ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Quantitative Analysis of the Grain Morphology in Self-Assembled Hexagonal Lattices

View Author Information
Max Planck Institute of Microstructure Physics, Weinberg 2, Halle D-06120, Germany
* Address correspondence to [email protected]
Cite this: ACS Nano 2008, 2, 5, 913–920
Publication Date (Web):May 9, 2008
https://doi.org/10.1021/nn700318v
Copyright © 2008 American Chemical Society

    Article Views

    1094

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We present a methodology for the analysis of the grain morphology of self-ordered hexagonal lattices and for the quantitative comparison of the quality of their grain ordering based on the distances between nearest neighbors and their angular order. Two approaches to grain identification and evaluation are introduced: (i) color coding the relative angular orientation of hexagons containing a central entity and its six nearest neighbors, and (ii) incorporating triangles comprising three nearest neighbors into grains or repelling them from grains based on deviations of the side lengths and the internal angles of the triangles from those of an ideal equilateral triangle. A spreading algorithm with tolerance parameters allows single grains to be identified, which can thus be ranked according to their size. Hence, grain size distributions are accessible. For the practical evaluation of micrographs displaying self-ordered structures, we suggest using the size of the largest identified grain as a quality measure. Quantitative analyses of grain morphologies are key to the systematic and rational optimization of the fabrication of self-assembled materials.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Figure S1, a methodical example of color-coding and flooding the pore image with different Tol_α values; Figure S2, the criterion for a quasi-stable solution of the flooding/spreading algorithm (determination of the critical Tol_d,α); Figures S3−S5, extensive study of the experimental SEM image shown in Figure 5; Figure S6, illustration of the data acquisition as well as the calculation of the interpore distances and angles; Figure S7, graphical definition of the triangles and the quality evaluation of di and αi. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 63 publications.

    1. Mikhail Pashchanka, Sherif Okeil, Jörg J. Schneider. Long-Range Hexagonal Pore Ordering as the Key to Controlling SERS Efficiency in Substrates Based on Porous Alumina. The Journal of Physical Chemistry C 2020, 124 (47) , 25931-25943. https://doi.org/10.1021/acs.jpcc.0c02761
    2. Ekaterina Ponomareva, Kirsten Volk, Paul Mulvaney, Matthias Karg. Surface Lattice Resonances in Self-Assembled Gold Nanoparticle Arrays: Impact of Lattice Period, Structural Disorder, and Refractive Index on Resonance Quality. Langmuir 2020, 36 (45) , 13601-13612. https://doi.org/10.1021/acs.langmuir.0c02430
    3. Ilya V. Roslyakov, Dmitry S. Koshkodaev, Andrei A. Eliseev, Daniel Hermida-Merino, Vladimir K. Ivanov, Andrei V. Petukhov, and Kirill S. Napolskii . Growth of Porous Anodic Alumina on Low-Index Surfaces of Al Single Crystals. The Journal of Physical Chemistry C 2017, 121 (49) , 27511-27520. https://doi.org/10.1021/acs.jpcc.7b09998
    4. Ilya V. Roslyakov, Dmitry S. Koshkodaev, Andrei A. Eliseev, Daniel Hermida-Merino, Andrei V. Petukhov, and Kirill S. Napolskii . Crystallography-Induced Correlations in Pore Ordering of Anodic Alumina Films. The Journal of Physical Chemistry C 2016, 120 (35) , 19698-19704. https://doi.org/10.1021/acs.jpcc.6b05268
    5. I. Mínguez-Bacho, S. Rodríguez-López, A. Climent, D. Fichou, M. Vázquez, and M. Hernández-Vélez . Influence of Sulfur Incorporation into Nanoporous Anodic Alumina on the Volume Expansion and Self-Ordering Degree. The Journal of Physical Chemistry C 2015, 119 (49) , 27392-27400. https://doi.org/10.1021/acs.jpcc.5b06928
    6. Woo Lee and Sang-Joon Park . Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures. Chemical Reviews 2014, 114 (15) , 7487-7556. https://doi.org/10.1021/cr500002z
    7. Mohammadreza Pourfard, Karim Faez, and S. Hadi Tabaian . Autocorrelation-Based Method for Characterization of the Self-Hexagonal Lattice. The Journal of Physical Chemistry C 2013, 117 (33) , 17225-17236. https://doi.org/10.1021/jp401504q
    8. José R. Borba, Carolina Brito, Pedro Migowski, Tiberio B. Vale, Daniel A. Stariolo, Sérgio R. Teixeira, and Adriano F. Feil . Quantitative Characterization of Hexagonal Packings in Nanoporous Alumina Arrays: A Case Study. The Journal of Physical Chemistry C 2013, 117 (1) , 246-251. https://doi.org/10.1021/jp308542d
    9. Kirill S. Napolskii, Ilya V. Roslyakov, Andrey A. Eliseev, Dmytro V. Byelov, Andrei V. Petukhov, Natalia A. Grigoryeva, Wim G. Bouwman, Alexey V. Lukashin, Andrey P. Chumakov, and Sergey V. Grigoriev . The Kinetics and Mechanism of Long-Range Pore Ordering in Anodic Films on Aluminum. The Journal of Physical Chemistry C 2011, 115 (48) , 23726-23731. https://doi.org/10.1021/jp207753v
    10. Adriano F. Feil, Pedro Migowski, Jairton Dupont, Lívio Amaral, and Sérgio R. Teixeira . Nanoporous Aluminum Oxide Thin Films on Si Substrate: Structural Changes as a Function of Interfacial Stress. The Journal of Physical Chemistry C 2011, 115 (15) , 7621-7627. https://doi.org/10.1021/jp200585c
    11. Aaron C. Johnston-Peck, Junwei Wang, and Joseph B. Tracy . Formation and Grain Analysis of Spin-Cast Magnetic Nanoparticle Monolayers. Langmuir 2011, 27 (8) , 5040-5046. https://doi.org/10.1021/la200005q
    12. David R. Walt. Ubiquitous Sensors: When Will They Be Here?. ACS Nano 2009, 3 (10) , 2876-2880. https://doi.org/10.1021/nn901295n
    13. Guoliang Shang, Dongxue Bi, Vladimir Semenovich Gorelik, Guangtao Fei, Lide Zhang. Anodic alumina photonic crystals: Structure engineering, optical properties and prospective applications. Materials Today Communications 2023, 34 , 105052. https://doi.org/10.1016/j.mtcomm.2022.105052
    14. Małgorzata Kwiatkowska, Dariusz Siemiaszko, Małgorzata Norek. Influence of Ethanol on Porous Anodic Alumina Growth in Etidronic Acid Solutions at Various Temperatures. Materials 2022, 15 (23) , 8595. https://doi.org/10.3390/ma15238595
    15. A. P. Leontiev, K. S. Napolskii. Numerical Simulation of Chronoamperograms and Voltammograms for Electrode Modified with Nanoporous Film. Russian Journal of Electrochemistry 2022, 58 (9) , 741-750. https://doi.org/10.1134/S1023193522090105
    16. Anna M. Brudzisz, Damian Giziński, Wojciech J. Stępniowski. Incorporation of Ions into Nanostructured Anodic Oxides—Mechanism and Functionalities. Molecules 2021, 26 (21) , 6378. https://doi.org/10.3390/molecules26216378
    17. M. Ahmadzadeh, M. Almasi Kashi, M. Noormohammadi, A. Ramazani. Self-ordered Porous Anodic Alumina Templates by a Combinatory Anodization Technique in Oxalic and Selenic Acids. Journal of Electronic Materials 2021, 50 (8) , 4787-4796. https://doi.org/10.1007/s11664-021-08973-x
    18. T. V. Mironova, A. V. Kraiskii. Estimation of Ordering of the Transverse Structure of Mesoporous Photonic Crystals. Optics and Spectroscopy 2021, 129 (5) , 525-529. https://doi.org/10.1134/S0030400X21040160
    19. Rajaprakash Ramachandramoorthy, Maxime Mieszala, Cristina V. Manzano, Xavier Maeder, Johann Michler, Laetitia Philippe. Dual-templated electrodeposition and characterization of regular metallic foam based microarchitectures. Applied Materials Today 2020, 20 , 100667. https://doi.org/10.1016/j.apmt.2020.100667
    20. Mehran Yazdizadeh, Arthur Yelon, David Ménard. Characterizing and optimizing the electropolishing and pore arrangement in porous anodic aluminum oxide (AAO). Journal of Porous Materials 2020, 27 (4) , 995-1002. https://doi.org/10.1007/s10934-020-00875-3
    21. Pratyush Mishra, Kurt R. Hebert. Self-organization of anodic aluminum oxide layers by a flow mechanism. Electrochimica Acta 2020, 340 , 135879. https://doi.org/10.1016/j.electacta.2020.135879
    22. Simon Carstens, Ralf Meyer, Dirk Enke. Towards Macroporous α-Al2O3—Routes, Possibilities and Limitations. Materials 2020, 13 (7) , 1787. https://doi.org/10.3390/ma13071787
    23. Andrei P. Chumakov, Kirill S. Napolskii, Andrei V. Petukhov, Anatoly A. Snigirev, Irina I. Snigireva, Ilya V. Roslyakov, Sergey V. Grigoriev. High-resolution SAXS setup with tuneable resolution in direct and reciprocal space: a new tool to study ordered nanostructures. Journal of Applied Crystallography 2019, 52 (5) , 1095-1103. https://doi.org/10.1107/S1600576719011221
    24. Hyun-Gyu Lee, Sang-Chul Lee. Cell Segmentation for Quantitative Analysis of Anodized TiO$_2$ Foil. IEEE Transactions on Industrial Informatics 2019, 15 (5) , 2828-2837. https://doi.org/10.1109/TII.2018.2866804
    25. Wenqiang Huang, Mengshi Yu, Shikai Cao, Lizhen Wu, Xiaoping Shen, Ye Song. Fabrication of highly ordered porous anodic alumina films in 0.75 M oxalic acid solution without using nanoimprinting. Materials Research Bulletin 2019, 111 , 24-33. https://doi.org/10.1016/j.materresbull.2018.11.002
    26. Yang Guo, Li Zhang, Mangui Han, Xin Wang, Jianliang Xie, Longjiang Deng. The effect of ethylene glycol on pore arrangement of anodic aluminium oxide prepared by hard anodization. Royal Society Open Science 2018, 5 (3) , 171412. https://doi.org/10.1098/rsos.171412
    27. Long‐Biao Huang, Wei Xu, Jianhua Hao. Energy Device Applications of Synthesized 1D Polymer Nanomaterials. Small 2017, 13 (43) https://doi.org/10.1002/smll.201701820
    28. FLORIAN THÖLE, LONGJIAN XUE, CLAUDIA HEß, REINALD HILLEBRAND, STANISLAV N. GORB, MARTIN STEINHART. Quantifying the structural integrity of nanorod arrays. Journal of Microscopy 2017, 265 (2) , 222-231. https://doi.org/10.1111/jmi.12491
    29. Ji Xing, Sitong Lu, Chi Zhang, Min Yin, Dongdong Li, Ye Song. Determination of the field strength and realization of the high-field anodization of aluminum. Physical Chemistry Chemical Physics 2017, 19 (32) , 21696-21706. https://doi.org/10.1039/C7CP03321D
    30. Wojciech J. Stępniowski, Zbigniew Bojar. Nanoporous Anodic Aluminum Oxide: Fabrication, Characterization, and Applications. 2016, 593-645. https://doi.org/10.1007/978-3-319-15266-0_19
    31. E. Choudhary, V. Szalai. Two-step cycle for producing multiple anodic aluminum oxide (AAO) films with increasing long-range order. RSC Advances 2016, 6 (72) , 67992-67996. https://doi.org/10.1039/C6RA13830F
    32. Mohammadreza Pourfard, Karim Faez, S. Hadi Tabaian. Unsupervised Gabor Filter-Bank Method for Characterization of the Self-Assembled Hexagonal Lattice. Journal of Nano Research 2015, 31 , 40-61. https://doi.org/10.4028/www.scientific.net/JNanoR.31.40
    33. H.‐G. LEE, M.‐K. CHOI, S.‐C. LEE. Grain‐oriented segmentation of images of porous structures using ray casting and curvature energy minimization. Journal of Microscopy 2015, 257 (2) , 92-103. https://doi.org/10.1111/jmi.12188
    34. Wojciech J. Stępniowski, Zbigniew Bojar. Nanoporous Anodic Aluminum Oxide: Fabrication, Characterization, and Applications. 2015, 1-47. https://doi.org/10.1007/978-3-319-15207-3_19-1
    35. Chuan Cheng. Numerical Simulation Based on the Established Kinetics Model. 2015, 37-60. https://doi.org/10.1007/978-3-662-47268-2_3
    36. Chuan Cheng. Quantitative Evaluation of Self-ordering in Anodic Porous Alumina. 2015, 91-104. https://doi.org/10.1007/978-3-662-47268-2_6
    37. Chuan Cheng. Fast Fabrication of Self-ordered Anodic Porous Alumina on Oriented Aluminum Grains. 2015, 105-126. https://doi.org/10.1007/978-3-662-47268-2_7
    38. Anton Sergeev, Alexander A. Timchenko, Mikhail Kryuchkov, Artem Blagodatski, Gennadiy A. Enin, Vladimir L. Katanaev. Origin of order in bionanostructures. RSC Advances 2015, 5 (78) , 63521-63527. https://doi.org/10.1039/C5RA10103D
    39. Joanna Kapusta-Kołodziej, Leszek Zaraska, Grzegorz Dariusz Sulka. Nanoporous anodic titania observed at the bottom side of the oxide layer. Applied Surface Science 2014, 315 , 268-273. https://doi.org/10.1016/j.apsusc.2014.07.124
    40. Leszek Zaraska, Wojciech J. Stępniowski, Marian Jaskuła, Grzegorz D. Sulka. Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures. Applied Surface Science 2014, 305 , 650-657. https://doi.org/10.1016/j.apsusc.2014.03.154
    41. , , Simon-Frédéric Désage, Gilles Pitard, Hugues Favrelière, Maurice Pillet, Olivier Dellea, Pascal Fugier, Philippe Coronel, Emmanuel Ollier. Macroscopic exploration and visual quality inspection of thin film deposit. 2014, 90502G. https://doi.org/10.1117/12.2046246
    42. Cindy Y. Lau, William B. Russel. Particle ordering in colloidal thin films deposited by flow‐coating. AIChE Journal 2014, 60 (4) , 1287-1302. https://doi.org/10.1002/aic.14413
    43. Leszek Zaraska, Wojciech J. Stępniowski, Grzegorz D. Sulka, Eryk Ciepiela, Marian Jaskuła. Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software. Applied Physics A 2014, 114 (2) , 571-577. https://doi.org/10.1007/s00339-013-7618-2
    44. Leszek Zaraska, Elżbieta Kurowska, Grzegorz D. Sulka, Ilona Senyk, Marian Jaskula. The effect of anode surface area on nanoporous oxide formation during anodizing of low purity aluminum (AA1050 alloy). Journal of Solid State Electrochemistry 2014, 18 (2) , 361-368. https://doi.org/10.1007/s10008-013-2215-z
    45. Olivier Delléa, Olga Shavdina, Pascal Fugier, Philippe Coronel, Emmanuel Ollier, Simon-Frédéric Désage. Control Methods in Microspheres Precision Assembly for Colloidal Lithography. 2014, 107-117. https://doi.org/10.1007/978-3-662-45586-9_14
    46. Hyun-Gyu Lee, Min-Kook Choi, Sang-Chul Lee. Grain-oriented segmentation of scanning electron microscope images. 2013, 4029-4033. https://doi.org/10.1109/ICIP.2013.6738830
    47. Chuan Cheng, Alfonso H W Ngan. Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization. Nanotechnology 2013, 24 (21) , 215602. https://doi.org/10.1088/0957-4484/24/21/215602
    48. Leszek Zaraska, Wojciech J. Stępniowski, Eryk Ciepiela, Grzegorz D. Sulka. The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid. Thin Solid Films 2013, 534 , 155-161. https://doi.org/10.1016/j.tsf.2013.02.056
    49. Mohammadreza Pourfard, Karim Faez. A statistical approach for the characterization of self-assembled hexagonal lattices. Applied Surface Science 2012, 259 , 124-134. https://doi.org/10.1016/j.apsusc.2012.07.004
    50. Eryk Ciepiela, Leszek Zaraska, Grzegorz D. Sulka. GridSpace2 Virtual Laboratory Case Study: Implementation of Algorithms for Quantitative Analysis of Grain Morphology in Self-assembled Hexagonal Lattices According to the Hillebrand Method. 2012, 240-251. https://doi.org/10.1007/978-3-642-28267-6_19
    51. I. Mínguez-Bacho, S. Rodríguez-López, A. Asenjo, M. Vázquez, M. Hernández-Vélez. Self-correlation function for determination of geometrical parameters in Nanoporous Anodic Alumina Films. Applied Physics A 2012, 106 (1) , 105-112. https://doi.org/10.1007/s00339-011-6569-8
    52. Kirill S. Napolskii, Ilya V. Roslyakov, Anna Yu. Romanchuk, Olesya O. Kapitanova, Alexey S. Mankevich, Vasily A. Lebedev, Andrey A. Eliseev. Origin of long-range orientational pore ordering in anodic films on aluminium. Journal of Materials Chemistry 2012, 22 (24) , 11922. https://doi.org/10.1039/c2jm31710a
    53. Nina Winkler, Jörn Leuthold, Yong Lei, Gerhard Wilde. Large-scale highly ordered arrays of freestanding magnetic nanowires. Journal of Materials Chemistry 2012, 22 (32) , 16627. https://doi.org/10.1039/c2jm33224h
    54. Chuan Cheng, K. Y. Ng, A. H. W. Ngan. Quantitative characterization of acid concentration and temperature dependent self-ordering conditions of anodic porous alumina. AIP Advances 2011, 1 (4) https://doi.org/10.1063/1.3655416
    55. Chuan Cheng, A.H.W. Ngan. Modelling and simulation of self-ordering in anodic porous alumina. Electrochimica Acta 2011, 56 (27) , 9998-10008. https://doi.org/10.1016/j.electacta.2011.08.090
    56. Mohammad J. Abdollahifard, Karim Faez, Mohammadreza Pourfard, Mojtaba Abdollahi. A histogram-based segmentation method for characterization of self-assembled hexagonal lattices. Applied Surface Science 2011, 257 (24) , 10443-10450. https://doi.org/10.1016/j.apsusc.2011.06.139
    57. Gesa Beck, Rita Bretzler. Regularity of nanopores in anodic alumina formed on orientated aluminium single-crystals. Materials Chemistry and Physics 2011, 128 (3) , 383-387. https://doi.org/10.1016/j.matchemphys.2011.03.022
    58. Xu Fei Zhu, Ai Jun Han, Ye Song, Peng Liu, Qiu Mei Ye, Jun Jun Hu. Self-Ordering of Cell Arrangement in Porous Anodic Alumina. Advanced Materials Research 2011, 233-235 , 1819-1824. https://doi.org/10.4028/www.scientific.net/AMR.233-235.1819
    59. Ye Song, Qiu Mei Ye, Peng Liu, Jun Jun Hu, Xin Hua Zhu. Petal-Like Morphology on the Surface of Porous Anodic Alumina. Advanced Materials Research 2011, 194-196 , 818-824. https://doi.org/10.4028/www.scientific.net/AMR.194-196.818
    60. Zhi-Peng Tian, Kathy Lu, Bo Chen. Unique nanopore pattern formation by focused ion beam guided anodization. Nanotechnology 2010, 21 (40) , 405301. https://doi.org/10.1088/0957-4484/21/40/405301
    61. Woo Lee. The anodization of aluminum for nanotechnology applications. JOM 2010, 62 (6) , 57-63. https://doi.org/10.1007/s11837-010-0088-5
    62. Xu-Fei Zhu, Ye Song, Lin Liu, Chen-Yu Wang, Jie Zheng, Hong-Bing Jia, Xin-Long Wang. Electronic currents and the formation of nanopores in porous anodic alumina. Nanotechnology 2009, 20 (47) , 475303. https://doi.org/10.1088/0957-4484/20/47/475303
    63. Reinald Hillebrand, Silko Grimm, Reiner Giesa, Hans-Werner Schmidt, Klaus Mathwig, Ulrich Gösele, Martin Steinhart. Characterization of microrod arrays by image analysis. Applied Physics Letters 2009, 94 (16) https://doi.org/10.1063/1.3122141

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect