ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Nanostructured Clathrate Phonon Glasses: Beyond the Rattling Concept

View Author Information
Department of Chemistry, University of California, Davis, California 95616, United States
The Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
*(G.G.) E-mail: [email protected]
Cite this: Nano Lett. 2014, 14, 5, 2920–2925
Publication Date (Web):April 24, 2014
https://doi.org/10.1021/nl501021m
Copyright © 2014 American Chemical Society

    Article Views

    1089

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Using first-principles calculations, we investigated the thermoelectric properties of a newly synthesized Si-based ternary clathrate K8Al8Si38, composed of ∼1 nm hollow cages with a metal atom inside. This compound contains solely Earth abundant elements. We found that, similar to other nanostructured type I clathrates, this system is a semiconductor and has a low thermal conductivity (∼1 W/mK). It was long believed that the mere presence of rattling centers was responsible for the low lattice thermal conductivity of type I clathrates. We found instead that the cage structural disorder induced by atomic substitution plays a crucial role in determining the conductivity of these materials, in addition to the dynamics of the guest atoms. Our calculations showed that the latter is substantially affected by the charge transfer between the metal and the cages. Our results provide design rules for the search of new types of promising nanocage structured thermoelectric materials.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 29 publications.

    1. Kentaro Takagi, Yuko Matsukawa, Shuto Araki, Ryusei Saeki, Shigeto Yamasaki, Makoto Arita, Shinji Munetoh. Thermoelectric Properties of Ba8CuxSiyGe46–x–y Clathrates Synthesized by the Czochralski Method. ACS Applied Energy Materials 2024, 7 (7) , 2665-2670. https://doi.org/10.1021/acsaem.3c02961
    2. Yuping He and Giulia Galli . Instability and Efficiency of Mixed Halide Perovskites CH3NH3AI3–xClx (A = Pb and Sn): A First-Principles, Computational Study. Chemistry of Materials 2017, 29 (2) , 682-689. https://doi.org/10.1021/acs.chemmater.6b04300
    3. Fan Sui, Hua He, Svilen Bobev, Jing Zhao, Frank E. Osterloh, and Susan M. Kauzlarich . Synthesis, Structure, Thermoelectric Properties, and Band Gaps of Alkali Metal Containing Type I Clathrates: A8Ga8Si38 (A = K, Rb, Cs) and K8Al8Si38. Chemistry of Materials 2015, 27 (8) , 2812-2820. https://doi.org/10.1021/cm504436v
    4. Baoli Du, Yuta Saiga, Kousuke Kajisa, and Toshiro Takabatake . Thermoelectric Properties of p-Type Clathrate Ba8.0Ga15.9ZnySn30.1 Single Crystals with Various Carrier Concentrations. Chemistry of Materials 2015, 27 (5) , 1830-1836. https://doi.org/10.1021/acs.chemmater.5b00025
    5. Yuping He and Giulia Galli . Perovskites for Solar Thermoelectric Applications: A First Principle Study of CH3NH3AI3 (A = Pb and Sn). Chemistry of Materials 2014, 26 (18) , 5394-5400. https://doi.org/10.1021/cm5026766
    6. Susmita Roy, Tyler C. Sterling, Dan Parshall, Eric Toberer, Mogens Christensen, Devashibhai T. Adroja, Dmitry Reznik. Occupational disorder as the origin of flattening of the acoustic phonon branches in the clathrate Ba 8 Ga 16 Ge 30 . Physical Review B 2023, 107 (2) https://doi.org/10.1103/PhysRevB.107.L020301
    7. Xianfeng Ye, Zhenzhen Feng, Yongsheng Zhang, Gaofeng Zhao, David J. Singh. Low thermal conductivity and high thermoelectric performance via Cd underbonding in half-Heusler PCdNa. Physical Review B 2022, 105 (10) https://doi.org/10.1103/PhysRevB.105.104309
    8. Xiaoxia Yu, Jiawang Hong. Absence of phonon gap driven ultralow lattice thermal conductivity in half-Heusler LuNiBi. Journal of Materials Chemistry C 2021, 9 (36) , 12420-12425. https://doi.org/10.1039/D1TC02819G
    9. H.A. Eivari, Z. Sohbatzadeh, P. Mele, M.H.N. Assadi. Low thermal conductivity: fundamentals and theoretical aspects in thermoelectric applications. Materials Today Energy 2021, 21 , 100744. https://doi.org/10.1016/j.mtener.2021.100744
    10. Giuseppe Barbalinardo, Zekun Chen, Nicholas W. Lundgren, Davide Donadio. Efficient anharmonic lattice dynamics calculations of thermal transport in crystalline and disordered solids. Journal of Applied Physics 2020, 128 (13) https://doi.org/10.1063/5.0020443
    11. M. S. Ikeda, H. Euchner, X. Yan, P. Tomeš, A. Prokofiev, L. Prochaska, G. Lientschnig, R. Svagera, S. Hartmann, E. Gati, M. Lang, S. Paschen. Kondo-like phonon scattering in thermoelectric clathrates. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-08685-1
    12. Davide Donadio. Advances in the optimization of silicon-based thermoelectrics: a theory perspective. Current Opinion in Green and Sustainable Chemistry 2019, 17 , 35-41. https://doi.org/10.1016/j.cogsc.2019.02.001
    13. Ran Ang, Zhengshang Wang, Shang-Fei Wu, Pierre Richard, Zhenzhong Yang, Lin Gu, Gang Mu, Jingtao Xu, Ning Liu, Jun Tang. Germanium isotope effect induced guest rattling and cage distortion in clathrates. Journal of Materiomics 2018, 4 (4) , 338-344. https://doi.org/10.1016/j.jmat.2018.08.003
    14. Artem R. Khabibullin, Kaya Wei, Tran D. Huan, George S. Nolas, Lilia M. Woods. Compositional Effects and Electron Lone‐pair Distortions in Doped Bournonites. ChemPhysChem 2018, 19 (20) , 2635-2644. https://doi.org/10.1002/cphc.201800613
    15. Xinlin Yan, Matthias Ikeda, Long Zhang, Ernst Bauer, Peter Rogl, Gerald Giester, Andrey Prokofiev, Silke Paschen. Suppression of vacancies boosts thermoelectric performance in type-I clathrates. Journal of Materials Chemistry A 2018, 6 (4) , 1727-1735. https://doi.org/10.1039/C7TA09690A
    16. Jian Wang, Lin-Lin Wang, Kirill Kovnir. Phonon glass behavior beyond traditional cage structures: synthesis, crystal and electronic structure, and properties of KMg 4 Sb 3. Journal of Materials Chemistry A 2018, 6 (11) , 4759-4767. https://doi.org/10.1039/C8TA00553B
    17. Jia-Yue Yang, Long Cheng, Ming Hu. Unravelling the progressive role of rattlers in thermoelectric clathrate and strategies for performance improvement: Concurrently enhancing electronic transport and blocking phononic transport. Applied Physics Letters 2017, 111 (24) https://doi.org/10.1063/1.4998646
    18. A.R. Khabibullin, T.D. Huan, G.S. Nolas, L.M. Woods. Cage disorder and gas encapsulation as routes to tailor properties of inorganic clathrates. Acta Materialia 2017, 131 , 475-481. https://doi.org/10.1016/j.actamat.2017.03.059
    19. Shiva Kumar Singh, Yukihiro Isoda, Motoharu Imai. Synthesis and thermoelectric properties of quaternary Si clathrate K 8−δ Ga x Zn y Si 46− x − y . Japanese Journal of Applied Physics 2017, 56 (5S1) , 05DC01. https://doi.org/10.7567/JJAP.56.05DC01
    20. Shiva Kumar Singh, Yukihiro Isoda, Motoharu Imai. Synthesis and thermoelectric properties of the quaternary type-I Si clathrates K 8-δ Ga x Al y Si 46-x-y. Intermetallics 2017, 82 , 93-100. https://doi.org/10.1016/j.intermet.2016.11.006
    21. Robert L. González-Romero, A. Antonelli. Estimating carrier relaxation times in the Ba 8 Ga 16 Ge 30 clathrate in the extrinsic regime. Physical Chemistry Chemical Physics 2017, 19 (4) , 3010-3018. https://doi.org/10.1039/C6CP08026J
    22. Yuping He, A. Alec Talin, Mark D. Allendorf. Thermoelectric Properties of 2D Ni 3 (hitp) 2 and 3D Cu 3 (btc) 2 MOFs: First-Principles Studies. ECS Journal of Solid State Science and Technology 2017, 6 (12) , N236-N242. https://doi.org/10.1149/2.0401712jss
    23. Juli-Anna Dolyniuk, Bryan Owens-Baird, Jian Wang, Julia V. Zaikina, Kirill Kovnir. Clathrate thermoelectrics. Materials Science and Engineering: R: Reports 2016, 108 , 1-46. https://doi.org/10.1016/j.mser.2016.08.001
    24. Amrita Bhattacharya, Saswata Bhattacharya. Unraveling the role of vacancies in the potentially promising thermoelectric clathrates Ba 8 Zn x Ge 46 − x − y □ y . Physical Review B 2016, 94 (9) https://doi.org/10.1103/PhysRevB.94.094305
    25. Susan Kauzlarich, Fan Sui, Christopher Perez. Earth Abundant Element Type I Clathrate Phases. Materials 2016, 9 (9) , 714. https://doi.org/10.3390/ma9090714
    26. Robert L. González-Romero, Caetano R. Miranda, Marcos A. Avila, Alex Antonelli. Hosting of La3+ guest ions in type-I Ge clathrates: A first-principles characterization for thermoelectric applications. Computational Materials Science 2016, 122 , 46-56. https://doi.org/10.1016/j.commatsci.2016.05.013
    27. Ville J. Härkönen, Antti J. Karttunen. Ab initio computational study on the lattice thermal conductivity of Zintl clathrates [ Si 19 P 4 ] Cl 4 and Na 4 [ Al 4 Si 19 ] . Physical Review B 2016, 94 (5) https://doi.org/10.1103/PhysRevB.94.054310
    28. Jiangang He, Maximilian Amsler, Yi Xia, S. Shahab Naghavi, Vinay I. Hegde, Shiqiang Hao, Stefan Goedecker, Vidvuds Ozoliņš, Chris Wolverton. Ultralow Thermal Conductivity in Full Heusler Semiconductors. Physical Review Letters 2016, 117 (4) https://doi.org/10.1103/PhysRevLett.117.046602
    29. Shiva Kumar Singh, Takashi Mochiku, Soshi Ibuka, Yukihiro Isoda, Akinori Hoshikawa, Toru Ishigaki, Motoharu Imai. Synthesis and transport properties of ternary type-I Si clathrate K 8 Al 7 Si 39. Japanese Journal of Applied Physics 2015, 54 (9) , 091801. https://doi.org/10.7567/JJAP.54.091801

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect