ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Fe–Cr–Al Containing Oxide Semiconductors as Potential Solar Water-Splitting Materials

View Author Information
Analytical Chemistry, Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150; D-44780 Bochum, Germany
Chair for MEMS Materials, Institute for Materials, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
§ Department of Chemistry and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
Materials Research Department, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
Cite this: ACS Appl. Mater. Interfaces 2015, 7, 8, 4883–4889
Publication Date (Web):February 4, 2015
https://doi.org/10.1021/am508946e
Copyright © 2015 American Chemical Society

    Article Views

    1036

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A high-throughput thin film materials library for Fe–Cr–Al-O was obtained by reactive magnetron cosputtering and analyzed with automated EDX and XRD to elucidate compositional and structural properties. An automated optical scanning droplet cell was then used to perform photoelectrochemical measurements of 289 compositions on the library, including electrochemical stability, potentiodynamic photocurrents and photocurrent spectroscopy. The photocurrent onset and open circuit potentials of two semiconductor compositions (n-type semiconducting: Fe51Cr47Al2Ox, p-type semiconducting Fe36.5Cr55.5Al8Ox) are favorable for water splitting. Cathodic photocurrents are observed at 1.0 V vs RHE for the p-type material exhibiting an open circuit potential of 0.85 V vs RHE. The n-type material shows an onset of photocurrents at 0.75 V and an open circuit potential of 0.6 V. The p-type material showed a bandgap of 1.55 eV, while the n-type material showed a bandgap of 1.97 eV.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Schematic of the measurement setup, normalized direct Tauc plot for the p-type material; normalized direct Tauc plot for the n-type material; normalized indirect Tauc plot for the p-type material; normalized indirect Tauc plot for the n-type material; XRD patterns of the p- and n-type materials. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 37 publications.

    1. Svenja Speldrich, Laura Gronewold, Michael Wark, Gunther Wittstock. Enhanced Photoactivity by Doping of Cu–W Oxide-Based Photoanodes by Trivalent Al3+, Ga3+, and In3+ Ions─A Combinatorial Study. ACS Applied Engineering Materials 2023, 1 (12) , 3284-3297. https://doi.org/10.1021/acsaenm.3c00582
    2. Lan Zhou, Yu Wang, Kevin Kan, Daphne M. Lucana, Dan Guevarra, Yungchieh Lai, John M. Gregoire. Surveying Metal Antimonate Photoanodes for Solar Fuel Generation. ACS Sustainable Chemistry & Engineering 2022, 10 (48) , 15898-15908. https://doi.org/10.1021/acssuschemeng.2c05239
    3. Svenja Baues, Heinrich Vocke, Lena Harms, Konstantin K. Rücker, Michael Wark, Gunther Wittstock. Combinatorial Screening of Cu–W Oxide-Based Photoanodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2022, 14 (5) , 6590-6603. https://doi.org/10.1021/acsami.1c20837
    4. Swati Kumari, João R. C. Junqueira, Wolfgang Schuhmann, Alfred Ludwig. High-Throughput Exploration of Metal Vanadate Thin-Film Systems (M–V–O, M = Cu, Ag, W, Cr, Co, Fe) for Solar Water Splitting: Composition, Structure, Stability, and Photoelectrochemical Properties. ACS Combinatorial Science 2020, 22 (12) , 844-857. https://doi.org/10.1021/acscombsci.0c00150
