Article

Development of Electrochemical Processes for Nitrene Generation and Transfer

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
J. Org. Chem., 2005, 70 (3), pp 932–937
DOI: 10.1021/jo048591p
Publication Date (Web): January 7, 2005
Copyright © 2005 American Chemical Society

Abstract

Abstract Image

An electrochemical strategy for running nitrogen-transfer reactions on chemically inert anode surfaces has been developed. The generation and trapping of highly reactive nitrene-transfer reagents can be accomplished under mild conditions on platinum electrodes. The key factor that accounts for the high levels of chemoselectivity in this process is the phenomenon of overpotential. We have found that molecules that are similar in terms of propensity toward oxidation can be differentiated on the basis of their affinity to a given electrode surface. Thereby, reactive species can be selectively generated in the presence of acceptor molecules of interest. Specifically, a wide range of structurally dissimilar olefins can be transformed into the corresponding aziridines in the presence of N-aminophthalimide. Likewise, nitrene generation in the presence of sulfoxides leads to their chemoselective transformation into the corresponding sulfoximines. In this paper we discuss the underlying mechanistic foundation of these reactions.

Citation data is made available by participants in CrossRef's Cited-by Linking service. For a more comprehensive list of citations to this article, users are encouraged to perform a search in SciFinder.

Metrics

Article Views: 732 Times
Received 12 August 2004
Published online 7 January 2005
Published in print 1 February 2005
Learn more about these metrics Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
+
More Article Metrics
Explore by: