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Ecological risks to wildlife are typically assessed using
toxicity data for relatively few species and with limited
understanding of differences in species sensitivity to
contaminants. Empirical interspecies correlation models
were derived from LD50 values for 49 wildlife species and
951 chemicals. The standard wildlife test species Japanese
quail (Coturnix japonica) and mallard (Anas platyrhynchos)
were determined to be good surrogates for many species
within the database. Cross-validation of all models
predicted toxicity values within 5-fold and 10-fold of the
actual values with 85 and 95% certainty, respectively. Model
robustness was not consistently improved by developing
correlation models within modes of action (MOA); however,
improved models for neurotoxicants, carbamates, and
direct acting organophosphorous acetylcholenesterase
inhibiting compounds indicate that toxicity estimates may
improve if MOA-specific models are built with robust
datasets. There was a strong relationship between taxonomic
distance and cross-validation prediction success (ø2 )
297, df ) 12, p < 0.0001), with uncertainty increasing with
larger taxonomic distance between the surrogate and
predicted species. Interspecies toxicity correlations provide
a tool for estimating contaminant sensitivity with known
levels of uncertainty for a diversity of wildlife species.

Introduction
Extrapolation between species and toxicity endpoints has
remained one of the key areas of uncertainty in both
ecological and human health risk assessment. For wildlife,
the assessment of risks to populations of birds and mammals
has typically been based on relatively limited toxicity data
for only a few standard test species. A number of approaches
and models have been used to extrapolate toxicity data
between wildlife species, including uncertainty or safety
factors, the derivation of species sensitivity distributions (1)
with or without body size scaling (2), and interspecies
correlation estimation (ICE) models (3). However, most of
the strategies involving the application of safety factors can
be criticized for introducing a large source of unquantifiable
uncertainty in risk assessments (4). Strategies involving

species sensitivity distributions typically require well-
populated datasets and devolve, when data are limiting, to
either a safety factor approach that is empirically based (1)
or the use of pooled variances established for a large group
of pesticides (5). The number of species and families required
in species sensitivity distributions vary with both scientific
and regulatory applications.

ICE models are log-linear least-square regression models
that describe the relationship between the acute toxicity
(LD50; mg/kg bodyweight) of a range of chemicals tested in
two species. If toxicity data are available for the surrogate
species, the toxicity to the predicted taxon can be estimated
using the specific ICE model for that species-taxon pair. ICE
models have been employed in toxicity extrapolation of
aquatic invertebrates and fish (6), but their use in wildlife
risk assessment has not been widely accepted. Earlier
development of ICE models did not show good correlations
between wildlife species (3), in part due to limited databases
used in model development. Additionally, acceptance of
interspecies regression models has been limited due to lack
of model validation studies (7). While sublethal endpoints
maybe more ecologically relevant, the development of ICE
models for chronic toxicity is problematic because of
substantially fewer toxicity values compared to LD50 data-
bases for both aquatic and wildlife species.

This study developed a comprehensive set of ICE models
for the acute toxicity to wildlife species of birds and mammals
and identified key sources of uncertainty in wildlife toxicity
extrapolation. ICE models were developed for 49 species from
a comprehensive database compiled from open literature
(8-12) and by governmental agencies of the United States
(U.S. EPA Office of Pesticide Programs) and Canada (Envi-
ronment Canada) (1, 13). The suite of models were cross-
validated and analyzed to determined if (i) ICE models with
significant regressions can be used to predict acute toxicity,
(ii) there are certain chemical mode of action (MOA) that
should not be included in ICE models, (iii) ICE models
improve when developed with data of specific chemical
MOAs, (iv) ICE model robustness is related to the taxonomic
distance of the predicted and surrogate species, and (v) the
standard test species, mallard, northern bobwhite (Colinus
virginianus), and Japanese quail, are adequate surrogates
for predicting toxicity to other wildlife species. Results of
these analyses provide user guidance for use and application
of ICE models in wildlife risk assessment.

