Article

An Aggregation Advisor for Ligand Discovery

Department of Pharmaceutical Chemistry, University of California, San Francisco, Byers Hall, 1700 4th St, San Francisco, California 94158-2550, United States
J. Med. Chem., 2015, 58 (17), pp 7076–7087
DOI: 10.1021/acs.jmedchem.5b01105
Publication Date (Web): August 21, 2015
Copyright © 2015 American Chemical Society
*E-mail: jji322@gmail.com. Phone: 415 514 4127., *E-mail: bshoichet@gmail.com. Phone: 415 514 4126.

Abstract

Abstract Image

Colloidal aggregation of organic molecules is the dominant mechanism for artifactual inhibition of proteins, and controls against it are widely deployed. Notwithstanding an increasingly detailed understanding of this phenomenon, a method to reliably predict aggregation has remained elusive. Correspondingly, active molecules that act via aggregation continue to be found in early discovery campaigns and remain common in the literature. Over the past decade, over 12 thousand aggregating organic molecules have been identified, potentially enabling a precedent-based approach to match known aggregators with new molecules that may be expected to aggregate and lead to artifacts. We investigate an approach that uses lipophilicity, affinity, and similarity to known aggregators to advise on the likelihood that a candidate compound is an aggregator. In prospective experimental testing, five of seven new molecules with Tanimoto coefficients (Tc’s) between 0.95 and 0.99 to known aggregators aggregated at relevant concentrations. Ten of 19 with Tc’s between 0.94 and 0.90 and three of seven with Tc’s between 0.89 and 0.85 also aggregated. Another three of the predicted compounds aggregated at higher concentrations. This method finds that 61 827 or 5.1% of the ligands acting in the 0.1 to 10 μM range in the medicinal chemistry literature are at least 85% similar to a known aggregator with these physical properties and may aggregate at relevant concentrations. Intriguingly, only 0.73% of all drug-like commercially available compounds resemble the known aggregators, suggesting that colloidal aggregators are enriched in the literature. As a percentage of the literature, aggregator-like compounds have increased 9-fold since 1995, partly reflecting the advent of high-throughput and virtual screens against molecular targets. Emerging from this study is an aggregator advisor database and tool (http://advisor.bkslab.org), free to the community, that may help distinguish between fruitful and artifactual screening hits acting by this mechanism.

  • This user does not have a subscription to this publication. Please contact your librarian to recommend that your institution subscribe to this publication.
To gain access:

Purchase This Content

Choose from the following options:

Metrics

Article Views: 4,004 Times
Received 15 July 2015
Published online 21 August 2015
Published in print 10 September 2015
Learn more about these metrics Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
+
More Article Metrics
Explore by: