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ABSTRACT: Study sample size in prospective birth cohorts
of prenatal exposure to persistent organic pollutants (POPs) is
limited by costs and logistics of follow-up. Increasing sample
size at the time of health assessment would be beneficial if
predictive tools could reliably back-extrapolate prenatal levels
in newly enrolled children. We evaluated the performance of
three approaches to back-extrapolate prenatal levels of p,p′-
dichlorodiphenyltrichloroethane (DDT), p,p′-dichlorodiphe-
nyldichloroethylene (DDE) and four polybrominated diphenyl
ether (PBDE) congeners from maternal and/or child levels 9
years after delivery: a pharmacokinetic model and predictive
models using deletion/substitution/addition or Super Learner algorithms. Model performance was assessed using the root mean
squared error (RMSE), R2, and slope and intercept of the back-extrapolated versus measured levels. Super Learner outperformed
the other approaches with RMSEs of 0.10 to 0.31, R2s of 0.58 to 0.97, slopes of 0.42 to 0.93 and intercepts of 0.08 to 0.60.
Typically, models performed better for p,p′-DDT/E than PBDE congeners. The pharmacokinetic model performed well when
back-extrapolating prenatal levels from maternal levels for compounds with longer half-lives like p,p′-DDE and BDE-153. Results
demonstrate the ability to reliably back-extrapolate prenatal POP levels from levels 9 years after delivery, with Super Learner
performing best based on our fit criteria.

■ INTRODUCTION

Several persistent organic pollutants (POPs), including p,p′-
dichlorodiphenyltrichloroethane (DDT), p,p′-dichlorodiphe-
nyldichloroethylene (DDE), and polybrominated diphenyl
ethers (PBDEs) are routinely detected in maternal blood
during pregnancy, cord blood, breast milk and child blood.1,2

The insecticide p,p′-DDT, which degrades into its more
persistent metabolite p,p′-DDE, has been widely used in the
U.S. until the 1970s, and to fight malaria in Mexico until 2000.
Today, its use is restricted to vector control under the
Stockholm Convention on POPs. Penta- and octa-PBDEs are
flame retardant commercial mixtures that were added to
upholstered furniture, mattresses, and other consumer items,3

but were phased out in 2004 in the U.S. Many epidemiologic

studies have reported associations between prenatal exposure to
these contaminants and adverse health effects in children.4−8

The prenatal and early life periods are critical windows of
susceptibility because many systems undergo major structural
and functional changes, which, if perturbed by chemicals, may
alter normal development.9,10 It is therefore crucial to
adequately characterize exposure during these windows of
susceptibility for use in epidemiological studies. Biomarkers of
prenatal exposure (e.g., maternal blood levels during pregnancy
or cord blood levels at delivery) can be collected in the context
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of prospective birth cohort studies. However, the sample size of
these studies is often restricted due to the costs and logistics of
follow-up, thereby limiting their statistical power. A solution to
this problem would be to recruit additional children at the time
of health assessment and to back-extrapolate their prenatal
exposure levels based on measurements later in life.
Different approaches have been used to back-extrapolate

levels of lipophilic POPs. Karmaus et al.11 evaluated two
exponential decay models12,13 and a linear regression model to
back-extrapolate polychlorinated biphenyl (PCB) levels in
nonpregnant women whose blood was sampled ∼10 years
apart. Based on intraclass correlation coefficients (ICCs), they
concluded that when repeated measurements are available,
regression models provide the most accurate estimations
(ICCs: 0.77−0.89). However, regression models without
cross-validation may lead to overfitting of the data and not
predict well on new data sets.14,15 This problem can be avoided
by using machine learning methods such as the deletion/
substitution/addition (DSA)16 or Super Learner algorithms,17

which optimize predictive models based on cross-validation
techniques. In addition, pharmacokinetic models, using prior
knowledge of physiology and biochemistry, allow for the back-
extrapolation of prenatal exposures without the risk of
overfitting.18

In the present study, we evaluate a life-course pharmacoki-
netic model and predictive models using DSA or Super Learner
algorithms to back-extrapolate prenatal levels of p,p′-DDT/E
and PBDEs (2,2′,4,4′-tetrabromodiphenyl ether [BDE-47],
2,2′,4,4′,5-pentabromodiphenyl ether [BDE-99], 2,2′,4,4′,6-
pentabromodiphenyl ether [BDE-100] and 2,2′,4,4′,5,5′-
hexabromodiphenyl ether [BDE-153]) from maternal and/or
child serum levels measured 9-years after delivery. We compare
and contrast these models and make recommendations about
the best approach.

■ EXPERIMENTAL SECTION
Study Population. The Center for the Health Assessment

of Mothers and Children of Salinas (CHAMACOS) is a
longitudinal birth cohort study investigating the health effects
of pesticides and other environmental contaminants on
pregnant women and their children living in the agricultural
Salinas Valley in California.19 A total of 601 pregnant women
were enrolled in the CHAMACOS cohort between 1999 and
2000, with the following eligibility criteria: women were ≥18
years of age, <20 weeks of gestation, English- or Spanish-
speaking, eligible for Medi-Cal (subsidized health care), and
planning to deliver at Natividad Medical Center. A total of 337
CHAMACOS mothers and children were seen between April
2009 and March 2010 when the children were ∼9 years of age.
Written informed consent was obtained from mothers and
children provided verbal assent at 9 years of age. Study activities
were approved by the Institutional Review Board at the
University of California, Berkeley; it was determined at the
Centers for Disease Control and Prevention (CDC) that the
agency was not engaged in human subjects research.
For the present study, we conducted analyses on three study

population subsets with maternal blood collected at ∼26 weeks
of pregnancy: (1) maternal blood was also collected 9 years
after delivery (n = 94), (2) child blood was also collected 9
years after delivery (n = 161), and (3) both maternal and child
blood were collected 9 years after delivery (n = 89). Because
the main aim of the 9-year assessments in the CHAMACOS
study was to assess the effects of PBDEs and p,p′-DDT/E

exposure on growth, pubertal development and neurodevelop-
ment in girls, blood was only drawn from mothers whose child
was a girl (subsets 1 and 3).

Data Collection. Study visits occurred twice during
pregnancy (at ∼13 and 26 weeks gestation), after delivery,
and when the children were 0.5, 1, 2, 3.5, 5, 7, and 9 years old.
Information collected included parity, history of breastfeeding,
age, residential history, socio-demographic factors, and
anthropometrics. Birth weight, gestational age, and, gestational
weight gain were abstracted from maternal medical records.
Missing values (<10% missing) were imputed at random based
on the observed probability distributions of each variable. Only
maternal and child fat percentage had more than 10% of values
missing, with those values imputed using a linear regression
model with body mass index (BMI) and weight as the
independent variables.

Laboratory Measurements of p,p′-DDT/E and PBDE in
Serum. Blood samples were collected by venipuncture and
stored at −80 °C until analyzed for several environmental
contaminants including p,p′-DDT, p,p′-DDE, BDE-47, BDE-99,
BDE-100, and BDE-153 at the CDC using gas chromatography
isotope dilution high-resolution mass spectrometry.20 Serum
levels were expressed on a serum lipid basis (ng/g lipids); total
serum lipid concentrations were estimated based on the
measurements of triglycerides and total cholesterol using
standard enzymatic methods (Roche Chemicals, Indianapolis,
IN).21 For levels <LOD, we used values generated by the
instrument when available. When no signal was detected, levels
<LOD were assigned a value of LOD/√2,22 an approach that
was shown to be suitable when the percentage of levels <LOD
is 10% or lower.23

Prediction Models. DSA16 and Super Learner17 algorithms
were employed for selecting predictive models for prenatal p,p′-
DDT/E and PBDE levels. The DSA algorithm is a loss-based
cross-validation method that systematically selects the best
predictive model by testing multiple covariate combinations,
polynomial transformations, and interaction terms. An
advantage of the DSA algorithm is that the final model outputs
the significant predictors and coefficient terms within an
interpretable parametric model. Super Learner is an ensemble
machine learning technique that utilizes a weighted combina-
tion of algorithms to return a prediction function that
minimizes a cross-validated loss function, avoiding selecting a
single prediction method a priori.
For both the DSA and Super Learner algorithms, we used 10-

fold cross validation to minimize the mean squared error
(MSE). To reduce the influence of outliers, serum concen-
trations were log10 transformed. For the DSA algorithm, we
allowed second-order polynomials and 2-level interactions. For
the Super Learner algorithm, we selected a diverse group of
learning algorithms as potential candidates including: general-
ized linear model (GLM), generalized additive model (GAM),
random forest, recursive partitioning and regression trees,
elastic net, neural network, local polynomial regression,
polynomial spline regression, Bayesian linear model, support
vector machine, and DSA algorithm. In addition to fitting
GLM, GAM, and Bayesian linear models with all potential
predictors, we employed a screener prior to use by Super
Learner, with the models only using predictors significantly
correlated with prenatal serum levels in bivariate analysis (p-
value ≤0.1). Algorithm-specific MSEs and weights for each
subset are presented in the Supporting Information (SI) Table
S1.
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Variables considered in the Super Learner and DSA
algorithms (expressed as shown in Table 1) included maternal
characteristics at child birth: number of years lived in the U.S.,
country of birth, education, marital status, age, number of
children before index child, and breastfeeding duration prior to
index child; maternal characteristics 9 years after delivery:
family income, age at blood draw, breastfeeding duration for
children born after index child, number of children born after
index child, BMI, weight, and fat percentage; and child
characteristics at 9 years of age: if the child ever lived outside
the U.S., exact age at blood draw, age- and sex-specific BMI z-
score based on data from the CDC,24 weight, and fat
percentage. Additional variables collected at the 9-year home
visit were considered in PBDE analyses: stuffed furniture in
home (yes/no and number of pieces of furniture), wall-to-wall
carpet (yes/no and number of rooms), ripped/torn furniture
(yes/no), number of televisions at home, and computer at
home (yes/no). All compounds within the same class were
considered for the back-extrapolation of prenatal levels of

individual compounds, that is, 9-year p,p′-DDE and p,p′-DDT
levels were potential predictors in models of prenatal p,p′-DDE
and p,p′-DDT, and 9-year levels of all PBDE congeners were
potential predictors in models of individual PBDE congener
prenatal levels.
We used available statistical packages to implement DSA and

Super Learner algorithms in R, version 3.0.1 (R Foundation for
Statistical Computing, Vienna, Austria).

Pharmacokinetic Modeling. We used a previously
published pharmacokinetic model for POPs18 to back-
extrapolate prenatal levels of p,p′-DDT/E and PBDEs from
9-year maternal or child levels. This two-compartment model
simulates mother’s lifetime environmental exposure and child
exposure through transplacental diffusion, breastfeeding and
environmental exposure (Figure 1). We assumed that p,p′-
DDT/E and PBDEs distribute homogeneously across maternal
and child body lipids, including serum and breast milk lipids.
Published half-lives were used to describe elimination from the
maternal and child compartments. For p,p′-DDT/E, we used

Table 1. Demographic and Exposure Characteristics of CHAMACOS Participants used in Back-Extrapolation

na (%) median (IQR)b range
mean LOD (min-

max)c
% >
LODd

%
signale

maternal years in U.S. prior to birth of index
child

166 4.5 (1.6−10.0) (0.1−35.8)

maternal age at delivery of index child (years) 166 26.3 (23.5−29.9) (18.5−42.7)
index child’s birth weight (g) 166 3417.5 (3166.2−3778.8) (1810.0−4670.0)
breastfeeding duration of index child (months) 166 7.0 (3.0−13.0) (0.0−44.1)
breastfeeding duration after index child
(months)

166 5.0 (0.0−13.0) (0.0−49.0)

number of children born after index child 166 1.0 (0.0−1.0) (0.0−4.0)
maternal weight at 9-year visit (kg) 166 73.1 (65.3−85.2) (46.8−152.2)
child weight at 9-year visit (kg) 166 36.5 (30.4−46.7) (20.9−90.0)
Family Income at 9-Year Visit
<federal poverty level 110 66.3
>federal poverty level 56 33.7
maternal education
≤sixth grade 68 41.0
7−12th grade 59 35.5
≥high school graduate 39 23.5
Maternal Levels at 26 Weeks Gestation (ng/g-lipid)
p,p′-DDT 166 12.8 (7.5−43.3) (1.5−34500.0) 2.1 (1.1−3.6) 99.4 99.4
p,p′-DDE 166 457.9 (247.0−1252.4) (25.7−58800.0) 3.9 (2.1−6.7) 100.0 100.0
BDE-47 166 15.1 (7.8−22.7) (1.2−632.0) 1.5 (0.8−2.6) 99.4 100.0
BDE-99 166 4.0 (2.3−6.8) (0.3−261.0) 0.4 (0.2−0.7) 98.8 98.8
BDE-100 166 2.4 (1.5−4.0) (0.1−87.7) 0.4 (0.2−0.7) 97.6 98.2
BDE-153 166 2.0 (1.4−3.5) (0.3−41.0) 0.4 (0.2−0.7) 98.2 98.2
Maternal Levels at 9-Year Visit (ng/g-lipid)
p,p′-DDT 94 2.9 (2.1−6.4) (0.9−5280.0) 2.4 (1.4−4.2) 64.9 98.9
p,p′-DDE 94 240.5 (132.2−544.6) (50.2−55800.0) 2.4 (1.4−4.2) 100.0 100.0
BDE-47 94 19.0 (11.4−33.1) (1.7−125.0) 1.5 (0.8−4.8) 98.9 100.0
BDE-99 94 4.0 (2.2−7.0) (0.3−22.5) 0.7 (0.4−2.5) 93.6 97.9
BDE-100 94 3.6 (2.2−6.1) (0.3−27.1) 0.5 (0.3−1.6) 94.7 96.8
BDE-153 94 3.5 (2.3−6.3) (0.8−23.4) 0.5 (0.3−1.6) 100.0 100.0
Child Levels at 9-Year Visit (ng/g-lipid)
p,p′-DDT 161 1.3 (1.0−2.4) (0.5−418.0) 3.2 (1.5−9.9) 19.3 96.9
p,p′-DDE 161 132.0 (81.6−254.0) (29.7−12400.0) 3.2 (1.5−9.9) 100.0 100.0
BDE-47 161 35.8 (23.4−70.5) (2.5−231.0) 1.9 (0.9−5.8) 100.0 100.0
BDE-99 161 8.4 (4.9−16.6) (0.5−64.3) 1.0 (0.4−2.9) 99.4 100.0
BDE-100 161 7.8 (4.8−13.5) (0.6−63.7) 0.7 (0.3−2.0) 100.0 100.0
BDE-153 161 9.1 (5.6−14.9) (1.8−173.0) 0.7 (0.3−2.0) 100.0 100.0
aIncludes participants used in any of three back-extrapolation subsets. bIQR = interquartile range. cLOD = limit of detection. d% > LOD = percent
of serum samples above LOD. e% Signal = percent of serum samples where a signal was detected by mass spectrometry.
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the same half-lives that were used for model validation:18 5-year
half-life for p,p′-DDT25 and a 13-year half-life for p,p′-DDE.26
We used PBDE half-lives calculated by Trudel et al.27 using a
pharmacokinetic model and human data on daily intakes and
PBDE levels in lipids: 1.4 years for BDE-47, 0.8 year for PBDE-
99, 1.8 years for BDE-100 and 7.4 years for BDE-153. To back-
extrapolate prenatal levels from maternal or child serum levels
at the 9-year assessment, we modified the pharmacokinetic
model to account for the delivery and breastfeeding of children
born after the index child. Also, we modified the model to
account for different levels in Mexico and the U.S.: p,p′-DDT/E
exposure is higher in Mexico and PBDE exposure is higher in
California as indicated by blood levels measured in
CHAMACOS Mexican−American children born in the U.S.
and Mexican children whose mothers are from the same region
in Mexico as the CHAMACOS mothers.28 We approximated
that p,p′-DDT/E blood concentrations are 4 times higher in
Mexico than in the U.S. and that PBDE concentrations are 7
times higher in the U.S.A than in Mexico based on ratios of
geometric mean serum levels of p,p′-DDT (parent compound)
and BDE-47 (predominant PBDE congener).28

To simulate subject-specific exposure profiles, the model
incorporated information on mothers (years in the U.S., timing
of prenatal blood draw, gestational weight gain, age at delivery,
age at subsequent deliveries and duration of breastfeeding of
each child born after the index child, prepregnancy body

weight, age at 9-year blood draw, weight at 9-year blood draw)
and children (sex, gestational age at birth, birth weight, weight
at 9-year blood draw, duration of exclusive, and total
breastfeeding). Using the model inputs mentioned above, we
estimated the maternal daily dose (ng/kg body weight) by
running the model iteratively and optimizing the dose to obtain
matching simulated and measured serum levels at 9 years. In
addition to exposure through transplacental diffusion and
breastfeeding, children are exposed to these compounds in their
environment. Because exposure to p,p′-DDT/E is assumed to
occur mostly through food intake, we assumed that after the
first year of life, children were exposed to the same daily dose of
p,p′-DDT/E on a body weight basis (ng/kg body weight) as
that optimized for the mother. We assumed child environ-
mental exposure to PBDEs to be the same absolute daily PBDE
dose (ng) as that optimized for the mother’s based on similar
exposure estimates in Lorber.29 Model simulations were carried
out using acslX (Aegis Technologies Group, Inc., Hunstville,
AL).

Assessment of Model Fit. For each chemical and
population subset, we assessed the performance of the different
models by comparing predicted and measured concentrations.
We computed the root MSE (RMSE) as our main performance
criteria because it quantifies both precision and accuracy,30 and
deconstructed the measure into its two components: precision
and accuracy. We assessed precision using the R2 statistic and

Figure 1. Back-extrapolation using pharmacokinetic modeling. The conceptual representation of the pharmacokinetic model is depicted in panel A
(reproduced with permission from Environmental Health Perspectives). Examples of pharmacokinetic profiles of BDE-47 and p,p′-DDE are shown
in panel B for a woman who moved from Mexico to the U.S. at the age of 10, gave birth at the age of 25 and breastfed for 6 months.
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accuracy by evaluating the intercept and slope of the linear
model between measured and back-extrapolated levels. While a
higher R2 indicates better precision, a slope of 1 and intercept
of 0 suggest good accuracy and absence of bias. In addition,
ICCs were calculated for comparison with results from
Karmaus et al.11

■ RESULTS

Study Participants and Exposure Characteristics. At
the index child’s birth, the median maternal age was 26.3 years
and mothers had lived in the USA for a median of 4.5 years
(Table 1). The median breastfeeding time was 7 months for the
index child and a total of 5 months for subsequent children
(including exclusive and partial breastfeeding). Median p,p′-
DDT/E levels were lower in 9-year child and maternal samples
than in maternal samples during pregnancy. On the other hand,
PBDE were higher in 9-year samples than prenatal samples. At
9 years, children’s PBDE levels were about 2 times higher than
maternal levels.
Prediction Using the 9-Year Maternal Serum Subset.

In the subset of participants with maternal serum levels at the
9-year visit (n=94), the Super Learner algorithm performed
best for all compounds (RMSEs ranging from 0.12 to 0.31),
followed by DSA (RMSEs ranging from 0.16 to 0.35) and
pharmacokinetic modeling (RMSEs ranging from 0.21 to 0.59)
(Table 2 and Figure 2). For the Super Learner algorithm, the
R2s ranged from 0.58 to 0.95, slopes ranged from 0.51 to 0.89,
intercepts ranged from 0.08 to 0.38 and ICCs ranged from 0.71
to 0.97. Highest model performance was observed for back-
extrapolated p,p′-DDE and BDE-153 levels, the compounds
with the longest half-lives. The DSA algorithm selected
different sets of predictors depending on the compound
(Table 3). Of note, maternal 9-year levels of certain
compounds with longer half-lives were selected to back-

extrapolate prenatal levels of shorter half-life compounds, for
example, BDE-153 9-year levels were selected to back-
extrapolate BDE-47, BDE-99, and BDE-100 levels. Using the
maternal 9-year levels, the pharmacokinetic model performed
well when back-extrapolating longer half-life compounds p,p′-
DDE and BDE-153 with respective RMSEs of 0.21 and 0.28,
R2s of 0.88 and 0.57, intercepts of 0.12 and 0.07, slopes of 0.92
and 0.79 and ICCs of 0.92 and 0.75, respectively. The
pharmacokinetic model did not perform as well for shorter half-
life PBDE congeners (BDE-47 and BDE-99).

Prediction using the 9-Year Child Serum Subset. Like
in the 9-year maternal serum subset, Super Learner (RMSEs
ranging from 0.20 to 0.29) outperformed the DSA (RMSEs
ranging from 0.28 to 0.46) and pharmacokinetic modeling
(RMSEs ranging from 0.50 to 1.08) approaches when using
child 9-year levels (n = 161) (Table 2 and SI Figure S1). For
the Super Learner algorithm, the R2s ranged from 0.83 to 0.95,
intercepts ranged from 0.16 to 0.60, slopes ranged from 0.42 to
0.79 and ICCs ranged from 0.70 to 0.92. The DSA algorithm fit
models for p,p′-DDT/E, BDE-100, and BDE-153, but did not
select any of the predictors to back-extrapolate prenatal serum
concentrations of BDE-47 and BDE-99 and only fit an intercept
model at the measured mean prenatal serum levels. Using the
child 9-year levels, the pharmacokinetic model performed
relatively well for p,p′-DDE, but the precision was low for
PBDE levels (R2s ranging from 0.03 to 0.19).

Prediction Using the 9-Year Maternal and Child
Serum Subset. In the subset where both maternal and child
9-year serum were available (n = 89), the Super Learner and
DSA algorithms strongly predicted prenatal p,p′-DDT/E and
PBDE serum levels (Table 2 and SI Figure S2). For the Super
Learner algorithm, the RMSEs ranged from 0.10 to 0.28, the
R2s ranged from 0.65 to 0.97, intercepts ranged from 0.08 to
0.38, slopes ranged from 0.57 to 0.93 and ICCs ranged from

Table 2. Linear Model Intercepts (β0), Slopes (β1), RMSEs, R2s, and ICCs Comparing Measured Versus Predicted p,p′-DDT/E
and PBDE Serum Levelsa

maternal 9-year serum subset (n = 94) child 9-year serum subset (n = 161)
maternal and child 9-year serum subset

(n = 89)b

chemical βo β1 RMSE R2 ICC βo β1 RMSE R2 ICC βo β1 RMSE R2 ICC

SL p,p′-DDT 0.14 0.89 0.18 0.95 0.97 0.29 0.79 0.29 0.87 0.92 0.11 0.91 0.17 0.95 0.97
p,p′-DDE 0.31 0.89 0.12 0.95 0.97 0.60 0.79 0.23 0.85 0.91 0.21 0.93 0.10 0.97 0.98
BDE-47 0.38 0.69 0.21 0.79 0.86 0.50 0.57 0.20 0.95 0.85 0.38 0.69 0.22 0.75 0.85
BDE-99 0.33 0.51 0.31 0.58 0.71 0.37 0.42 0.27 0.95 0.70 0.29 0.57 0.28 0.65 0.76
BDE-100 0.13 0.72 0.20 0.81 0.88 0.23 0.45 0.25 0.86 0.73 0.10 0.77 0.18 0.84 0.90
BDE-153 0.08 0.79 0.16 0.84 0.91 0.16 0.54 0.20 0.83 0.80 0.08 0.78 0.14 0.88 0.92

DSA p,p′-DDT 0.12 0.91 0.23 0.91 0.95 0.34 0.75 0.39 0.75 0.86 0.15 0.89 0.26 0.89 0.94
p,p′-DDE 0.27 0.90 0.16 0.90 0.95 0.65 0.77 0.28 0.77 0.87 0.13 0.95 0.12 0.95 0.98
BDE-47 0.37 0.69 0.24 0.69 0.82 1.16 NCc 0.43 NCc 0.00 0.38 0.68 0.25 0.68 0.81
BDE-99 0.37 0.46 0.35 0.46 0.63 0.63 NCc 0.46 NCc 0.00 0.36 0.46 0.35 0.46 0.63
BDE-100 0.16 0.65 0.26 0.65 0.79 0.37 0.11 0.40 0.11 0.20 0.13 0.71 0.24 0.71 0.83
BDE-153 0.08 0.80 0.18 0.80 0.89 0.29 0.19 0.35 0.19 0.32 0.12 0.67 0.23 0.67 0.80

PK p,p′-DDT −0.16 0.84 0.45 0.88 0.82 −0.31 0.52 1.08 0.67 0.13
p,p′-DDE 0.12 0.92 0.21 0.88 0.92 0.38 0.71 0.54 0.70 0.58
BDE-47 0.46 0.56 0.43 0.30 0.54 0.41 0.36 0.63 0.11 0.18
BDE-99 0.23 0.33 0.59 0.11 0.26 0.09 0.20 0.74 0.03 0.00
BDE-100 0.11 0.65 0.38 0.42 0.65 −0.03 0.39 0.58 0.12 0.23
BDE-153 0.07 0.79 0.28 0.57 0.75 −0.04 0.51 0.50 0.19 0.34

aSL= Super Learner, DSA = Deletion/Substitution/Addition, and PK = pharmacokinetic model. bBack-extrapolation using both maternal and child
9-year serum values unavailable in the pharmacokinetic model used. cNC= not calculated because final model was intercept-only model.
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0.76 to 0.98. However, including both maternal and child 9-year
serum levels only marginally increased Super Learner algorithm
performance compared to models relying solely on maternal 9-
year levels (RMSEs ranged from 0.12 to 0.31).

■ DISCUSSION

We evaluated three approaches to back-extrapolate prenatal
levels of four PBDE congeners (BDE-47, BDE-99, BDE-100.
and BDE-153) and p,p′-DDT/E from measured maternal and/
or child levels 9-years after delivery. Our results suggest that
Super Learner may be the best approach. In addition, we found
that estimations were better for compounds with longer
biological half-lives (p,p′-DDT/E and BDE-153) compared to
compounds with shorter half-lives (BDE-47, -99, and -100).
Super Learner performed the best based on our criteria to

minimize the MSE and maximize the R2 of the back-
extrapolated versus measured p,p′-DDT/E and PBDE levels,
followed by DSA and pharmacokinetic modeling. A drawback
to using Super Learner is that the resulting ensemble prediction
algorithm is less interpretable than single prediction algorithms

because the final output is the weighted output of each
algorithm (14 in this study), each with specific equation
parameters and predictors. Therefore, the increased perform-
ance obtained by combining predictive algorithms comes at the
cost of reduced interpretability of the overall model.
Conversely, the DSA algorithm provides the exact cross-
validated model used for prediction and is thus more
transparent than Super Learner. However, the DSA was less
accurate than Super Learner and it failed to select a predictive
model for BDE-47 and BDE-99 in the child 9-year serum
subset. Although the Super Learner and DSA algorithms
performed better than pharmacokinetic modeling, the
prediction models they generated may be less informative for
other populations because they are driven by variables that are
population-specific, for example, the time spent in the U.S. for
Mexican-Americans in the CHAMACOS study. To apply these
approaches to other studies, paired measurements of prenatal
and postnatal levels are necessary to build the models. In
contrast, because the pharmacokinetic model was built a priori
based on physiology and biochemistry, and was not calibrated

Figure 2. Scatterplots of back-extrapolated versus measured prenatal (∼26 weeks gestation) serum concentrations of p,p′-DDT/E and PBDEs using
9-year maternal serum subset (n = 94). Root mean squared errors (RMSEs) and correlation coefficients (R2) were calculated comparing the linear fit
of back-extrapolated and measured log10 serum levels (red line). Black line represents perfect back-extrapolation. SL = Super Learner, DSA =
Deletion/Substitution/Addition, and PK = pharmacokinetic model.
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based on measured prenatal levels, it could be used to back-
extrapolate prenatal levels in other populations without a
training data set. However, this approach only performed
relatively well for the longer half-life compounds (p,p′-DDE
and BDE-153).
There are limited studies to compare how well our models

back-extrapolated prenatal levels. ICCs in our study using the
maternal subset (n = 94) ranged from 0.71 to 0.97 for Super
Learner, from 0.63 to 0.95 for DSA, and from 0.26 to 0.92 for
the pharmacokinetic models. Results obtained with the Super
Learner and DSA algorithms were similar to those obtained by
Karmaus et al.11 (ICCs: 0.77−0.89) who used regression
models to back-extrapolate women’s polychlorinated biphenyl
(PCB) levels measured 10 years apart, and are likely to be more
generalizable to other populations due to cross-validation.31

Results presented herein have many implications. Models
evaluated in this study could be used to back-extrapolate

prenatal levels in children enrolled at the time of health
assessment to increase study sample size. For example, in the
CHAMACOS longitudinal birth cohort, where 337 mother-
child dyads have been followed from pregnancy up to 9-years
after delivery,19 we recruited 309 additional 9-year-old boys and
girls and their mother to increase the sample size to 646. The
prediction model generated using the Super Learner algorithm
will be used to back-extrapolate prenatal levels in newly
enrolled dyads, which will allow assessing the health effects of
prenatal exposure in a population almost twice as large as the
original birth cohort. However, the potential to back-
extrapolate levels from levels measured many years after
delivery relies, at least in part, on the persistence of the
compounds considered in our study. Back-extrapolating levels
of chemicals with shorter half-lives (e.g., phthalates, triclosan)
over a period of many years is less likely to be achievable, unless
exposure levels are very stable through time.

Table 3. DSA Prediction Equations for DDT/E and PBDEs Using Maternal 9-Year Serum Levels (n = 94)

equation description

= + × − ×

+ × − × − ×

×

−

log DDT 0.961 1.122 log DDT 0.129 MP

0.018 BF 0.005 WT 8.173 10

WTG

10 m26 10 m9y post

post pre
5

del
2

DDTm26 = maternal p,p′-DDT serum concentration at 26 weeks gestation (ng/g-
lipid)

DDTm9y = maternal p,p′-DDT serum concentration at 9-year visit (ng/g-lipid)
MPpost = maternal parity post index child (#)
BFpost = cumulative breastfeeding duration post index child (months)
WTpre = maternal prepregnancy weight (kg)
WTGdel = maternal pregnancy weight gain (kg)

= + × + ×

+ × − ×

log DDE 0.325 1.021 log DDE 0.011 BF

0.007 BF 0.003 WT
10 m26 10 m9y post

c pre

DDEm26 = maternal p,p′-DDE serum concentration at 26 weeks gestation (ng/g-
lipid)

DDEm9y = maternal p,p′-DDE serum concentration at 9-year visit (ng/g-lipid)
BFpost = cumulative breastfeeding duration post index child (months)
BFc = breastfeeding duration of index child (months)
WTpre = maternal prepregnancy weight (kg)

= + × ×

− × ×

+ × ×

log BDE47 0.803 1.161 (log BDE100 log BDE153 )

0.402 (log BDE99 log BDE100 )

0.007 (ED YR )

10 m26 10 m9y 10 m9y

10 m9y 10 m9y

usa

BDE47m26 = maternal BDE-47 serum concentration at 26 weeks gestation (ng/g-
lipid)

BDE100m9y = maternal BDE-100 serum concentration at 9-year visit (ng/g-lipid)
BDE153m9y = maternal BDE-153 serum concentration at 9-year visit (ng/g-lipid)
BDE99m9y = maternal BDE-99 serum concentration at 9-year visit (ng/g-lipid)
ED = maternal education at baseline visit (ordinal)
YRusa = years in the United States prior to index child (years)

= + × ×log BDE99 0.333 0.838 (log BDE100 log BDE153 )10 m26 10 m9y 10 m9y BDE99m26 = maternal BDE-99 serum concentration at 26 weeks gestation (ng/g-
lipid)

BDE100m9y = maternal BDE-100 serum concentration at 9-year visit (ng/g-lipid)
BDE153m9y = maternal BDE-153 serum concentration at 9-year visit (ng/g-lipid)

= − + × + ×

+ ×

log BDE100 0.084 0.776 log BDE153 0.169 PV

0.017 YR
10 m26 10 m9y

2
9y

usa

BDE100m26 = maternal BDE-100 serum concentration at 26 weeks gestation (ng/g-
lipid)

BDE153m9y = maternal BDE-153 serum concentration at 9-year visit (ng/g-lipid)
PV9y = poverty at 9-year visit (categorical)
YRusa = years in the United States prior to index child (years)

= + ×

− × + ×

+ × + × − ×

− × − × ×−

log BDE153 0.331 0.819 log BDE153

0.191 log BDE99 0.101 PV

0.021 YR 0.014 FP 0.009 WT

0.006 WTG 1.257 10 ABD

10 m26 10 m9y
2

10 m9y
2

9y

usa m9y pre

del
4

m9y
2

BDE153m26 = maternal BDE-153 serum concentration at 26 weeks gestation (ng/g-
lipid)

BDE153m9y = maternal BDE-153 serum concentration at 9-year visit (ng/g-lipid)
BDE99m9y = maternal BDE-99 serum concentration at 9-year visit (ng/g-lipid)
PV9y = poverty at 9-year visit (categorical)
YRusa = years in the United States prior to index child (years)
FPm9y = maternal fat percentage at 9-year visit (%)
WTpre= maternal prepregnancy weight (kg)
WTGdel = maternal pregnancy weight gain (kg)
ABDm9y = maternal age at blood draw at 9-year visit (years)
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Results from the DSA analyses allowed us to identify
important predictors of p,p′-DDT/E and PBDEs. Studies
considering back-extrapolating prenatal levels of these com-
pounds will need to collect information on maternal and child
weight (including fat percentage when possible), parity,
breastfeeding duration, residence history and socioeconomic
status. Another important finding in our study is that levels of
certain compounds can be used to back-extrapolate levels of
other compounds. That holds especially true for compounds
that are correlated at the time of exposure and have different
half-lives, e.g., compounds with longer half-lives like BDE-153
may provide valuable information on past exposure to shorter
half-life compounds like BDE-47.
Certain limitations of this study ought to be mentioned.

Although back-extrapolated levels explained a large portion of
the variability in measured prenatal levels, the slope and
intercept of the estimated vs measured regressions were
consistently below 1 and above 0, respectively. This is expected
given that our models did not fully capture the variability in
measured prenatal levels and, consequently, the variance of the
predicted values was less than the variance of the measured
values. Another limitation is that children born to mothers in
the maternal 9-year subset were exclusively girls. We cannot
rule out the possibility that the accuracy of the models differs
by sex. In addition, it is possible that measures of model fit were
influenced by the reduced analytical precision for levels close or
below the limit of detection. Nonetheless, our ability to back-
extrapolate prenatal levels from maternal 9-year levels
demonstrates that it will be possible for existing and future
epidemiologic studies to estimate prenatal levels of p,p′-DDT/
E and PBDEs from levels measured years after birth.
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