Materials and Methods
Data Collection. The wildlife dataset was comprised of 4329
single oral dose LD50 values for 156 species and 951
chemicals. The data were collected from the open literature
(8-12) and from datasets compiled by governmental agencies
of the United States (U.S. EPA; Office of Pesticide Programs
Ecotoxicity Database) and Canada (Environment Canada; 1,
13). Approximately 40% of the values included in the dataset
were not used in the analyses because (1) the species did not
have toxicity values for three or more chemicals or (2)
chemicals were not present in two or more species. Of the
2454 toxicity records used in used in the final analyses,
approximately 60% were pesticides, including 41% that were
carbamate or OP acetylcholinesterase inhibitors (Supporting
Information 1).

Data were subjected to rigorous quality assurance guide-
lines and standardized by using only data for adult animals
and data for chemicals of technical grade or formulations
with >90% active ingredient. Open-ended toxicity values (i.e.,
>100 mg/kg or <100 mg/kg) and duplicate records among
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multiple sources were not included in model development.
When data were reported as a range (ie. 100-200 kg/mg; ref
8) or data were collected from multiple sources for a species
and chemical, the geometric mean of the values was used.
In cases where the range of minimum and maximum values
for a chemical and species were greater than 10-fold, all data
records for that chemical were removed for that species due
to their high variability.

Model Development and Validation. Models were de-
veloped using Model II least-squares regression in which
variables are independent and subject to measurement error
(3). An algorithm was written in S-plus (14) to pair every
species with every other species by common chemical. Three
or more common chemicals per pair were required for
inclusion in the analysis. For each species pair, a linear model
was used to calculate the regression equation Log10(predicted
taxa) ) a + b × Log10(surrogate species), where a and b are
the intercept and slope of the line, respectively. Only models
that had a significant linear relationship (p-value < 0.05)
were used for further analyses, because models that are not
significant at the p < 0.05 level have an elevated probability
of performing a Type I error.

The uncertainty of each model was assessed using leave-
one-out cross-validation. In this method, each pair of LD50
values for surrogate and predicted species were systematically
removed from the original model. The remaining data were
used to rebuild a model and estimate the toxicity value of
the removed predicted species from the respective surrogate
species toxicity value. This method could only be used for
models with degrees of freedom equal or greater than 2 (N
g 4). To maintain uniformity among the large number and
diversity of models, the N-fold difference among each
estimated and actual value (nontransformed data) was
calculated and used to determine the fit of the estimated
toxicity value. The wildlife database was used to estimate
interlaboratory variation for wildlife species from the range
of multiple toxicity values for a single species and chemical.
The average range of multiple toxicity measurements for a
specific chemical and species was 4.0 ( 10.5 (N ) 814) when
multiple values from same source (i.e., ref 11) were included
in the analysis and 6.4 ( 15.8 (N ) 286) when only data from
different sources were compared. Thus, a 5-fold difference
was deemed a good fit in the validation analysis. Each
removed data point was assigned to a prediction category
based on the N-fold difference of actual and predicted values.
The categories were 5-fold (e5-fold), 10-fold (>5-fold, e10-
fold), 50-fold (>10-fold, e50-fold), and greater than 50-fold.

The cross-validation success rate was calculated for each
model as the proportion of removed data points that were
predicted within 5-fold of the actual value from models that
were statistically significant. In cases where the removal of
an xy data pair resulted in the development of a model that
was no longer significant at the p < 0.05 level, these replicates
were not included in the cross-validation success rate and
these models were not included in further analyses. This was
the case for 52 models with low degrees of freedom (e6) and
a p-value between 0.01 and 0.05 in the original model.

Determination of Sources of Model Uncertainty. To assist
in the selection of robust models for toxicity estimation in
risk assessment, model R2 and mean square error (MSE) were
related to cross-validation success rate. Model MSE is the
unbiased sum of squared deviations of the prediction line
(15), and is an estimate of the average model prediction error.
A simple linear regression was conducted to compare cross-
validation success rate with MSE for all models in which
cross-validation success rate could be calculated (N ) 484).
Model R2 is the relative prediction power of the model and
describes the proportion of variation in the data explained
by the model. Similarly to the MSE analysis, a linear regression

was conducted to compare cross-validation success rate with
model R2 values.

The relationship between model uncertainty and chemical
mode of action (MOA) was explored in two analyses. The
first analysis was conducted to determine if any chemical
MOA consistently failed to be predicted by ICE models. The
second analysis determined if ICE models were improved by
using only data from one MOA. For both analyses, each
chemical in the database was assigned to a broad MOA (ie.
acetylcholinesterase (AChE) inhibitors) and specific MOA
(e.g., carbamate mediated AChE inhibition). Mode of action
assignments were made based on an assessment of chemical
structure, including major moieties and functional groups,
the mechanism of acute toxicity, therapeutic category, and
pesticidal activity through a review of reports and peer
reviewed articles (e.g., 16-21), and Internet sources (e.g.,
http://www.ncbi.nlm.nih.gov). Chemicals were grouped into
12 broad MOA and 26 specific MOA categories (Supporting
Information 1). Organophosphorous acetylcholinesterase
inhibitors (OAIs; e.g., organophosphates, phosphorothioates,
phosphoramidates) were also subdivided into direct acting
(containing an oxon moiety) and indirect acting chemicals
requiring metabolic activation to the oxon.

For the first MOA analysis, broad and specific MOAs (and
OAI subgroups where applicable) were assigned to each data
point predicted in the cross-validation analysis. For every
model, each removed y data point was associated with a
prediction success rate (5-fold, 10-fold, etc.) and chemical
identification. All predicted data points from all models were
pooled (total N ) 11846). For every broad and specific MOA
category and OAI subgroup, a binomial test was conducted
to determined if the MOA failed to be predicted within 5-fold
of the actual value for g50% of the time it was used in a
model. This analysis tested the null hypothesis that the linear
models could not be used to predict toxicity for each MOA.
The test statistic was the number of observations of an MOA
within the 5-fold category of prediction, the sample size N
was the total number of times the MOA was predicted in all
models and the probability of failure (p) was 0.5, corre-
sponding to the hypothesized rate of failure g50% of the
time it was used in a model (22).

The second chemical MOA analysis was conducted to
determine if models improved if built from only one MOA
or subgroup. For all models with df g50 (N ) 64, 32 species
pairs), individual models were built for the most abundant
broad MOAs (AChE inhibition, neurotoxicity, and anesthesia)
and specific MOAs (carbamates and OAIs), and the OAI
subgroups. Models built with data from a specific MOA or
subgroup required a minimum of five data points to be
included in the analysis to avoid including models with
extremely small sample sizes that may not adequately
describe the species sensitivity relationship. Values of R2 and
MSE of models comprised of all data were compared to
models built from data within an MOA or subgroup using a
two-tailed t test. Differences in models developed from single
MOA or subgroup compared to models developed with all
data were also explored qualitatively using the northern
bobwhite-mallard model. MOA-specific models were built
with northern bobwhite and mallard as the surrogate and
predicted species, respectively, for AChE inhibition, car-
bamates, OAIs, direct acting OAIs, and indirect acting OAIs.

Uncertainty of models developed with all data was
compared to taxonomic distance by assigning each model
a distance value based on the taxonomy of the surrogate and
predicted species. Models were rated such that surrogate
and predicted species within the same genus ) 1; family )
2; order ) 3; class ) 4; phylum ) 5 (i.e., birds vs mammals).
For all the models within each taxonomic distance category,
the number of observations in each cross-validation category
(5-fold, 10-fold, etc.) was determined. The observations were
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compared among taxonomic distance categories and
cross-validation category using a ø2 test for differences in
probabilities (22).

Results
There were 560 significant models (p < 0.05) developed for
49 species from the complete dataset (Table 1). The avian
surrogate species with the most models were red-winged
blackbird (Agelaius phoeniceus, 34), mallard (31), rock dove
(Columba livia, 30), Japanese quail (28), and ring-neck
pheasant (Phasianus colchicus, 28). The mammal species
with the most models were Norway rat (Rattus norvegicus,
26) and the mouse (Mus musculus, 19). Information on all
models, including statistics and parameters necessary for
toxicity estimation (slope, intercept, degrees of freedom,
number of chemicals in model, mean square error, sum of
squares) are provided in the Supporting Information 2.

Cross-validation was conducted for 536 models, 52 of
which resulted in the development of models that were no
longer significant at the p < 0.05. Thus, 484 models were
successfully cross-validated. Cross-validation of all models
showed that, overall, ICE models for wildlife species predicted
within 5-fold of the actual value for 85% of all removed data
points and within 10-fold for 95% of removed points (N )
11846). Model MSE was significantly related to cross-
validation success rate, described by the relationship y ) 101
- 73.5x (R2 ) 0.64, df ) 482, p < 0.0001; Figure 1a). Based
on this relationship, MSE of 0.22 and 0.15 corresponded to
cross-validation success rate of 85 and 90%, respectively.
Model R2 was also related to cross-validation success rate
and is described by the relationship y ) 64.2 + 34.6x (R2 )
0.27, df ) 482, p < 0.0001; Figure 1b). Based on this
relationship, model R2 of 0.60 and 0.75 corresponded to cross-
validation success rate of 85 and 90%, respectively. Model
MSE accounted for more variation in cross-validation success
rate (R2 ) 0.64) than the relationship described in the R2

analyses (R2 ) 0.27), and should be used over model R2 when
selecting between two models.

The first MOA analysis determined that there was not an
MOA category that failed to be predicted within 5-fold of the

actual values more than 50% of all times the MOA was
predicted by the combined set of models. On average, data
points from all MOA categories were predicted within 5-fold
of the actual values for 85% of all occurrences.

In the second MOA analysis, models built with data from
anesthesia, AChE inhibition, OAIs, and indirect acting OAIs
MOAs were not improved over models built with all data.
For these models, values of R2 were significantly lower and
MSE was not significantly different from models built with
all data. Models built with neurotoxicants, carbamates, and
direct acting OAIs that were significant at the p ) 0.05 level

TABLE 1. Species Used in ICE Models with the Total Number of Data Points and Statistically Significant Models (p < 0.05) for
Each Species

common name scientific name
no. of

datapoints
no. of

models common name scientific name
no. of

datapoints
no. of

models

birds birds
American crow Corvus brachyrhynchos 13 12 red billed quelea Quelea quelea 48 22
American kestrel Falco sparverius 15 6 red-legged partridge Alectoris rufa 52 12
American robin Turdus migratorius 9 6 red-winged blackbird Agelaius phoeniceus 515 34
black-billed magpie Pica hudsonia 14 6 ringed turtledove Streptopelia risoria 6 5
boat-tailed grackle Quiscalus major 10 1 ring-necked pheasant Phasianus colchicus 208 28
brown-headed cowbird Molothrus ater 15 11 rock dove Columba livia 142 30
budgerigar Melopsittacus undulatus 9 2 sharp-tailed grouse Tympanuchus

phasianellus
29 17

california quail Callipepla californica 46 15 starling Sturnus vulgaris 301 21
canada goose Branta canadensis 26 10 tricolored blackbird Agelaius tricolor 6 1
chicken Gallus gallus 142 19 turkey Meleagris gallopavo 13 7
chukar Alectoris chukar 40 21 white-crowned sparrow Zonotrichia leucophrys 5 5
common grackle Quiscalus quiscula 63 22 white-winged dove Zenaida asiatica 10 3
eastern screech owl Megascops asio 5 1 yellow headed blackbird Xanthocephalus

xanthocephalus
17 12

fulvous whistling duck Dendrocygna bicolor 12 6 mammals
golden eagle Aquila chrysaetos 15 1 blacktailed jackrabbit Lepus californicus 10 3
golden sparrow Passer luteus 5 1 deer mouse Peromyscus maniculatus 49 4
golden-crowned sparrow Zonotrichia atricapilla 3 1 dog Canis familiariz 17 4
gray partridge Perdix perdix 55 13 guinea pig Cavia porcellus 18 2
house finch Carpodacus mexicanus 54 19 mjeadow vole Microtus pennsylvanicus 8 1
house sparrow Passer domesticus 174 23 mouse Mus musculus 136 19
Japanese quail Coturnix japonica 503 28 mule deer Odocoileus hemionus 50 9
mallard Anas platyrhynchos 419 31 Norway rat Rattus norvegicus 337 26
mourning dove Zenaida macroura 29 10 rabbit Oryctolagus cuniculus 21 7
northern bobwhite Colinus virginianus 372 20 ricefield rat Rattus argentiventer 8 1
peking duck Anas domestica 8 1 roof rat Rattus rattus 11 1
red billed quelea Quelea quelea 48 22

FIGURE 1. Relationship of cross-validation success to (a) model
mean square error (MSE) and (b) model R 2.
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were improved over models built with all data based on
significantly lower MSE (Table 2). For all MOA or subgroups
except AChE inhibition and OAIs, building models with MOA-
specific data resulted in the loss of a significant relationship
for some models. For example, based on the criteria that
MOA-specific models contain N g 5, there were 58 carbamate
models developed from a possible 64 models. Of those 58
carbamate models, 46 were significant at the p ) 0.05 level
(Table 2).

These results are supported by the qualitative analysis of
the northern bobwhite/mallard model built for all data
compared to AChE inhibition, carbamates, OAIs, direct acting
OAIs, and indirect acting OAIs models (Figure 2). The models
built with carbamates and direct acting OAIs had an MSE 2.5
and 1.7 times smaller than the model built with all data,
respectively; however, the carbamate model was not sig-
nificant at the p ) 0.05 level. The MSE for models built with
AChE inhibition, OAI, and indirect acting OAIs data were not
markedly different than the MSE for the model built with all
data and all of these models showed a decrease in R2 relative
to the all data model. Additionally, the Northern bobwhite/

mallard model was not significant when built solely with
indirect acting OAIs (Figure 2).

There was a strong relationship between taxonomic
distance and cross-validation prediction category (ø2 ) 297,
df ) 12, p < 0.0001). There was a decrease in the percentage
of data points in the 5-fold prediction category with increasing
taxonomic distance; models built for species within the same
genus predicted within 5-fold of the actual value for 100%
of all data points, where models built for two species within
the same phylum (bird vs mammal) predicted within 5-fold
of the actual value for 76% of all data points. There was an
increase in the percentage of data points in the other
prediction categories (10-fold, 50-fold, >50-fold) with in-
creasing taxonomic distance (Table 3).

Based on the results of model uncertainty analyses,
surrogacy was evaluated for the avian and mammal species
for which the most models were developed (Table 4). Rock
dove, Japanese quail, and red-winged blackbird all had greater
than 20 models with MSE e 0.22 or R2 g 0.6, indicating that
these three species have the potential to provide good
surrogacy for acute toxicity estimation. Mallard, ring-necked
pheasant, and house sparrow (Passer domesticus) are po-
tentially good surrogates for more than 15 models based on
low MSE or high R2. Northern bobwhite, common grackle
(Quiscalus quiscula), chukar (Alectoris chukar), and red-billed
quelea (Quelea quelea) provided good surrogacy for over 10
species each based on low MSE. For mammal species, both
the Norway rat and mouse had 10 models with MSE e 0.22
or R2 g 0.6 (Table 4).

Discussion
Interspecies correlation estimations for wildlife species were
significant for 560 models built for 49 species. Model MSE

TABLE 2. Mean Square Error (MSE) and R2 ((std) Compared for Models Built with Data from All MOAs with Those Built with
Data from Only One MOA/chemical Class or Subgroup. Only Models That Were Significant (p < 0.05) When Built with One Mode
of Action/Chemical Class or Subgroup Were Included in the Analyses.

mode of action/chemical class models developed significant models model parameter all data models MOA specific models df t p-value

anesthesia 64 50 R2 0.70 (0.11) 0.62 (0.18) 98 2.54 0.01
MSE 0.23 (0.10) 0.24 (0.15) 98 -0.55 0.58

neurotoxicity 38 32 R2 0.71 (0.11) 0.85 (0.10) 62 -5.18 < 0.01
MSE 0.21 (0.06) 0.15 (0.15) 62 2.11 0.04

AChEa inhibition 64 64 R2 0.64 (0.15) 0.56 (0.15) 126 3.30 < 0.01
MSE 0.25 (0.11) 0.22 (0.11) 126 1.50 0.14

carbamates 58 46 R2 0.65 (0.14) 0.65 (0.15) 90 -0.24 0.81
MSE 0.24 (0.10) 0.18 (0.11) 90 2.60 0.01

organophosphorousb 64 64 R2 0.64 (0.15) 0.57 (0.17) 126 2.82 < 0.01
compounds MSE 0.25 (0.11) 0.21 (0.12) 126 1.66 0.10
direct actingc 62 52 R2 0.64 (0.15) 0.70 (0.15) 102 -2.24 0.03

MSE 0.25 (0.12) 0.14 (0.09) 102 5.31 <0.01
indirect actingd 64 54 R2 0.66 (0.13) 0.58 (0.19) 106 2.77 < 0.01

MSE 0.24 (0.11) 0.23 (0.15) 106 0.30 0.76

a AChE is acetylcholinesterase. b Organophosphorous-type acetylcholinesterase inhibitors, including organophosphates, phosphorothioates,
phosphonates, phosphoroamidates, etc. c Direct inhibition of AChE. d Indirect acting requires metabolic transformation to oxon form for AChE
inhibition.

FIGURE 2. MOA/chemical class-specific models for northern
bobwhite and mallard.

TABLE 3. Number of Observations within Each Prediction
Category for Models Grouped by Closest Shared Taxona

cross-validation prediction category

shared
taxonomic

level
total

observations 5-fold 10-fold 50-fold >50-fold

genus 48 48 (100) 0 (0) 0 (0) 0 (0)
family 1452 1332 (92) 89 (6) 31 (2) 0 (0)
order 2238 2014 (90) 154 (7) 63 (3) 7 (0.3)
class 5706 4861 (85) 564 (10) 267 (5) 14 (0.2)
phylum 2402 1836 (76) 322 (13) 208 (9) 36 (1.5)

a Numbers in parentheses are the percentage of observations in
each prediction category for each shared taxonomic level.
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and R2 are linearly related to model robustness and should
be used to guide risk assessors in selection of appropriate
models for toxicity estimation. Based on the strength of their
linear relationships, model MSE explained more variation in
cross-validation success rate than R2 and should be used as
the primary criterion in model selection. High cross-
validation success rate (g90%) for models built for species
within the same genus, family, and order demonstrate that
these models can be used to estimate toxicity of an unknown
chemical with limited and known uncertainty. These results
provide guidance on selecting ICE models for risk assessment;
ICE models are generally most robust when they possess
close taxonomic distance (within order), small model MSE
(approximately 0.22 or less), and large model R2 value
(approximately 0.6 or greater), and high cross-validation
success rate (approximately 85% or greater).

Interspecies extrapolation models use surrogate species,
often standard test organisms, to estimate toxicity of a
chemical to wildlife species for which no toxicity data exists.
In North America, tests are usually conducted on mallards
and northern bobwhite, whereas European countries often
use Japanese quail as their standard test species (13). As a
surrogate species, the number of significant models was 31
for mallard, 20 for northern bobwhite, and 28 for Japanese
quail. Of the models developed for these species, a relatively
large proportion of them possessed combinations of low MSE,
high R2, and/or high cross-validation success rate, demon-
strating their potential to be used as avian surrogates for
estimating toxicity to wildlife species with limited or no
toxicity data for a specific chemical. Several other species,
including red-winged blackbird, rock dove, and ring-necked
pheasant, were surrogate species for more than 20 models
and offer potential to be used as surrogates for toxicity
extrapolation (Table 4). Because model uncertainty increases
with increasing taxonomic distance, estimating toxicity to
mammals from surrogate bird species is not recommended.
The Norway rat and house mouse yielded 9 and 5 robust ICE
models, respectively, for mammal species and are recom-
mended for estimating toxicity to mammals in wildlife risk
assessment. Fewer ICE models for mammal species is a
reflection of a bias toward birds within the dataset and does
not necessarily reflect poor surrogacy of mammal-based
models. As new LD50 values for mammals become available,
ICE models can be updated to include new chemicals and
species in the suite of ICE wildlife models. Future research
should also evaluate other species as surrogates as additional
test data become available.

Model uncertainty analyses using leave-one-out cross-
validation provides only an estimate of generalization error

and is not a true validation of model fitness. Particularly for
models built from small datasets, a small change in the data
can cause a large change in the model (23). Although
bootstrap validation or leave-v-out cross-validation may
provide more robust estimates of error for models built with
larger datasets (24), leave-one-out cross-validation was used
here to maintain uniformity among all 484 models validated.
Additionally, because the model fitness criterion (5-fold) is
based on interlaboratory/inter-test variation of acute toxicity
tests rather than model prediction error, the leave-one-out
method provided a vehicle for comparing estimated toxicity
values among a diversity of different models.

We developed MOA-specific models to determine if there
would be a significant reduction in variability and uncertainty
attributed to chemical class/MOA-specific toxicity, which
can exceed 2 orders of magnitude (1). Reduced model MSE
and increased model R2 were used to determine if MOA-
specific models were improved over models built from all
data. Based on these criteria, only models built from
neurotoxicants, carbamates, and direct acting OAIs were
improved over models built with all data. However, many
MOA-specific models, including those developed for MOAs
that showed model improvement, were not significant at the
p ) 0.05 level (Table 2). Although increased model p-value
is concomitant with reduced degrees of freedom, it also
signifies a reduction in model robustness and confidence.
While there is evidence to suggest that models may be
improved when built with MOA-specific data, abundant data
is necessary to ensure model robustness is preserved.
Chemical class and MOA-specific ICE models may provide
significant improvement in sublethal toxicity prediction;
however, the development of ICE models for chronic toxicity
is problematic because of relatively limited datasets com-
pared to acute toxicity.

The comparison of MOA-specific models with models
built from all data was only conducted for a small group of
MOA and subgroups; however, more than half of the MOA-
specific models did not demonstrate marked improvement
over models built with all data. The ICE models show that
chemical classes and MOAs with high toxicity in one wildlife
species generally have high degree of toxicity in another
species. Also, ICE models describe interspecies variation on
a logarithmic scale, in which a large degree of change in
actual toxicity values is necessary for a small change in the
linear model. This comparison might yield different results
if the compared models were of equal sample sizes (i.e., by
selecting a random subsample of all data that was equal in
size to the MOA-specific dataset); however, this analysis was
conducted to identify and provide users with the most robust

TABLE 4. Summary of the Surrogate for Which the Most ICE Models Were Developed and the Number of Models of Each
Surrogate Fitting Each Model Parameter (i.e., MSE, R2, etc.) Criteriaa

surrogate species N
average

MSE MSE e 0.22 R 2 g 0.6
cross-validation

success rate g 85%
taxonomic

distance e 3

chukar 21 (19) 0.22 11 9 9 8
common grackle 22 (22) 0.18 16 6 18 9
house sparrow 23 (20) 0.16 16 18 16 8
japanese quail 28 (26) 0.21 20 22 18 9
mallard 31 (28) 0.23 17 17 13 2
northern bobwhite 20 (20) 0.26 13 10 13 8
red-billed quelea 22 (18) 0.14 17 14 12 9
red-winged blackbird 34 (31) 0.20 21 20 17 12
ring-necked pheasant 28 (25) 0.26 17 16 13 9
rock dove 30 (26) 0.19 23 21 19 2
starling 21 (19) 0.26 7 6 8 8
mouse 19 (19) 0.22 10 11 10 3
Norway rat 26 (26) 0.29 10 11 14 6
a The total number of models developed is indicated as N, with the number of models for which cross-validation success rate could be calculated

in parenthesis.
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ICE models for risk assessment. While it is recognized that
MOA and chemical class are important determinants of acute
toxicity (25), it does not appear necessary to develop MOA-
specific models to achieve confident ICE model estimates
for use in risk assessment. The results of these analyses
suggest that ICE models built from all available data can be
used to estimate acute toxicity in wildlife species over a broad
range of MOA and chemical classes with known uncertainty.

Safety factors, the generation of species sensitivity dis-
tributions (SSDs) with or without body size scaling, or within-
compound extrapolation models based on body size alone
have been the most commonly used methods for extrapolat-
ing toxicity between wildlife species in ecological risk
assessment. Safety factors and within-chemical weight-based
models have been typically used to extrapolate toxicity from
a test species to untested but identified ecological receptors,
while SSDs have been used to identify generic receptors of
putative sensitivity. Fairbrother (26) and others have recom-
mended greater reliance on empirical data and robust
statistical approaches because of the high variation in
organism responses and the sometimes arbitrary nature of
safety factors. Body size scaling in birds and mammals is an
empirical approach that extrapolates from an LD50 (mg/kg)
based on organism weight. Scaling factors can vary greatly
for different chemicals and where chemical-specific factors
are unknown, an average is applied to extrapolate toxicity
among wildlife species (1-2). ICE models provide an
additional tool for estimating the acute toxicity of chemicals
to a diversity of wildlife species with known uncertainty across
MOA and taxonomic level. There may be grounds to
incorporate scaling in future ICE models, isolating the
proportion of the overall inter-species variance that is the
result of chemical-specific scaling from the variance resulting
from phylogeny and other scale-independent factors. In
theory, this should yield ICE models with lower overall MSE.
Unfortunately, such an approach will prove data-intensive
and will be of minimal usefulness for new chemicals for which
few species have been tested.

The application of ICE models requires selection of the
most appropriate surrogate species based on a review of
model robustness (R2, MSE, degrees of freedom (df), p-value),
cross-validation success rate, and taxonomic distance. In a
hypothetical example, the acute toxicity of a chemical to the
red-winged blackbird needs to be estimated in light of
available data on the toxicity of the chemical to five species:
northern bobwhite, mallard, Japanese quail, fulvous whistling
duck, or common grackle (see Supporting Information 2).
The grackle has the closest taxonomic distance (2), low MSE
(0.11), highest cross-validation success rate (98), high R2 (0.65),
and high degrees of freedom (53), and is the best potential
surrogate in this example. Japanese quail (MSE ) 0.19, R2 )
0.79, df ) 134, cross-validation success rate ) 92, taxonomic
distance ) 4) would be the next best surrogate based on low
MSE and high cross-validation success rate, followed by
northern bobwhite (MSE ) 0.22, R2 ) 0.63, df ) 45, cross-
validation success rate ) 87, taxonomic distance ) 4) and
mallard (MSE ) 0.27, R2 ) 0.48, df ) 80, cross-validation
success rate ) 87, taxonomic distance ) 4). Although fulvous
whistling duck has the highest model R2 (0.91) and lowest
MSE (0.05), low df (df ) 2) and high p-value (0.047) do not
make it as good of a surrogate as other species because the
range of applicability of the model is limited by the small
dataset and the significance of the relationship is weak.

In screening level assessments, high confidence in in-
terspecies toxicity estimation is necessary. To increase
confidence in ICE model predictions, confidence limits may
be calculated for the expected toxicity value (15). Narrow
confidence limits represent high confidence that the model
fits through the range of datapoints for the specified surrogate
species toxicity. ICE model have the most confidence, and

can only be cross-validated, within the range of data points
that were used to estimate the model. As such, using ICE
models to predict a toxicity value from surrogate species
toxicity outside the range of values used to develop the model
increases model uncertainty. Because model certainty is also
a function of model attributes, further analyses should include
a mechanistic interpretation of model attributes such as slope
and intercept.

ICE Model information (including minimum, maximum,
and average values of the surrogate species used to derive
each model) and equations are provided in the Supporting
Information 2 to facilitate use of these models in risk
assessment. Additionally, the models developed here are
available as a predictive modeling tool (Web-ICE) through
the EPA Center for Exposure Assessment Modeling website
(http://www.epa.gov/ceampubl/fchain/index.htm), where
updates to these models will be provided as new data
becomes available. This Internet tool provides model in-
formation and user guidance, and calculates toxicity values
and confidence intervals for selected models. ICE models
can be used when toxicity data for a specific chemical are
available for a selected surrogate species, and there is an
existing model between the species pair of interest. Models
should be selected appropriately (close taxonomic distance,
low MSE, high R2, high df, high cross-validation success rate)
for application in wildlife risk assessment to reduce uncer-
tainty in determining species sensitivity. The application of
ICE models should be considered as an additional approach
for extrapolating across species and for assessing relative
species sensitivity.
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