    5. Helge S. Stein, Sönke Müller, Klaus Schwarzburg, Dennis Friedrich, Alfred Ludwig, Rainer Eichberger. Charge Carrier Lifetimes in Cr–Fe–Al–O Thin Films. ACS Applied Materials & Interfaces 2018, 10 (42) , 35869-35875. https://doi.org/10.1021/acsami.8b04900
    6. Xi Cao, Yu Hong, Ning Zhang, Qingzhi Chen, Jahangir Masud, Mohsen Asle Zaeem, Manashi Nath. Phase Exploration and Identification of Multinary Transition-Metal Selenides as High-Efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition. ACS Catalysis 2018, 8 (9) , 8273-8289. https://doi.org/10.1021/acscatal.8b01977
    7. Helge Sören Stein, Sally Jiao, and Alfred Ludwig . Expediting Combinatorial Data Set Analysis by Combining Human and Algorithmic Analysis. ACS Combinatorial Science 2017, 19 (1) , 1-8. https://doi.org/10.1021/acscombsci.6b00151
    8. Sarah E. Shaner, Paul D. Hooker, Anne-Marie Nickel, Amanda R. Leichtfuss, Carissa S. Adams, Dionisia de la Cerda, Yuqi She, James B. Gerken, Ravi Pokhrel, Nicholas J. Ambrose, David Khaliqi, Shannon S. Stahl, and Jennifer D. Schuttlefield Christus . Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience. Journal of Chemical Education 2016, 93 (4) , 650-657. https://doi.org/10.1021/acs.jchemed.5b00591
    9. Ilina Kondofersky, Alexander Müller, Halina K. Dunn, Alesja Ivanova, Goran Štefanić, Martin Ehrensperger, Christina Scheu, Bruce A. Parkinson, Dina Fattakhova-Rohlfing, and Thomas Bein . Nanostructured Ternary FeCrAl Oxide Photocathodes for Water Photoelectrolysis. Journal of the American Chemical Society 2016, 138 (6) , 1860-1867. https://doi.org/10.1021/jacs.5b08040
    10. Kai-Chi Chuang, Yu-Yen Chang, Ching-Yu Chiang, Yun-Chung Liu, Hao-Hsuan Hung, Ko-Kai Tseng, Jien-Wei Yeh, Hsiu-Wei Cheng. Corrosion of plasma sputtering medium entropy alloy thin film: A multidisciplinary perspective. Corrosion Science 2023, 216 , 111020. https://doi.org/10.1016/j.corsci.2023.111020
    11. Zhiqiao Li, Xiang Zhang, Guojun Ma, Dingli Zheng, Jie Xu, Ju Xu. Effect of the Fe/Cr molar ratio and calcination temperature on the preparation of black ceramic pigment with stainless steel dust assisted by microwave processing. Journal of Cleaner Production 2022, 372 , 133751. https://doi.org/10.1016/j.jclepro.2022.133751
    12. Lan Zhou, Dan Guevarra, John M Gregoire. High throughput discovery of enhanced visible photoactivity in Fe–Cr vanadate solar fuels photoanodes. Journal of Physics: Energy 2022, 4 (4) , 044001. https://doi.org/10.1088/2515-7655/ac817e
    13. Lan Zhou, Elizabeth A. Peterson, Karun K. Rao, Yubing Lu, Xiang Li, Yungchieh Lai, Sage R. Bauers, Matthias H. Richter, Kevin Kan, Yu Wang, Paul F. Newhouse, Junko Yano, Jeffrey B. Neaton, Michal Bajdich, John M. Gregoire. Addressing solar photochemistry durability with an amorphous nickel antimonate photoanode. Cell Reports Physical Science 2022, 3 (7) , 100959. https://doi.org/10.1016/j.xcrp.2022.100959
    14. María Isabel Díez‐García, Roberto Gómez. Progress in Ternary Metal Oxides as Photocathodes for Water Splitting Cells: Optimization Strategies. Solar RRL 2022, 6 (4) https://doi.org/10.1002/solr.202100871
    15. Katarzyna P. Sokol, Virgil Andrei. Automated synthesis and characterization techniques for solar fuel production. Nature Reviews Materials 2022, 7 (4) , 251-253. https://doi.org/10.1038/s41578-022-00432-1
    16. Tingting Zhang, Changhai Liu, Shishi Zhu, Chao Zhang, Xiaohui Chen, Zhidong Chen. Rational modulation for electron migration in CdS/Au/TiO2 photoanode for efficient photoelectrochemical water oxidation. Inorganic Chemistry Communications 2021, 129 , 108625. https://doi.org/10.1016/j.inoche.2021.108625
    17. Swati Kumari, Chinmay Khare, Fanxing Xi, Mona Nowak, Kirill Sliozberg, Ramona Gutkowski, Prince Saurabh Bassi, Sebastian Fiechter, Wolfgang Schuhmann, Alfred Ludwig. Combinatorial Search for New Solar Water Splitting Photoanode Materials in the Thin-Film System Fe–Ti–W–O. Zeitschrift für Physikalische Chemie 2020, 234 (5) , 867-885. https://doi.org/10.1515/zpch-2019-1462
    18. Jeong Hun Kim, Hyo Eun Kim, Jin Hyun Kim, Jae Sung Lee. Ferrites: emerging light absorbers for solar water splitting. Journal of Materials Chemistry A 2020, 8 (19) , 9447-9482. https://doi.org/10.1039/D0TA01554G
    19. Helge S. Stein, Siyuan Zhang, Yujiao Li, Christina Scheu, Alfred Ludwig. Photocurrent Recombination Through Surface Segregation in Al–Cr–Fe–O Photocathodes. Zeitschrift für Physikalische Chemie 2020, 234 (4) , 605-614. https://doi.org/10.1515/zpch-2019-1459
    20. Jonathan Kampmann, Sophia Betzler, Hamidreza Hajiyani, Sebastian Häringer, Michael Beetz, Tristan Harzer, Jürgen Kraus, Bettina V. Lotsch, Christina Scheu, Rossitza Pentcheva, Dina Fattakhova-Rohlfing, Thomas Bein. How photocorrosion can trick you: a detailed study on low-bandgap Li doped CuO photocathodes for solar hydrogen production. Nanoscale 2020, 12 (14) , 7766-7775. https://doi.org/10.1039/C9NR10250G
    21. Mark T. Spitler, Miguel A. Modestino, Todd G. Deutsch, Chengxiang X. Xiang, James R. Durrant, Daniel V. Esposito, Sophia Haussener, Stephen Maldonado, Ian D. Sharp, Bruce A. Parkinson, David S. Ginley, Frances A. Houle, Thomas Hannappel, Nathan R. Neale, Daniel G. Nocera, Paul C. McIntyre. Practical challenges in the development of photoelectrochemical solar fuels production. Sustainable Energy & Fuels 2020, 4 (3) , 985-995. https://doi.org/10.1039/C9SE00869A
    22. Florian Gelb, Yu-Chien Chueh, Neso Sojic, Valérie Keller, Dodzi Zigah, Thomas Cottineau. Electrosynthesis of gradient TiO 2 nanotubes and rapid screening using scanning photoelectrochemical microscopy. Sustainable Energy & Fuels 2020, 4 (3) , 1099-1104. https://doi.org/10.1039/C9SE00895K
    23. Gunther Wittstock, Shokoufeh Rastgar, Sabina Scarabino. Local studies of photoelectrochemical reactions at nanostructured oxides. Current Opinion in Electrochemistry 2019, 13 , 25-32. https://doi.org/10.1016/j.coelec.2018.10.007
    24. Daniel Kimmich, Dereje H. Taffa, Carsten Dosche, Michael Wark, Gunther Wittstock. Combinatorial screening of photoanode materials - Uniform platform for compositional arrays and macroscopic electrodes. Electrochimica Acta 2018, 259 , 204-212. https://doi.org/10.1016/j.electacta.2017.10.147
    25. Santosh K. Suram, Lan Zhou, Aniketa Shinde, Qimin Yan, Jie Yu, Mitsutaro Umehara, Helge S. Stein, Jeffrey B. Neaton, John M. Gregoire. Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes. Chemical Communications 2018, 54 (36) , 4625-4628. https://doi.org/10.1039/C7CC08002F
    26. Fatwa F Abdi, Sean P Berglund. Recent developments in complex metal oxide photoelectrodes. Journal of Physics D: Applied Physics 2017, 50 (19) , 193002. https://doi.org/10.1088/1361-6463/aa6738
    27. Chinmay Khare, Kirill Sliozberg, Aliaksandr Stepanovich, Wolfgang Schuhmann, Alfred Ludwig. Combinatorial synthesis and high-throughput characterization of structural and photoelectrochemical properties of Fe:WO 3 nanostructured libraries. Nanotechnology 2017, 28 (18) , 185604. https://doi.org/10.1088/1361-6528/aa6964
    28. Christoph Schwanke, Helge Sören Stein, Lifei Xi, Kirill Sliozberg, Wolfgang Schuhmann, Alfred Ludwig, Kathrin M. Lange. Correlating Oxygen Evolution Catalysts Activity and Electronic Structure by a High-Throughput Investigation of Ni1-y-zFeyCrzOx. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep44192
    29. Matthew T. Mayer. Photovoltage at semiconductor–electrolyte junctions. Current Opinion in Electrochemistry 2017, 2 (1) , 104-110. https://doi.org/10.1016/j.coelec.2017.03.006
    30. Katharine Moore Tibbetts, Xiao-Jiang Feng, Herschel Rabitz. Exploring experimental fitness landscapes for chemical synthesis and property optimization. Physical Chemistry Chemical Physics 2017, 19 (6) , 4266-4287. https://doi.org/10.1039/C6CP06187G
    31. Jinyang Li, Helge S. Stein, Kirill Sliozberg, Jingbei Liu, Yanhui Liu, Genevieve Sertic, Ellen Scanley, Alfred Ludwig, Jan Schroers, Wolfgang Schuhmann, André D. Taylor. Combinatorial screening of Pd-based quaternary electrocatalysts for oxygen reduction reaction in alkaline media. Journal of Materials Chemistry A 2017, 5 (1) , 67-72. https://doi.org/10.1039/C6TA08088J
    32. R. Gutkowski, C. Khare, F. Conzuelo, Y. U. Kayran, A. Ludwig, W. Schuhmann. Unraveling compositional effects on the light-induced oxygen evolution in Bi(V–Mo–X)O 4 material libraries. Energy & Environmental Science 2017, 10 (5) , 1213-1221. https://doi.org/10.1039/C7EE00287D
    33. P. Decker, H.S. Stein, S. Salomon, F. Brüssing, A. Savan, S. Hamann, A. Ludwig. Structural and multifunctional properties of magnetron-sputtered Fe–P(–Mn) thin films. Thin Solid Films 2016, 603 , 262-267. https://doi.org/10.1016/j.tsf.2016.02.023
    34. Katarzyna Skorupska, Bruce A. Parkinson. Combinatorial Synthesis and Screening of Oxide Materials for Photoelectrochemical Energy Conversion. 2016, 427-462. https://doi.org/10.1007/978-3-319-29641-8_10
    35. Helge S. Stein, Ramona Gutkowski, Alexander Siegel, Wolfgang Schuhmann, Alfred Ludwig. New materials for the light-induced hydrogen evolution reaction from the Cu–Si–Ti–O system. Journal of Materials Chemistry A 2016, 4 (8) , 3148-3152. https://doi.org/10.1039/C5TA10186G
    36. Yuting Liu, Zhen Xu, Min Yin, Haowen Fan, Weijie Cheng, Linfeng Lu, Ye Song, Jing Ma, Xufei Zhu. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3. Nanoscale Research Letters 2015, 10 (1) https://doi.org/10.1186/s11671-015-1077-y
    37. Candace K. Chan, Harun Tüysüz, Artur Braun, Chinmoy Ranjan, Fabio La Mantia, Benjamin K. Miller, Liuxian Zhang, Peter A. Crozier, Joel A. Haber, John M. Gregoire, Hyun S. Park, Adam S. Batchellor, Lena Trotochaud, Shannon W. Boettcher. Advanced and In Situ Analytical Methods for Solar Fuel Materials. 2015, 253-324. https://doi.org/10.1007/128_2015_650

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect