https://doi.org/10.1021/acs.analchem.7b02077
    5. Duvan Franco, Attilio V. Vargiu, and Alessandra Magistrato . Ru[(bpy)2(dppz)]2+ and Rh[(bpy)2(chrysi)]3+ Targeting Double Strand DNA: The Shape of the Intercalating Ligand Tunes the Free Energy Landscape of Deintercalation. Inorganic Chemistry 2014, 53 (15) , 7999-8008. https://doi.org/10.1021/ic5008523
    6. Anna J. McConnell, Mi Hee Lim, Eric D. Olmon, Hang Song, Elizabeth E. Dervan, and Jacqueline K. Barton . Luminescent Properties of Ruthenium(II) Complexes with Sterically Expansive Ligands Bound to DNA Defects. Inorganic Chemistry 2012, 51 (22) , 12511-12520. https://doi.org/10.1021/ic3019524
    7. Imee Marie A. del Mundo, Kevin E. Siters, Matthew A. Fountain, and Janet R. Morrow . Structural Basis for Bifunctional Zinc(II) Macrocyclic Complex Recognition of Thymine Bulges in DNA. Inorganic Chemistry 2012, 51 (9) , 5444-5457. https://doi.org/10.1021/ic3004245
    8. Attilio V. Vargiu and Alessandra Magistrato . Detecting DNA Mismatches with Metallo-Insertors: A Molecular Simulation Study. Inorganic Chemistry 2012, 51 (4) , 2046-2057. https://doi.org/10.1021/ic201659v
    9. Hongliu Ren, Chong Wang, Jiali Zhang, Xuejiao Zhou, Dafeng Xu, Jing Zheng, Shouwu Guo, and Jingyan Zhang . DNA Cleavage System of Nanosized Graphene Oxide Sheets and Copper Ions. ACS Nano 2010, 4 (12) , 7169-7174. https://doi.org/10.1021/nn101696r
    10. Brigitte R. Spencer, Brian J. Kraft, Chris G. Hughes, Maren Pink, and Jeffrey M. Zaleski. Modulating the Light Switch by 3MLCT-3ππ* State Interconversion. Inorganic Chemistry 2010, 49 (24) , 11333-11345. https://doi.org/10.1021/ic1011617
    11. Marguerite Pitié and Geneviève Pratviel. Activation of DNA Carbon−Hydrogen Bonds by Metal Complexes. Chemical Reviews 2010, 110 (2) , 1018-1059. https://doi.org/10.1021/cr900247m
    12. Heidi A. Dahlmann, V. G. Vaidyanathan and Shana J. Sturla . Investigating the Biochemical Impact of DNA Damage with Structure-Based Probes: Abasic Sites, Photodimers, Alkylation Adducts, and Oxidative Lesions. Biochemistry 2009, 48 (40) , 9347-9359. https://doi.org/10.1021/bi901059k
    13. Mi Hee Lim, Hang Song, Eric D. Olmon, Elizabeth E. Dervan and Jacqueline K. Barton. Sensitivity of Ru(bpy)2dppz2+ Luminescence to DNA Defects. Inorganic Chemistry 2009, 48 (12) , 5392-5397. https://doi.org/10.1021/ic900407n
    14. Brian M. Zeglis, Valérie C. Pierre, Jens T. Kaiser and Jacqueline K. Barton. A Bulky Rhodium Complex Bound to an Adenosine-Adenosine DNA Mismatch: General Architecture of the Metalloinsertion Binding Mode. Biochemistry 2009, 48 (20) , 4247-4253. https://doi.org/10.1021/bi900194e
    15. Brian M. Zeglis, Jennifer A. Boland and Jacqueline K. Barton. Recognition of Abasic Sites and Single Base Bulges in DNA by a Metalloinsertor. Biochemistry 2009, 48 (5) , 839-849. https://doi.org/10.1021/bi801885w
    16. Julika Schlosser, Nils Stötzel, Yuri Fedorov, Heiko Ihmels. Photoinduced Reactions of Styrylpyridine Derivatives for the In Situ Formation of Selective Ligands for Apyrimidinic DNA. ChemPhotoChem 2023, 7 (12) https://doi.org/10.1002/cptc.202300159
    17. Julika Schlosser, Heiko Ihmels. Ligands for Abasic Site-containing DNA and their Use as Fluorescent Probes. Current Organic Synthesis 2023, 20 (1) , 96-113. https://doi.org/10.2174/1570179419666220216091422
    18. Partha Sarathi Guin, Sanjay Roy. Recently Reported Ru-Metal Organic Coordination Complexes and Their Application (A Review). Russian Journal of General Chemistry 2022, 92 (8) , 1546-1561. https://doi.org/10.1134/S1070363222080242
    19. P. David Dayanidhi, V. G. Vaidyanathan. Structural insights into the recognition of DNA defects by small molecules. Dalton Transactions 2021, 50 (17) , 5691-5712. https://doi.org/10.1039/D0DT04289G
    20. Ondrej Hrabina, Jaroslav Malina, Peter Scott, Viktor Brabec. Cationic Fe II Triplex‐Forming Metallohelices as DNA Bulge Binders. Chemistry – A European Journal 2020, 26 (69) , 16554-16562. https://doi.org/10.1002/chem.202004060
    21. Subhendu Sekhar Bag, Sayantan Sinha, Hiranya Gogoi, Subhashis Datta, Rajen Kundu, Sangita Talukdar. Stabilization of an abasic site paired against an unnatural triazolyl nitrobenzene nucleoside. Biophysical Chemistry 2020, 264 , 106428. https://doi.org/10.1016/j.bpc.2020.106428
    22. Young-Ae Lee, Ha Young Cho, Seog K. Kim. Neighboring base sequence effect on DNA damage. Journal of Biomolecular Structure and Dynamics 2020, 38 (11) , 3188-3195. https://doi.org/10.1080/07391102.2019.1659186
    23. Gilles Lemercier, Mickaël Four, Sylviane Chevreux. Two-photon absorption properties of 1,10-phenanthroline-based Ru(II) complexes and related functionalized nanoparticles for potential application in two-photon excitation photodynamic therapy and optical power limiting. Coordination Chemistry Reviews 2018, 368 , 1-12. https://doi.org/10.1016/j.ccr.2018.03.019
    24. Ziyue Ni, Ting Ye, Yali Yu, Longlong Gao, Yifan Fei, Qiusha Li, Yufeng Zhou, Yong Shao, Lintao Zeng. Triplex-forming oligonucleotide as a lighting-up switch for a DNA abasic site-binding fluorescent ligand. Journal of Luminescence 2018, 198 , 193-197. https://doi.org/10.1016/j.jlumin.2018.02.011
    25. F. Heinrich, M. Riedel, F. Lisdat. Detection of abasic DNA by means of impedance spectroscopy. Electrochemistry Communications 2018, 90 , 65-68. https://doi.org/10.1016/j.elecom.2018.04.005
    26. Jacqueline K. Barton, Adam N. Boynton, Kelsey M. Boyle. Targeting DNA Mismatches with Coordination Complexes. 2018, 367-390. https://doi.org/10.1039/9781788012928-00367
    27. Guillaume Piraux, Laure Bar, Michaël Abraham, Thomas Lavergne, Hélène Jamet, Jérôme Dejeu, Lionel Marcélis, Eric Defrancq, Benjamin Elias. New Ruthenium‐Based Probes for Selective G‐Quadruplex Targeting. Chemistry – A European Journal 2017, 23 (49) , 11872-11880. https://doi.org/10.1002/chem.201702076
    28. Tadao Takada, Yu Umakoshi, Mitsunobu Nakamura, Kazushige Yamana. A Luminescent Perylenediimide as a Binding Ligand for Pyrimidine/Pyrimidine Mismatches Within a DNA Duplex. ChemistrySelect 2017, 2 (21) , 6047-6051. https://doi.org/10.1002/slct.201701310
    29. Zhiqin Deng, Pan Gao, Lianling Yu, Bin Ma, Yuanyuan You, Leung Chan, Chaoming Mei, Tianfeng Chen. Ruthenium complexes with phenylterpyridine derivatives target cell membrane and trigger death receptors-mediated apoptosis in cancer cells. Biomaterials 2017, 129 , 111-126. https://doi.org/10.1016/j.biomaterials.2017.03.017
    30. Tadao Takada, Misa Ido, Akane Ashida, Mitsunobu Nakamura, Kazushige Yamana. DNA‐Templated Synthesis of Perylenediimide Stacks Utilizing Abasic Sites as Binding Pockets and Reactive Sites. ChemBioChem 2016, 17 (23) , 2230-2233. https://doi.org/10.1002/cbic.201600454
    31. Kelsey M. Boyle, Jacqueline K. Barton. Targeting DNA mismatches with rhodium metalloinsertors. Inorganica Chimica Acta 2016, 452 , 3-11. https://doi.org/10.1016/j.ica.2016.01.021
    32. Stephanie A. Sander, Janet R. Morrow. Zn(II) complexes that trigger a DNA conformational switch. Inorganica Chimica Acta 2016, 452 , 90-97. https://doi.org/10.1016/j.ica.2016.02.008
    33. Naoko Kotera, Anton Granzhan, Marie-Paule Teulade-Fichou. Comparative study of affinity and selectivity of ligands targeting abasic and mismatch sites in DNA using a fluorescence-melting assay. Biochimie 2016, 128-129 , 133-137. https://doi.org/10.1016/j.biochi.2016.08.004
    34. Irina G. Minko, Aaron C. Jacobs, Arnie R. de Leon, Francesca Gruppi, Nathan Donley, Thomas M. Harris, Carmelo J. Rizzo, Amanda K. McCullough, R. Stephen Lloyd. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep28894
    35. Sin Ki Fung, Taotao Zou, Bei Cao, Tianfeng Chen, Wai-Pong To, Chen Yang, Chun-Nam Lok, Chi-Ming Che. Luminescent platinum(II) complexes with functionalized N-heterocyclic carbene or diphosphine selectively probe mismatched and abasic DNA. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms10655
    36. J. Malina, P. Scott, V. Brabec. Shape-selective recognition of DNA abasic sites by metallohelices: inhibition of human AP endonuclease 1. Nucleic Acids Research 2015, 43 (11) , 5297-5306. https://doi.org/10.1093/nar/gkv438
    37. Wanhao Wu, Ying Wang, Yuxing Zhou, Yong Shao, Lihua Zhang, Hua Liu. Selective fluorescence lighting-up recognition of DNA abasic site environment possessing guanine context. Sensors and Actuators B: Chemical 2015, 206 , 449-455. https://doi.org/10.1016/j.snb.2014.09.090
    38. Naoko Kotera, Florent Poyer, Anton Granzhan, Marie-Paule Teulade-Fichou. Efficient inhibition of human AP endonuclease 1 (APE1) via substrate masking by abasic site-binding macrocyclic ligands. Chemical Communications 2015, 51 (88) , 15948-15951. https://doi.org/10.1039/C5CC06084B
    39. Jaroslav Malina, Peter Scott, Viktor Brabec. Recognition of DNA/RNA bulges by antimicrobial and antitumor metallohelices. Dalton Transactions 2015, 44 (33) , 14656-14665. https://doi.org/10.1039/C5DT02018B
    40. Attilio V. Vargiu, Alessandra Magistrato. Atomistic‐Level Portrayal of Drug–DNA Interplay: A History of Courtships and Meetings Revealed by Molecular Simulations. ChemMedChem 2014, 9 (9) , 1966-1981. https://doi.org/10.1002/cmdc.201402203
    41. Katja Benner, Anna Bergen, Heiko Ihmels, Phil Marvin Pithan. Selective Stabilization of Abasic Site‐Containing DNA by Insertion of Sterically Demanding Biaryl Ligands. Chemistry – A European Journal 2014, 20 (32) , 9883-9887. https://doi.org/10.1002/chem.201403622
    42. Kevin E. Siters, Stephanie A. Sander, Janet R. Morrow. Selective Binding of Zn 2+ Complexes to Non‐Canonical Thymine or Uracil in DNA or RNA. 2014, 245-298. https://doi.org/10.1002/9781118869994.ch03
    43. Jaroslav Malina, Michael J. Hannon, Viktor Brabec. Recognition of DNA bulges by dinuclear iron( II ) metallosupramolecular helicates. The FEBS Journal 2014, 281 (4) , 987-997. https://doi.org/10.1111/febs.12696
    44. Gaëlle Bœuf, Gaëlle V. Roullin, Juliette Moreau, Laurence Van Gulick, Nebraska Zambrano Pineda, Christine Terryn, Dominique Ploton, Marie Christine Andry, Françoise Chuburu, Sylvain Dukic, Michaël Molinari, Gilles Lemercier. Encapsulated Ruthenium(II) Complexes in Biocompatible Poly( d,l ‐lactide‐ co ‐glycolide) Nanoparticles for Application in Photodynamic Therapy. ChemPlusChem 2014, 79 (1) , 171-180. https://doi.org/10.1002/cplu.201300242
    45. Yusuke Sato, Megumi Kudo, Yu Toriyabe, Shota Kuchitsu, Chun-xia Wang, Seiichi Nishizawa, Norio Teramae. Abasic site-binding ligands conjugated with cyanine dyes for “off–on” fluorescence sensing of orphan nucleobases in DNA duplexes and DNA–RNA hybrids. Chem. Commun. 2014, 50 (5) , 515-517. https://doi.org/10.1039/C3CC47717G
    46. Jian Peng, Yong Shao, Lingling Liu, Lihua Zhang, Hua Liu. Specific recognition of DNA bulge sites by in situ grown fluorescent Ag nanoclusters with high selectivity. Dalton Trans. 2014, 43 (4) , 1534-1541. https://doi.org/10.1039/C3DT52042K
    47. Katja Benner, Heiko Ihmels, Sarah Kölsch, Phil M. Pithan. Targeting abasic site-containing DNA with annelated quinolizinium derivatives: the influence of size, shape and substituents. Org. Biomol. Chem. 2014, 12 (11) , 1725-1734. https://doi.org/10.1039/C3OB42140F
    48. Chung-Hang Leung, Hong-Zhang He, Li-Juan Liu, Modi Wang, Daniel Shiu-Hin Chan, Dik-Lung Ma. Metal complexes as inhibitors of transcription factor activity. Coordination Chemistry Reviews 2013, 257 (21-22) , 3139-3151. https://doi.org/10.1016/j.ccr.2013.08.008
    49. Tadao Takada, Akane Ashida, Mitsunobu Nakamura, Kazushige Yamana. Cationic perylenediimide as a specific fluorescent binder to mismatch containing DNA. Bioorganic & Medicinal Chemistry 2013, 21 (19) , 6011-6014. https://doi.org/10.1016/j.bmc.2013.07.040
    50. Shujuan Xu, Yong Shao, Fei Wu, Guiying Liu, Lingling Liu, Jian Peng, Yanwei Sun. Targeting DNA abasic site by myricetin: Sequence-dependent ESIPT emission. Journal of Luminescence 2013, 136 , 291-295. https://doi.org/10.1016/j.jlumin.2012.12.016
    51. Yunxiang Wang, Cuiping Wang, Hongyan Bo, Qiang Gao, Honglan Qi, Chengxiao Zhang. Specific recognition of a single guanine bulge in dsDNA using a surface plasmon resonance sensor with immobilized 2-(2-aminoacetyl)amino-5,6,7-trimethyl-1,8-naphthyridine. Sensors and Actuators B: Chemical 2013, 177 , 800-806. https://doi.org/10.1016/j.snb.2012.11.026
    52. Lin Liu, Qianqian Zhai, Tingting Hong, Yushu Ge, Peng Hu, Xiaocheng Weng, Yi Liu, Xiang Zhou. Selective cleavage of DNA at guanosine bases which locate in DNA non-duplex portions within duplexes by ruthenium(II) complexes. Inorganica Chimica Acta 2013, 394 , 385-390. https://doi.org/10.1016/j.ica.2012.08.021
    53. Charles Truillet, Francois Lux, Juliette Moreau, Mickaël Four, Lucie Sancey, Sylviane Chevreux, Gaëlle Boeuf, Pascal Perriat, Céline Frochot, Rodolphe Antoine, Philippe Dugourd, Christophe Portefaix, Christine Hoeffel, Muriel Barberi-Heyob, Christine Terryn, Laurence van Gulick, Gilles Lemercier, Olivier Tillement. Bifunctional polypyridyl-Ru(ii) complex grafted onto gadolinium-based nanoparticles for MR-imaging and photodynamic therapy. Dalton Transactions 2013, 42 (34) , 12410. https://doi.org/10.1039/c3dt50946j
    54. Marijana Radić Stojković, Marko Škugor, Sanja Tomić, Marina Grabar, Vilko Smrečki, Łukasz Dudek, Jarosław Grolik, Julita Eilmes, Ivo Piantanida. Dibenzotetraaza[14]annulene–adenine conjugate recognizes complementary poly dT among ss-DNA/ss-RNA sequences. Organic & Biomolecular Chemistry 2013, 11 (24) , 4077. https://doi.org/10.1039/c3ob40519b
    55. Fei Wu, Yanwei Sun, Yong Shao, Shujuan Xu, Guiying Liu, Jian Peng, Lingling Liu, . DNA Abasic Site-Selective Enhancement of Sanguinarine Fluorescence with a Large Emission Shift. PLoS ONE 2012, 7 (11) , e48251. https://doi.org/10.1371/journal.pone.0048251
    56. Shujuan Xu, Yong Shao, Kun Ma, Qinghua Cui, Guiying Liu, Fei Wu. DNA abasic site-based aptamer for selective fluorescence light-up detection of fisetin by excited-state intramolecular proton transfer. Sensors and Actuators B: Chemical 2012, 171-172 , 666-671. https://doi.org/10.1016/j.snb.2012.05.051
    57. Tadao Takada, Yumiko Otsuka, Mitsunobu Nakamura, Kazushige Yamana. Molecular Arrangement and Assembly Guided by Hydrophobic Cavities inside DNA. Chemistry – A European Journal 2012, 18 (30) , 9300-9304. https://doi.org/10.1002/chem.201201469
    58. Na An, Aaron M. Fleming, Henry S. White, Cynthia J. Burrows. Crown ether–electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proceedings of the National Academy of Sciences 2012, 109 (29) , 11504-11509. https://doi.org/10.1073/pnas.1201669109
    59. Fei Wu, Yong Shao, Kun Ma, Qinghua Cui, Guiying Liu, Shujuan Xu. Simultaneous fluorescence light-up and selective multicolor nucleobase recognition based on sequence-dependent strong binding of berberine to DNA abasic site. Organic & Biomolecular Chemistry 2012, 10 (16) , 3300. https://doi.org/10.1039/c2ob00028h
    60. Yusuke Sato, Yushuang Zhang, Takehiro Seino, Takashi Sugimoto, Seiichi Nishizawa, Norio Teramae. Highly selective binding of naphthyridine with a trifluoromethyl group to cytosine opposite an abasic site in DNA duplexes. Organic & Biomolecular Chemistry 2012, 10 (20) , 4003. https://doi.org/10.1039/c2ob25513h
    61. Akhil R. Chakravarty, Mithun Roy. Photoactivated DNA Cleavage and Anticancer Activity of 3d Metal Complexes. 2011, 119-202. https://doi.org/10.1002/9781118148235.ch3
    62. Béla Gyurcsik, Anikó Czene. Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Medicinal Chemistry 2011, 3 (15) , 1935-1966. https://doi.org/10.4155/fmc.11.139
    63. Maxim Kogan, Bengt Nordén, Per Lincoln, Pär Nordell. Transition State of Rare Event Base Pair Opening Probed by Threading into Looped DNA. ChemBioChem 2011, 12 (13) , 2001-2006. https://doi.org/10.1002/cbic.201100182
    64. Qianqian Zhai, Liang Xu, Yushu Ge, Tian Tian, Wendi Wu, Shengyong Yan, Yangyang Zhou, Minggang Deng, Yi Liu, Xiang Zhou. Site‐Specific Recognition of Guanosine by Manganese(III) Corroles in DNA Non‐Duplex Regions through Active Oxygen Transfer. Chemistry – A European Journal 2011, 17 (32) , 8890-8895. https://doi.org/10.1002/chem.201101128
    65. Kun Ma, Qinghua Cui, Guiying Liu, Fei Wu, Shujuan Xu, Yong Shao. DNA abasic site-directed formation of fluorescent silver nanoclusters for selective nucleobase recognition. Nanotechnology 2011, 22 (30) , 305502. https://doi.org/10.1088/0957-4484/22/30/305502
    66. Shujuan Xu, Yong Shao, Kun Ma, Qinghua Cui, Guiying Liu, Fei Wu, Minjie Li. Fluorescence light-up recognition of DNA nucleotide based on selective abasic site binding of an excited-state intramolecular proton transfer probe. The Analyst 2011, 136 (21) , 4480. https://doi.org/10.1039/c1an15652g
    67. Imee Marie A. del Mundo, Matthew A. Fountain, Janet R. Morrow. Recognition of thymine in DNA bulges by a Zn(ii) macrocyclic complex. Chemical Communications 2011, 47 (30) , 8566. https://doi.org/10.1039/c1cc12074c
    68. David Loakes. Nucleotides and Nucleic Acids; Oligo- and Polynucleotides. 2010, 144-237. https://doi.org/10.1039/9781849730839-00144
    69. Anton Granzhan, Eric Largy, Nicolas Saettel, Marie‐Paule Teulade‐Fichou. Macrocyclic DNA‐Mismatch‐Binding Ligands: Structural Determinants of Selectivity. Chemistry – A European Journal 2010, 16 (3) , 878-889. https://doi.org/10.1002/chem.200901989
    70. Yong SHAO, Zhenjiang NIU, Jianrong CHEN, Liangke ZHANG. Enhanced Binding of a Non‐hydrogen Bond Ligand to DNA by Introducing an Apurine/Apyrimidine Site. Chinese Journal of Chemistry 2009, 27 (6) , 1117-1122. https://doi.org/10.1002/cjoc.200990186
    71. Hugo C. Ong, Jonathan F. Arambula, Sreenivasa Rao Ramisetty, Anne M. Baranger, Steven C. Zimmerman. Molecular recognition of a thymine bulge by a high affinity, deazaguanine-based hydrogen-bonding ligand. Chem. Commun. 2009, 363 (6) , 668-670. https://doi.org/10.1039/B817733N
    72. Sanda C. Boca, Mickaël Four, Adeline Bonne, Boudewijn van der Sanden, Simion Astilean, Patrice L. Baldeck, Gilles Lemercier. An ethylene-glycol decorated ruthenium(ii) complex for two-photon photodynamic therapy. Chemical Communications 2009, 160 (30) , 4590. https://doi.org/10.1039/b907143a

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect