ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

A Rapid Pathway Toward a Superb Gene Delivery System: Programming Structural and Functional Diversity into a Supramolecular Nanoparticle Library

View Author Information
College of Electronics and Information Engineering, Wuhan Textile University, Wuhan, 430073, China
Crump Institute for Molecular Imaging
§ California NanoSystems Institute
Department of Molecular and Medical Pharmacology
Institute for Molecular Medicine
University of California, Los Angeles, California 90095, United States
# Center for Molecular Imaging, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street SRB 330A, Houston, Texas 77030, United States
Department of Physics, School of Physics, Center of Nanoscience and Nanotechnology, Wuhan University, Wuhan, 430072, China
* Address correspondence to [email protected], [email protected]
○These authors contributed equally to the work
Cite this: ACS Nano 2010, 4, 10, 6235–6243
Publication Date (Web):October 6, 2010
https://doi.org/10.1021/nn101908e
Copyright © 2010 American Chemical Society

    Article Views

    3596

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Nanoparticles are regarded as promising transfection reagents for effective and safe delivery of nucleic acids into a specific type of cells or tissues providing an alternative manipulation/therapy strategy to viral gene delivery. However, the current process of searching novel delivery materials is limited due to conventional low-throughput and time-consuming multistep synthetic approaches. Additionally, conventional approaches are frequently accompanied with unpredictability and continual optimization refinements, impeding flexible generation of material diversity creating a major obstacle to achieving high transfection performance. Here we have demonstrated a rapid developmental pathway toward highly efficient gene delivery systems by leveraging the powers of a supramolecular synthetic approach and a custom-designed digital microreactor. Using the digital microreactor, broad structural/functional diversity can be programmed into a library of DNA-encapsulated supramolecular nanoparticles (DNA⊂SNPs) by systematically altering the mixing ratios of molecular building blocks and a DNA plasmid. In vitro transfection studies with DNA⊂SNPs library identified the DNA⊂SNPs with the highest gene transfection efficiency, which can be attributed to cooperative effects of structures and surface chemistry of DNA⊂SNPs. We envision such a rapid developmental pathway can be adopted for generating nanoparticle-based vectors for delivery of a variety of loads.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthesis of TAT-PEG-Ad, DCM setup, and operation, microscope settings, imaging processing, and data analysis and cell viability assay. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 119 publications.

    1. Arian Jaberi, Amir Monemian Esfahani, Fariba Aghabaglou, Jae Sung Park, Sidy Ndao, Ali Tamayol, Ruiguo Yang. Microfluidic Systems with Embedded Cell Culture Chambers for High-Throughput Biological Assays. ACS Applied Bio Materials 2020, 3 (10) , 6661-6671. https://doi.org/10.1021/acsabm.0c00439
    2. Xu-Man Chen, Yong Chen, Xiao-Fang Hou, Xuan Wu, Bo-Han Gu, Yu Liu. Sulfonato-β-Cyclodextrin Mediated Supramolecular Nanoparticle for Controlled Release of Berberine. ACS Applied Materials & Interfaces 2018, 10 (30) , 24987-24992. https://doi.org/10.1021/acsami.8b08651
    3. Fang Wang, Peng Yang, Jin-sil Choi, Petar Antovski, Yazhen Zhu, Xiaobin Xu, Ting-Hao Kuo, Li-En Lin, Diane N. H. Kim, Pin-Cheng Huang, Haoxiang Xu, Chin-Fa Lee, Changchun Wang, Cheng-Chih Hsu, Kai Chen, Paul S. Weiss, Hsian-Rong Tseng. Cross-Linked Fluorescent Supramolecular Nanoparticles for Intradermal Controlled Release of Antifungal Drug—A Therapeutic Approach for Onychomycosis. ACS Nano 2018, 12 (7) , 6851-6859. https://doi.org/10.1021/acsnano.8b02099
    4. Juan M. Priegue, Irene Lostalé-Seijo, Daniel Crisan, Juan R. Granja, Francisco Fernández-Trillo, Javier Montenegro. Different-Length Hydrazone Activated Polymers for Plasmid DNA Condensation and Cellular Transfection. Biomacromolecules 2018, 19 (7) , 2638-2649. https://doi.org/10.1021/acs.biomac.8b00252
    5. Pingqiang Cai, Xiaoqian Zhang, Ming Wang, Yun-Long Wu, Xiaodong Chen. Combinatorial Nano–Bio Interfaces. ACS Nano 2018, 12 (6) , 5078-5084. https://doi.org/10.1021/acsnano.8b03285
    6. Li-Yen Wong, Bingzhao Xia, Ernst Wolvetang, and Justin Cooper-White . Targeted, Stimuli-Responsive Delivery of Plasmid DNA and miRNAs Using a Facile Self-Assembled Supramolecular Nanoparticle System. Biomacromolecules 2018, 19 (2) , 353-363. https://doi.org/10.1021/acs.biomac.7b01462
    7. Jin-sil Choi, Yazhen Zhu, Hongsheng Li, Parham Peyda, Thuy Tien Nguyen, Mo Yuan Shen, Yang Michael Yang, Jingyi Zhu, Mei Liu, Mandy M. Lee, Shih-Sheng Sun, Yang Yang, Hsiao-hua Yu, Kai Chen, Gary S. Chuang, and Hsian-Rong Tseng . Cross-Linked Fluorescent Supramolecular Nanoparticles as Finite Tattoo Pigments with Controllable Intradermal Retention Times. ACS Nano 2017, 11 (1) , 153-162. https://doi.org/10.1021/acsnano.6b06200
    8. Isabel Ortiz de Solorzano, Martín Prieto, Gracia Mendoza, Teresa Alejo, Silvia Irusta, Victor Sebastian, and Manuel Arruebo . Microfluidic Synthesis and Biological Evaluation of Photothermal Biodegradable Copper Sulfide Nanoparticles. ACS Applied Materials & Interfaces 2016, 8 (33) , 21545-21554. https://doi.org/10.1021/acsami.6b05727
    9. Nazila Kamaly, Basit Yameen, Jun Wu, and Omid C. Farokhzad . Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews 2016, 116 (4) , 2602-2663. https://doi.org/10.1021/acs.chemrev.5b00346
    10. Shuang Hou, Jin-sil Choi, Mitch Andre Garcia, Yan Xing, Kuan-Ju Chen, Yi-Ming Chen, Ziyue K. Jiang, Tracy Ro, Lily Wu, David B. Stout, James S. Tomlinson, Hao Wang, Kai Chen, Hsian-Rong Tseng, and Wei-Yu Lin . Pretargeted Positron Emission Tomography Imaging That Employs Supramolecular Nanoparticles with in Vivo Bioorthogonal Chemistry. ACS Nano 2016, 10 (1) , 1417-1424. https://doi.org/10.1021/acsnano.5b06860
    11. Ulrich Lächelt and Ernst Wagner . Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chemical Reviews 2015, 115 (19) , 11043-11078. https://doi.org/10.1021/cr5006793
    12. Xing Ma and Yanli Zhao . Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chemical Reviews 2015, 115 (15) , 7794-7839. https://doi.org/10.1021/cr500392w
    13. Qi-Da Hu, Gu-Ping Tang, and Paul K. Chu . Cyclodextrin-Based Host–Guest Supramolecular Nanoparticles for Delivery: From Design to Applications. Accounts of Chemical Research 2014, 47 (7) , 2017-2025. https://doi.org/10.1021/ar500055s
    14. Jinliang Peng, Mitch André Garcia, Jin-sil Choi, Libo Zhao, Kuan-Ju Chen, James R. Bernstein, Parham Peyda, Yu-Sheng Hsiao, Katherine W. Liu, Wei-Yu Lin, April D. Pyle, Hao Wang, Shuang Hou, and Hsian-Rong Tseng . Molecular Recognition Enables Nanosubstrate-Mediated Delivery of Gene-Encapsulated Nanoparticles with High Efficiency. ACS Nano 2014, 8 (5) , 4621-4629. https://doi.org/10.1021/nn5003024
    15. Zhenkun Zhang, Rujiang Ma, and Linqi Shi . Cooperative Macromolecular Self-Assembly toward Polymeric Assemblies with Multiple and Bioactive Functions. Accounts of Chemical Research 2014, 47 (4) , 1426-1437. https://doi.org/10.1021/ar5000264
    16. Mengqian Lu, Yi-Ping Ho, Christopher L. Grigsby, Ahmad Ahsan Nawaz, Kam W. Leong, and Tony Jun Huang . Three-Dimensional Hydrodynamic Focusing Method for Polyplex Synthesis. ACS Nano 2014, 8 (1) , 332-339. https://doi.org/10.1021/nn404193e
    17. Pedro M. Valencia, Eric M. Pridgen, Minsoung Rhee, Robert Langer, Omid C. Farokhzad, and Rohit Karnik . Microfluidic Platform for Combinatorial Synthesis and Optimization of Targeted Nanoparticles for Cancer Therapy. ACS Nano 2013, 7 (12) , 10671-10680. https://doi.org/10.1021/nn403370e
    18. Zhi-Qiang Li, Ying-Ming Zhang, Hong-Zhong Chen, Jin Zhao, and Yu Liu . Hierarchical Organization of Spherical Assembly with Reversibly Photocontrollable Cross-Links. The Journal of Organic Chemistry 2013, 78 (10) , 5110-5114. https://doi.org/10.1021/jo400772j
    19. Kim E. Sapsford, W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill, Brendan J. Casey, Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz . Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews 2013, 113 (3) , 1904-2074. https://doi.org/10.1021/cr300143v
    20. Riki Toita, Jeong-Hun Kang, Tetsuro Tomiyama, Chan Woo Kim, Shujiro Shiosaki, Takuro Niidome, Takeshi Mori, and Yoshiki Katayama . Gene Carrier Showing All-or-None Response to Cancer Cell Signaling. Journal of the American Chemical Society 2012, 134 (37) , 15410-15417. https://doi.org/10.1021/ja305437n
    21. Ernst Wagner . Polymers for siRNA Delivery: Inspired by Viruses to be Targeted, Dynamic, and Precise. Accounts of Chemical Research 2012, 45 (7) , 1005-1013. https://doi.org/10.1021/ar2002232
    22. Ying Zhou, Yuhong Pang, and Yanyi Huang . Openly Accessible Microfluidic Liquid Handlers for Automated High-Throughput Nanoliter Cell Culture. Analytical Chemistry 2012, 84 (5) , 2576-2584. https://doi.org/10.1021/ac203469v
    23. Alejandro Méndez-Ardoy, Nicolas Guilloteau, Christophe Di Giorgio, Pierre Vierling, Francisco Santoyo-González, Carmen Ortiz Mellet, and José M. García Fernández . β-Cyclodextrin-Based Polycationic Amphiphilic “Click” Clusters: Effect of Structural Modifications in Their DNA Complexing and Delivery Properties. The Journal of Organic Chemistry 2011, 76 (15) , 5882-5894. https://doi.org/10.1021/jo2007785
    24. Zhuhao Wu, Hongwei Cai, Chunhui Tian, Zheng Ao, Lei Jiang, Feng Guo. Exploiting sound for emerging applications of extracellular vesicles. Nano Research 2024, 17 (2) , 462-475. https://doi.org/10.1007/s12274-023-5840-6
    25. Jana Ghitman, Stefan Ioan Voicu. Controlled drug delivery mediated by cyclodextrin-based supramolecular self-assembled carriers: From design to clinical performances. Carbohydrate Polymer Technologies and Applications 2023, 5 , 100266. https://doi.org/10.1016/j.carpta.2022.100266
    26. Nazia Tarannum, Deepak Kumar. Synthesis and characterization of copolymers of β-cyclodextrin derivatives. Journal of the Indian Chemical Society 2023, 100 (5) , 100976. https://doi.org/10.1016/j.jics.2023.100976
    27. Xingya Jiang, Kimia Abedi, Jinjun Shi. Polymeric nanoparticles for RNA delivery. 2023, 555-573. https://doi.org/10.1016/B978-0-12-822425-0.00017-8
    28. Friederike Adams, Christoph M. Zimmermann, Paola Luciani, Olivia M. Merkel. Microfluidics for nanopharmaceutical and medical applications. 2023, 343-408. https://doi.org/10.1016/B978-0-12-822482-3.00010-5
    29. Sundara Ganeasan M, Amulya Vijay, M. Kaviya, Anandan Balakrishnan, T.M. Sridhar. Polymers and nanomaterials as gene delivery systems. 2023, 513-539. https://doi.org/10.1016/B978-0-323-88524-9.00025-5
    30. Yanyu Chen, Zhuhao Wu, Joseph Sutlive, Ke Wu, Lu Mao, Jiabao Nie, Xing-Zhong Zhao, Feng Guo, Zi Chen, Qinqin Huang. Noninvasive prenatal diagnosis targeting fetal nucleated red blood cells. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01749-3
    31. Abdul Rahim Ferhan, Soohyun Park, Hyeonjin Park, Hyunhyuk Tae, Joshua A. Jackman, Nam‐Joon Cho. Lipid Nanoparticle Technologies for Nucleic Acid Delivery: A Nanoarchitectonics Perspective. Advanced Functional Materials 2022, 32 (37) https://doi.org/10.1002/adfm.202203669
    32. Nazia Tarannum, Deepak Kumar, Nitin Kumar. β‐Cyclodextrin‐Based Nanocomposite Derivatives: State of the Art in Synthesis, Characterization and Application in Molecular Recognition. ChemistrySelect 2022, 7 (22) https://doi.org/10.1002/slct.202200140
    33. Man-Di Wang, Da-Yong Hou, Gan-Tian Lv, Ru-Xiang Li, Xing-Jie Hu, Zhi-Jia Wang, Ni-Yuan Zhang, Li Yi, Wan-Hai Xu, Hao Wang. Targeted in situ self-assembly augments peptide drug conjugate cell-entry efficiency. Biomaterials 2021, 278 , 121139. https://doi.org/10.1016/j.biomaterials.2021.121139
    34. Sharafudheen Pottanam Chali, Sabine Hüwel, Andrea Rentmeister, Bart Jan Ravoo. Self‐Assembled Cationic Polypeptide Supramolecular Nanogels for Intracellular DNA Delivery. Chemistry – A European Journal 2021, 27 (47) , 12198-12206. https://doi.org/10.1002/chem.202101924
    35. Qian Ban, Peng Yang, Shih‐Jie Chou, Li Qiao, Haidong Xia, Jingjing Xue, Fang Wang, Xiaobin Xu, Na Sun, Ryan Y. Zhang, Ceng Zhang, Athena Lee, Wenfei Liu, Ting‐Yi Lin, Yu‐Ling Ko, Petar Antovski, Xinyue Zhang, Shih‐Hwa Chiou, Chin‐Fa Lee, Wenqiao Hui, Dahai Liu, Steven J. Jonas, Paul S. Weiss, Hsian‐Rong Tseng. Supramolecular Nanosubstrate‐Mediated Delivery for CRISPR/Cas9 Gene Disruption and Deletion. Small 2021, 17 (28) https://doi.org/10.1002/smll.202100546
    36. Paria Coliaie, Manish S. Kelkar, Marianne Langston, Chengxiang Liu, Neda Nazemifard, Daniel Patience, Dimitri Skliar, Nandkishor K. Nere, Meenesh R. Singh. Advanced continuous-flow microfluidic device for parallel screening of crystal polymorphs, morphology, and kinetics at controlled supersaturation. Lab on a Chip 2021, 21 (12) , 2333-2342. https://doi.org/10.1039/D1LC00218J
    37. Bernabé Ortega-Tenezaca, Humberto González-Díaz. IFPTML mapping of nanoparticle antibacterial activity vs. pathogen metabolic networks. Nanoscale 2021, 13 (2) , 1318-1330. https://doi.org/10.1039/D0NR07588D
    38. Hau Van Nguyen, Ki Yoon Kim, Hyobin Nam, Seung Yong Lee, Taekyung Yu, Tae Seok Seo. Centrifugal microfluidic device for the high-throughput synthesis of Pd@AuPt core–shell nanoparticles to evaluate the performance of hydrogen peroxide generation. Lab on a Chip 2020, 20 (18) , 3293-3301. https://doi.org/10.1039/D0LC00461H
    39. Rebecca M. Haley, Riccardo Gottardi, Robert Langer, Michael J. Mitchell. Cyclodextrins in drug delivery: applications in gene and combination therapy. Drug Delivery and Translational Research 2020, 10 (3) , 661-677. https://doi.org/10.1007/s13346-020-00724-5
    40. Shih‐Jie Chou, Peng Yang, Qian Ban, Yi‐Ping Yang, Mong‐Lien Wang, Chian‐Shiu Chien, Shih‐Jen Chen, Na Sun, Yazhen Zhu, Hongtao Liu, Wenqiao Hui, Tai‐Chi Lin, Fang Wang, Ryan Yue Zhang, Viet Q. Nguyen, Wenfei Liu, Mengxiang Chen, Steve J. Jonas, Paul S. Weiss, Hsian‐Rong Tseng, Shih‐Hwa Chiou. Dual Supramolecular Nanoparticle Vectors Enable CRISPR/Cas9‐Mediated Knockin of Retinoschisin 1 Gene—A Potential Nonviral Therapeutic Solution for X‐Linked Juvenile Retinoschisis. Advanced Science 2020, 7 (10) https://doi.org/10.1002/advs.201903432
    41. Nazia Tarannum, Suhani, Deepak Kumar. Synthesis, characterization and applications of copolymer of β – cyclodextrin: a review. Journal of Polymer Research 2020, 27 (4) https://doi.org/10.1007/s10965-020-02058-9
    42. Kena Song, Guoqiang Li, Xiangyang Zu, Zhe Du, Liyu Liu, Zhigang Hu. The Fabrication and Application Mechanism of Microfluidic Systems for High Throughput Biomedical Screening: A Review. Micromachines 2020, 11 (3) , 297. https://doi.org/10.3390/mi11030297
    43. Sai Lu, Xiao Bao, Wangxi Hai, Sanyuan Shi, Yuetan Chen, Qianru Yu, Maxin Zhang, Yuhong Xu, Jinliang Peng. Multi-functional self-assembled nanoparticles for pVEGF-shRNA loading and anti-tumor targeted therapy. International Journal of Pharmaceutics 2020, 575 , 118898. https://doi.org/10.1016/j.ijpharm.2019.118898
    44. Parbeen Singh, Xiaohong Ren, Yaping He, Li Wu, Caifen Wang, Haiyan Li, Vikramjeet Singh, Jiwen Zhang. Fabrication of β-cyclodextrin and sialic acid copolymer by single pot reaction to site specific drug delivery. Arabian Journal of Chemistry 2020, 13 (1) , 1397-1405. https://doi.org/10.1016/j.arabjc.2017.11.011
    45. Cristian Peptu, Andra Cristina Humelnicu, Razvan Rotaru, Maria Emiliana Fortuna, Xenia Patras, Mirela Teodorescu, Bogdan Ionel Tamba, Valeria Harabagiu. Chitosan‐Based Drug Delivery Systems. 2019, 259-289. https://doi.org/10.1002/9781119450467.ch11
    46. Xikuang Yao, Jing Mu, Leli Zeng, Jing Lin, Zhihong Nie, Xiqun Jiang, Peng Huang. Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Materials Horizons 2019, 6 (5) , 846-870. https://doi.org/10.1039/C9MH00166B
    47. Flavia Fontana, João P. Martins, Giulia Torrieri, Hélder A. Santos. Nuts and Bolts: Microfluidics for the Production of Biomaterials. Advanced Materials Technologies 2019, 4 (6) https://doi.org/10.1002/admt.201800611
    48. Xikuang Yao, Peng Huang, Zhihong Nie. Cyclodextrin-based polymer materials: From controlled synthesis to applications. Progress in Polymer Science 2019, 93 , 1-35. https://doi.org/10.1016/j.progpolymsci.2019.03.004
    49. Yuezhou Zhang, Dongfei Liu, Hongbo Zhang, Hélder A. Santos. Microfluidic mixing and devices for preparing nanoparticulate drug delivery systems. 2019, 155-177. https://doi.org/10.1016/B978-0-12-812659-2.00007-7
    50. Dominik M. Loy, Philipp M. Klein, Rafał Krzysztoń, Ulrich Lächelt, Joachim O. Rädler, Ernst Wagner. A microfluidic approach for sequential assembly of siRNA polyplexes with a defined structure-activity relationship. PeerJ Materials Science 2019, 1 , e1. https://doi.org/10.7717/peerj-matsci.1
    51. Yan Wu, Guanzhe Xu, Xin Jin, Xinyuan Zhu. Supramolecular dendritic polymers for diagnostic and theranostic applications. Science China Materials 2018, 61 (11) , 1444-1453. https://doi.org/10.1007/s40843-018-9252-y
    52. Jian-Guang Cheng, Hua-Jiang Yu, Yong Chen, Yu Liu. Selective binding and controlled release of anticancer drugs by polyanionic cyclodextrins. Bioorganic & Medicinal Chemistry 2018, 26 (9) , 2287-2290. https://doi.org/10.1016/j.bmc.2018.03.013
    53. Dongfei Liu, Hongbo Zhang, Flavia Fontana, Jouni T. Hirvonen, Hélder A. Santos. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Advanced Drug Delivery Reviews 2018, 128 , 54-83. https://doi.org/10.1016/j.addr.2017.08.003
    54. Stefano Colombo, Moritz Beck-Broichsitter, Johan Peter Bøtker, Martin Malmsten, Jukka Rantanen, Adam Bohr. Transforming nanomedicine manufacturing toward Quality by Design and microfluidics. Advanced Drug Delivery Reviews 2018, 128 , 115-131. https://doi.org/10.1016/j.addr.2018.04.004
    55. Xuanyu Li, Xingyu Jiang. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Advanced Drug Delivery Reviews 2018, 128 , 101-114. https://doi.org/10.1016/j.addr.2017.12.015
    56. Amit Singh, Mansoor M. Amiji. Combinatorial Approach in Rationale Design of Polymeric Nanomedicines for Cancer. 2018, 371-398. https://doi.org/10.1016/B978-0-323-50878-0.00013-6
    57. Li-Li Li, Xiaodong Li, Hao Wang. Microfluidic Synthesis of Nanomaterials for Biomedical Applications. Small Methods 2017, 1 (8) , 1700140. https://doi.org/10.1002/smtd.201700140
    58. Gaurav Kaushik, Jeroen Leijten, Ali Khademhosseini. Concise Review: Organ Engineering: Design, Technology, and Integration. Stem Cells 2017, 35 (1) , 51-60. https://doi.org/10.1002/stem.2502
    59. Raquel Mejia-Ariza, Laura Graña-Suárez, Willem Verboom, Jurriaan Huskens. Cyclodextrin-based supramolecular nanoparticles for biomedical applications. Journal of Materials Chemistry B 2017, 5 (1) , 36-52. https://doi.org/10.1039/C6TB02776H
    60. Mengqian Lu, Adem Ozcelik, Christopher L. Grigsby, Yanhui Zhao, Feng Guo, Kam W. Leong, Tony Jun Huang. Microfluidic hydrodynamic focusing for synthesis of nanomaterials. Nano Today 2016, 11 (6) , 778-792. https://doi.org/10.1016/j.nantod.2016.10.006
    61. Hao Zhang, Youqing Shen. Microfluidics Applications in Cancer Drug Delivery. 2016, 117-148. https://doi.org/10.1002/9783527694396.ch5
    62. I‐Chieh Lin, Jen‐Hung Fang, Chien‐Ting Lin, Shou‐Yuan Sung, Yu‐Lin Su, Shang‐Hsiu Hu. Enhanced Targeted Delivery of Cyclodextrin‐Based Supermolecules by Core–Shell Nanocapsules for Magnetothermal Chemotherapy. Macromolecular Bioscience 2016, 16 (9) , 1273-1286. https://doi.org/10.1002/mabi.201600131
    63. Jinyu Zhang, Dan Xu, Wenjing Qian, Jingyue Zhu, Feng Yan. Host–guest inclusion complexes derived heteroatom-doped porous carbon materials. Carbon 2016, 105 , 183-190. https://doi.org/10.1016/j.carbon.2016.04.034
    64. Lang Rao, Jun-Hua Xu, Bo Cai, Huiqin Liu, Ming Li, Yan Jia, Liang Xiao, Shi-Shang Guo, Wei Liu, Xing-Zhong Zhao. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake. Nanotechnology 2016, 27 (8) , 085106. https://doi.org/10.1088/0957-4484/27/8/085106
    65. Yang Liu, Juanjuan Du, Jin‐sil Choi, Kuan‐Ju Chen, Shuang Hou, Ming Yan, Wei‐Yu Lin, Kevin Sean Chen, Tracy Ro, Gerald S. Lipshutz, Lily Wu, Linqi Shi, Yunfeng Lu, Hsian‐Rong Tseng, Hao Wang. A High‐Throughput Platform for Formulating and Screening Multifunctional Nanoparticles Capable of Simultaneous Delivery of Genes and Transcription Factors. Angewandte Chemie 2016, 128 (1) , 177-181. https://doi.org/10.1002/ange.201507546
    66. Yang Liu, Juanjuan Du, Jin‐sil Choi, Kuan‐Ju Chen, Shuang Hou, Ming Yan, Wei‐Yu Lin, Kevin Sean Chen, Tracy Ro, Gerald S. Lipshutz, Lily Wu, Linqi Shi, Yunfeng Lu, Hsian‐Rong Tseng, Hao Wang. A High‐Throughput Platform for Formulating and Screening Multifunctional Nanoparticles Capable of Simultaneous Delivery of Genes and Transcription Factors. Angewandte Chemie International Edition 2016, 55 (1) , 169-173. https://doi.org/10.1002/anie.201507546
    67. Carmen Stoffelen, Jurriaan Huskens. Soft Supramolecular Nanoparticles by Noncovalent and Host–Guest Interactions. Small 2016, 12 (1) , 96-119. https://doi.org/10.1002/smll.201501348
    68. Li-Xia Chen, Ying-Ming Zhang, Yu Cao, Heng-Yi Zhang, Yu Liu. Bridged bis(β-cyclodextrin)s-based polysaccharide nanoparticles for controlled paclitaxel delivery. RSC Advances 2016, 6 (34) , 28593-28598. https://doi.org/10.1039/C6RA02644C
    69. Qimin Jiang, Yunti Zhang, Renxi Zhuo, Xulin Jiang. A light and reduction dual sensitive supramolecular self-assembly gene delivery system based on poly(cyclodextrin) and disulfide-containing azobenzene-terminated branched polycations. Journal of Materials Chemistry B 2016, 4 (47) , 7731-7740. https://doi.org/10.1039/C6TB02248K
    70. Munenori Numata. Supramolecular Chemistry in Microflow Fields: Toward a New Material World of Precise Kinetic Control. Chemistry – An Asian Journal 2015, 10 (12) , 2574-2588. https://doi.org/10.1002/asia.201500555
    71. John W. Hickey, Jose Luis Santos, John-Michael Williford, Hai-Quan Mao. Control of polymeric nanoparticle size to improve therapeutic delivery. Journal of Controlled Release 2015, 219 , 536-547. https://doi.org/10.1016/j.jconrel.2015.10.006
    72. Krzysztof Churski, Artur Ruszczak, Slawomir Jakiela, Piotr Garstecki. Droplet Microfluidic Technique for the Study of Fermentation. Micromachines 2015, 6 (10) , 1514-1525. https://doi.org/10.3390/mi6101435
    73. Zhongyu Duan, Yu-Juan Gao, Zeng-Ying Qiao, Shenglin Qiao, Yongmei Wang, Chunyuan Hou, Lei Wang, Hao Wang. pH-Sensitive polymer assisted self-aggregation of bis(pyrene) in living cells in situ with turn-on fluorescence. Nanotechnology 2015, 26 (35) , 355703. https://doi.org/10.1088/0957-4484/26/35/355703
    74. Shuang Hou, Jin-sil Choi, Kuan-Ju Chen, Yang Zhang, Jinliang Peng, Mitch A. Garcia, Jue-Hua Yu, Kaushali Thakore-Shah, Tracy Ro, Jie-Fu Chen, Parham Peyda, Guoping Fan, April D. Pyle, Hao Wang, Hsian-Rong Tseng. Supramolecular Nanosubstrate-Mediated Delivery for Reprogramming and Transdifferentiation of Mammalian Cells. Small 2015, 11 (21) , 2499-2504. https://doi.org/10.1002/smll.201402602
    75. Jin Zhao, Heng‐Yi Zhang, He‐Lue Sun, Yu Liu. Supramolecular Nanoassemblies of an Amphiphilic Porphyrin–Cyclodextrin Conjugate and Their Morphological Transition from Vesicle to Network. Chemistry – A European Journal 2015, 21 (11) , 4457-4464. https://doi.org/10.1002/chem.201405943
    76. Byung Hyun Park, Dahin Kim, Jae Hwan Jung, Seung Jun Oh, Goro Choi, Doh C. Lee, Tae Seok Seo. An advanced centrifugal microsystem toward high-throughput multiplex colloidal nanocrystal synthesis. Sensors and Actuators B: Chemical 2015, 209 , 927-933. https://doi.org/10.1016/j.snb.2014.12.067
    77. Reza Riahi, Ali Tamayol, Seyed Ali Mousavi Shaegh, Amir M Ghaemmaghami, Mehmet R Dokmeci, Ali Khademhosseini. Microfluidics for advanced drug delivery systems. Current Opinion in Chemical Engineering 2015, 7 , 101-112. https://doi.org/10.1016/j.coche.2014.12.001
    78. Ruijiao Dong, Yan Pang, Yue Su, Xinyuan Zhu. Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomaterials Science 2015, 3 (7) , 937-954. https://doi.org/10.1039/C4BM00448E
    79. Byung Hyun Park, Ji Hyun Lee, Jae Hwan Jung, Seung Jun Oh, Doh C. Lee, Tae Seok Seo. A centrifuge-based stepwise chemical loading disc for the production of multiplex anisotropic metallic nanoparticles. RSC Advances 2015, 5 (3) , 1846-1851. https://doi.org/10.1039/C4RA13778G
    80. Raquel Mejia-Ariza, Gavin A Kronig, Jurriaan Huskens. Size-controlled and redox-responsive supramolecular nanoparticles. Beilstein Journal of Organic Chemistry 2015, 11 , 2388-2399. https://doi.org/10.3762/bjoc.11.260
    81. Yu-Hui Zhang, Yong Chen, Ying-Ming Zhang, Yang Yang, Jia-Tong Chen, Yu Liu. Recycling Gene Carrier with High Efficiency and Low Toxicity Mediated by L-Cystine-Bridged Bis(β-cyclodextrin)s. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep07471
    82. Kan Liu, Nan-Gang Zhang, Sheng-Xiang Wang, Yuliang Deng. An automatic microfluidic sample transfer and introduction system. Microfluidics and Nanofluidics 2014, 16 (1-2) , 101-108. https://doi.org/10.1007/s10404-013-1227-4
    83. Ernst Wagner. Polymers for Nucleic Acid Transfer—An Overview. 2014, 231-261. https://doi.org/10.1016/B978-0-12-800148-6.00008-0
    84. Nan Zheng, Lichen Yin, Ziyuan Song, Liang Ma, Haoyu Tang, Nathan P. Gabrielson, Hua Lu, Jianjun Cheng. Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting. Biomaterials 2014, 35 (4) , 1302-1314. https://doi.org/10.1016/j.biomaterials.2013.09.090
    85. Raquel Mejia-Ariza, Jurriaan Huskens. Formation of hybrid gold nanoparticle network aggregates by specific host–guest interactions in a turbulent flow reactor. J. Mater. Chem. B 2014, 2 (2) , 210-216. https://doi.org/10.1039/C3TB21228A
    86. Jenny Brinkmann, Emanuela Cavatorta, Shrikrishnan Sankaran, Bettina Schmidt, Jasper van Weerd, Pascal Jonkheijm. About supramolecular systems for dynamically probing cells. Chem. Soc. Rev. 2014, 43 (13) , 4449-4469. https://doi.org/10.1039/C4CS00034J
    87. Carmen Stoffelen, Rajesh Munirathinam, Willem Verboom, Jurriaan Huskens. Self-assembly of size-tunable supramolecular nanoparticle clusters in a microfluidic channel. Mater. Horiz. 2014, 1 (6) , 595-601. https://doi.org/10.1039/C4MH00103F
    88. Jonathan H. Tsui, Woohyuk Lee, Suzie H. Pun, Jungkyu Kim, Deok-Ho Kim. Microfluidics-assisted in vitro drug screening and carrier production. Advanced Drug Delivery Reviews 2013, 65 (11-12) , 1575-1588. https://doi.org/10.1016/j.addr.2013.07.004
    89. Li‐li Li, Hao Wang. Enzyme‐Coated Mesoporous Silica Nanoparticles as Efficient Antibacterial Agents In Vivo. Advanced Healthcare Materials 2013, 2 (10) , 1351-1360. https://doi.org/10.1002/adhm.201300051
    90. Lei Wang, Li‐li Li, Yun‐shan Fan, Hao Wang. Host–Guest Supramolecular Nanosystems for Cancer Diagnostics and Therapeutics. Advanced Materials 2013, 25 (28) , 3888-3898. https://doi.org/10.1002/adma.201301202
    91. Lichen Yin, Ziyuan Song, Kyung Hoon Kim, Nan Zheng, Nathan P. Gabrielson, Jianjun Cheng. Non‐Viral Gene Delivery via Membrane‐Penetrating, Mannose‐Targeting Supramolecular Self‐Assembled Nanocomplexes. Advanced Materials 2013, 25 (22) , 3063-3070. https://doi.org/10.1002/adma.201205088
    92. Lei Wang, Li-Li Li, Horse L. Ma, Hao Wang. Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery. Chinese Chemical Letters 2013, 24 (5) , 351-358. https://doi.org/10.1016/j.cclet.2013.03.018
    93. Jae‐Hyun Lee, Kuan‐Ju Chen, Seung‐Hyun Noh, Mitch André Garcia, Hao Wang, Wei‐Yu Lin, Heeyeong Jeong, Brian Junoh Kong, David B. Stout, Jinwoo Cheon, Hsian‐Rong Tseng. On‐Demand Drug Release System for In Vivo Cancer Treatment through Self‐Assembled Magnetic Nanoparticles. Angewandte Chemie 2013, 125 (16) , 4480-4484. https://doi.org/10.1002/ange.201207721
    94. Jae‐Hyun Lee, Kuan‐Ju Chen, Seung‐Hyun Noh, Mitch André Garcia, Hao Wang, Wei‐Yu Lin, Heeyeong Jeong, Brian Junoh Kong, David B. Stout, Jinwoo Cheon, Hsian‐Rong Tseng. On‐Demand Drug Release System for In Vivo Cancer Treatment through Self‐Assembled Magnetic Nanoparticles. Angewandte Chemie International Edition 2013, 52 (16) , 4384-4388. https://doi.org/10.1002/anie.201207721
    95. Ewelina Kluza, Gustav J. Strijkers, Regina G. H. Beets-Tan, Klaas Nicolay. Cancer-Specific Ligand–Receptor Interactions. 2013, 461-507. https://doi.org/10.1007/978-1-4614-7876-8_18
    96. Aditya Kulkarni, Ross VerHeul, Kyle DeFrees, Christopher J. Collins, Ryan A. Schuldt, Alexander Vlahu, David H. Thompson. Microfluidic assembly of cationic-β-cyclodextrin:hyaluronic acid-adamantane host:guest pDNA nanoparticles. Biomaterials Science 2013, 1 (10) , 1029. https://doi.org/10.1039/c3bm00189j
    97. Chung Yu Chan, Po-Hsun Huang, Feng Guo, Xiaoyun Ding, Vivek Kapur, John D. Mai, Po Ki Yuen, Tony Jun Huang. Accelerating drug discovery via organs-on-chips. Lab on a Chip 2013, 13 (24) , 4697. https://doi.org/10.1039/c3lc90115g
    98. Amani El Fagui, Catherine Amiel. PLA nanoparticles coated with a β-cyclodextrin polymer shell: Preparation, characterization and release kinetics of a hydrophobic compound. International Journal of Pharmaceutics 2012, 436 (1-2) , 644-651. https://doi.org/10.1016/j.ijpharm.2012.07.052
    99. Pedro M. Valencia, Omid C. Farokhzad, Rohit Karnik, Robert Langer. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nature Nanotechnology 2012, 7 (10) , 623-629. https://doi.org/10.1038/nnano.2012.168
    100. Jeffrey Hrkach, Daniel Von Hoff, Mir Mukkaram Ali, Elizaveta Andrianova, Jason Auer, Tarikh Campbell, David De Witt, Michael Figa, Maria Figueiredo, Allen Horhota, Susan Low, Kevin McDonnell, Erick Peeke, Beadle Retnarajan, Abhimanyu Sabnis, Edward Schnipper, Jeffrey J. Song, Young Ho Song, Jason Summa, Douglas Tompsett, Greg Troiano, Tina Van Geen Hoven, Jim Wright, Patricia LoRusso, Philip W. Kantoff, Neil H. Bander, Christopher Sweeney, Omid C. Farokhzad, Robert Langer, Stephen Zale. Preclinical Development and Clinical Translation of a PSMA-Targeted Docetaxel Nanoparticle with a Differentiated Pharmacological Profile. Science Translational Medicine 2012, 4 (128) https://doi.org/10.1126/scitranslmed.3003651
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect