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Few quantitative structure-activity relationship (QSAR) studies have successfully modeled large, diverse
rodent toxicity end points. In this study, a comprehensive data set of 7385 compounds with their most
conservative lethal dose (LD50) values has been compiled. A combinatorial QSAR approach has been
employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to
chemicals. To enable fair comparison between the predictive power of models generated in this study
versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology),
a modeling subset of the entire data set was selected that included all 3472 compounds used in TOPKAT’s
training set. The remaining 3913 compounds, which were not present in the TOPKAT training set, were
used as the external validation set. QSAR models of five different types were developed for the modeling
set. The prediction accuracy for the external validation set was estimated by determination coefficient R2

of linear regression between actual and predicted LD50 values. The use of the applicability domain threshold
implemented in most models generally improved the external prediction accuracy but expectedly led to
the decrease in chemical space coverage; depending on the applicability domain threshold, R2 ranged
from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted
LD50 for every compound using all five models. The consensus models afforded higher prediction accuracy
for the external validation data set with the higher coverage as compared to individual constituent models.
The validated consensus LD50 models developed in this study can be used as reliable computational
predictors of in vivo acute toxicity.

1. Introduction

Chemical toxicity can be associated with many hazardous
biological effects such as gene damage, carcinogenicity, or
induction of lethal rodent or human diseases. It is important to
evaluate the toxicity of all commercial chemicals, especially
the high production volume (HPV)1 compounds as well as drugs
or drug candidates, since these compounds could directly affect
human health. To address this need, standard experimental
protocols have been established by the chemical industry,
pharmaceutical companies, and government agencies to test
chemicals for their toxic potential. For example, a so-called
“Standard Battery for Genotoxicity Test” was established by
the International Conference on Harmonization, U.S. Environ-
mental Protection Administration (EPA), U.S. Food and Drug
Administration (FDA), and other regulatory agencies. This test
includes one bacterial reverse mutation assay (e.g., Salmonella

typhimurium mutation test), one mammalian cell gene mutation
assay (e.g., mouse lymphoma cell mutation test), and one in
vivo micronucleus test. The test battery varies slightly for
pharmaceutical compounds, industrial compounds, and pesti-
cides. The current strategies and guidelines for toxicity testing
have been described in a recent review (1).

Although the experimental protocols for toxicity testing have
been developed for many years and the cost of compound testing
has been reduced significantly, computational chemical toxicol-
ogy continues to be a viable approach to reduce both the amount
of effort and the cost of experimental toxicity assessment (2).
Significant savings could be achieved if accurate predictions
of potential toxicity could be used to prioritize compound
selection for experimental testing, especially for testing in vivo.

Many quantitative structure-activity relationship (QSAR)
models have been developed for different toxicity end points
to address this challenge (3–6). A summary of several models
reported in earlier publications on acute rodent toxicity is given
in Table 1. There are several shortcomings of earlier toxicity
QSAR models that should be pointed out. Most of these studies
included a relatively small number of congeneric compounds,
and as a result, they had limited applicability for compounds
outside of the modeling set. Very few successful QSAR models
have been reported for predicting in vivo toxicity end points
that are applicable to the diverse compounds of environmental
interest (5, 7, 8). For instance, Enslein and co-workers (9, 10)
developed multilinear regression models using large, diverse
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training sets (425 and 1851 chemicals, respectively), but these
models had relatively poor external prediction power, yielding
an R2 value of 0.33 for the large test set.

Indeed, accurate prediction of toxicity for compounds that
were not used for model development is a very challenging
problem. QSAR models are generally more applicable for the
analysis of small data sets of similar compounds with a simple
mechanism of action (e.g., congeneric molecules binding to
the same receptor or inhibiting the same enzyme) and less
accurate for larger data set of compounds with complex
mechanisms of action. Toxicity prediction is a hard problem
because there are multiple underlying mechanisms of action,
and the data sets studied in the context of a general end point
(e.g., rat LD50) are large and chemically diverse. Furthermore,
QSAR models are developed by interpolating the training set
data; therefore, they inherently have limited applicability outside
of the training set. At the same time, any external prediction
implies inherent and, frequently, excessive extrapolation of the
training set models. Poor external predictive power of QSAR
models could be due to the lack of or incorrect use of external
validation during the modeling process. Each statistical method
used in QSAR studies has its particular advantages, weaknesses,
and practical constraints, so it is important to select the most
suitable QSAR methodology for a specific toxicity end point.
Thus, the toxicity prediction challenge should be addressed very
carefully using rigorous modeling approaches and extensive
model validation procedures.

Our recent studies of aquatic toxicity offered potential
solutions to some of the above problems (11). A combinatorial
QSAR approach was applied to study an aquatic toxicity data
set containing 983 diverse organic compounds tested against
Tetrahymena pyriformis (11). To explain our choice of meth-
odology and terminology, any QSAR modeling effort requires
a set of chemical descriptors and a statistical optimization
approach to develop the best correlation between values of
descriptors and those of biological activity. For any data set,
there are several sets of descriptors that could be calculated using
different available software packages. Similarly, there are
multiple statistical modeling approaches that could be employed
with any of the descriptor sets. In the practice of QSAR
modeling, there is no standard combination of the descriptor
type and model optimization approach that works best for all
data sets. In addition, different QSAR methods usually use
different definitions of applicability domain (AD) (or in most
cases do not use the AD at all). Combinatorial QSAR modeling
implies that for a given experimental data set we calculate
several sets of descriptors and employ several statistical model-

ing approaches forming all-against-all pairwise combinations
of descriptor sets and modeling techniques to develop multiple
types of QSAR models. We require that each model must satisfy
certain validation criteria. As we demonstrated in the earlier
study (11), the consensus models had the highest external
prediction power as compared to any individual model used in
the consensus prediction. Because the individual models can
have differently defined ADs, the consensus method can also
afford greater chemical space coverage as well.

In this paper, a similar combinatorial QSAR workflow was
employed to study a much larger and more chemically diverse
data set (arguably, the largest and most diverse in vivo toxicity
data set ever reported in the public domain) containing 7385
unique organic compounds with experimentally determined oral
rat acute toxicity. We have explored various QSAR approaches
in terms of their ability to develop robust and externally
predictive models. The consensus prediction integrating all
validated individual models was found to be the most accurate
(using an external prediction set) when compared both to each
individual model used in the consensus approach and to a
popular commercial software, TOPKAT. The consensus models
developed in this study could be used as reliable predictors of
rodent acute toxicity for chemical compounds. The models will
be made available through the ChemBench web portal main-
tained in our laboratory (http://chembench.mml.unc.edu).

Materials and Methods

Data Sets. The rat LD50 data were collected from different
sources (12) to form a data set including more than 8000
compounds. The structures of those compounds were verified using
the approach discussed by Young’s group (13). The quality of the
data has been extensively reviewed over the past several years. After
inorganic and organometallic compounds, salts, and compound
mixtures were removed, the final acute toxicity data set included
7385 unique organic compounds. The original values of LD50 for
each compound were expressed as mol/kg; these were converted
to log[1/(mol/kg)] values according to standard QSAR practices.
Chemical structures of all compounds and their experimental LD50

values used in this study are available from the authors upon request.
This data set was compared with the training set used to develop

the rat acute toxicity predictor available from the commercial
Toxicity Prediction by Komputer Assisted Technology (TOPKAT)
software. It was found that 3472 out of 7385 compounds were
included in the TOPKAT rat LD50 training database. To enable
direct comparison of external predictive power for models generated
in our studies vs TOPKAT, these 3472 compounds were used as
the modeling set and the remaining 3913 compounds as the external
validation set.

QSAR Modeling Approaches. Descriptors. Rat LD50 models
for the 3472 modeling set compounds were developed with various
types of chemical descriptors, including those from the Dragon
software v5.4 (14) and a set of descriptors developed previously
by Martin and co-workers at the U.S. EPA (15). The latter set
consisted of more than 800 descriptors in the following classes:
E-state values and E-state counts, constitutional descriptors, topo-
logical descriptors, walk and path counts, connectivity, information
content, 2D autocorrelation, Burden eigenvalues, molecular proper-
ties (such as the octanol-water partition coefficient), kappa,
hydrogen bond acceptor/donor counts, molecular distance edge, and
molecular fragment counts. There were overlaps between Dragon
and EPA descriptors, but both included unique types of descriptors
as well. The Dragon descriptors were used for the k nearest neighbor
(kNN) and random forest (RF) methods, and the EPA descriptors
were used for the hierarchical clustering, FDA MDL QSAR, and
nearest neighbor QSAR methods.

Initial use of Dragon yielded more than a thousand chemical
descriptors for the training set, which were processed as follows.

Table 1. Details of Previous QSAR Studies of Acute Rodent
Toxicity

year source class(es) studied Nmod
a

statistical
methodb

validation set
used?

1978 ref 9 multiple 425 MLR yes
1983 ref 10 multiple 1851 MLR yes
1985 ref 30 alcohols 68 BR no
1987 ref 31 multiple 147 MLR no
1991 ref 32 amines and anilines 26/33 MLR no
1996 ref 33 amides 44 MLR/NN no
1998 ref 34 alcohols 95 E yes
1999 ref 35 organo-phosphorus 49 MLR/NN yes
2006 ref 36 chlorosilanes 10 LR no
2006 ref 37 organo-phosphorus 38 CoMFA no
2007 ref 38 multiple 49 LR yes
2007 ref 39 substituted benzenes 28 MLR yes

a Size of the modeling data set. b LR, linear regression; MLR,
multilinear regression; NN, neural network; BR, bilinear regression; E,
expert system; and CoMFA, comparative molecular field analysis.
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First, we removed all descriptors that had zero values or zero
variance for all modeling set compounds. Furthermore, redundant
descriptors were identified by analyzing correlation coefficients
between all pairs of descriptors; if the correlation coefficient
between two descriptor types for all modeling set compounds was
higher than 0.95, one of them was removed. As a result, the total
number of Dragon descriptors used for model building was reduced
to 454. The number of EPA descriptors used for model building
(for the hierarchical clustering and FDA MDL QSAR methods)
varied depending on the size and composition of the training set
molecules that were used for model building.

kNN. The kNN QSAR method (16) employs the kNN classifica-
tion principle and a variable (i.e., descriptor) selection procedure.
Briefly, a subset of nvar (number of selected descriptors) descriptors
is selected randomly at the onset of the calculations. The nvar is
set to different values, and the training set models are developed
with leave-one-out cross-validation (LOO-CV), where each com-
pound is eliminated from the training set and its LD50 value is
predicted as the average activity of k most similar molecules, where
the value of k is optimized as well (k ) 1-5). The similarity is
characterized by Euclidean distance between compounds in mul-
tidimensional descriptor space. A method of simulated annealing
with the Metropolis-like acceptance criteria is used to optimize the
selection of descriptors. The objective of this method is to optimize
nvar and k values to obtain the best possible LOO-CV qabs

2, that
is, q2 with the intercept set to zero, by optimizing the nvar and k.
The additional details of the method can be found elsewhere (16).

In developing kNN QSAR models, we followed our general
predictive QSAR modeling workflow methodology (17), which
places special emphasis on model validation. Briefly, we start by
dividing the original data set randomly into a (bigger) modeling
set and a (smaller) external validation set; the latter is not used for
model development at all, and the former is designated as a
modeling set. The modeling set compounds are divided multiple
times into training/test sets using the Sphere Exclusion approach
(18), which ensures that both training and test sets are chemically
diverse. The models are developed using training set data, and their
performance is characterized with the standard LOO-CV R2 (q2)
for the training sets and the conventional coefficient of determi-
nation R2 for the test sets; this coefficient is determined for a
regression that is forced through the origin of the experimental vs
calculated LD50 plot. The model acceptability threshold values of
the LOO-CV accuracy of the training sets and the prediction
accuracy for test sets were both set at no less than 0.5. Models that
did not meet both training and test set cutoff criteria were discarded.
Models that passed these threshold criteria were used to predict
LD50 values of the external validation set to ensure their external
predictive power as discussed in the Results and Discussion section.
The detailed discussion of the workflow used to develop validated
QSAR models can be found in a recent review (19).

RF. In machine learning, a RF is a predictor that consists of
many decision trees and outputs the prediction that combines outputs
from individual trees. The algorithm for inducing a RF was
developed by Breiman and Cutler (20). In this study, the imple-
mentation of the RF algorithm available in R.2.7.1 (21) was used.
In the RF modeling procedure, n samples are randomly drawn from
the original data. These samples were used to construct n training
sets and to build n trees. For each node of the tree, m descriptors
were randomly chosen from the total 454 Dragon descriptors. The
best data split was calculated using these m descriptors for each
training set. In this study, only the defined parameters (n ) 500
and m ) 13) were used for the model development.

Hierarchical Clustering. The hierarchical clustering method
utilizes a variation of the Ward’s Minimum Variance Clustering
Method (22) to produce a series of clusters from the initial training
set. For a training set of n chemicals, initially there will be n clusters.
At each step in the clustering process, two clusters are combined
so that the increase in variance over all of the clusters in the system
is minimized. The change in variance caused by combining clusters
j and k is as follows:

where nj ) number of chemicals in cluster j, Cj,i is the centroid (or
average value) for descriptor i for cluster j, and d is the number of
descriptors in the EPA pool of descriptors (∼800) (15). The process
of combining clusters while minimizing variance continues until
all of the chemicals are lumped into a single cluster. After the
clustering is complete, each cluster is analyzed to determine if an
acceptable QSAR model can be developed. A genetic algorithm
technique is used to select descriptors to build a multilinear
regression model for each cluster (15). Similar to the kNN approach,
each model must achieve a LOO-CV accuracy of 0.5 to be used in
making predictions. The predicted value for a given test chemical
is calculated using the equally weighted average of the model
predictions from the closest cluster from each step in the hierarchical
clustering. This method was previously shown to yield the best
results for another acute toxicity end point, IGC50 (50% inhibitory
concentration of population growth) of T. pyriformis (15).

FDA MDL QSAR Method. A QSAR methodology (denoted
here as the FDA MDL QSAR method) based on the studies
of Contrera et al. (23) was developed earlier (15). For each test
chemical, a cluster is constructed using the 30 most similar
chemicals from the training set as defined by the cosine similarity
coefficient, SCi,k, which is calculated as follows

where xij is the value of the j-th normalized descriptor for chemical
i (normalized with respect to all of the chemicals in the original
training set) and xkj is the value of the j-th descriptor for chemical
k. The entire pool of approximately 800 EPA descriptors is used
to calculate the similarity coefficient in eq 2. A multiple linear
regression model is then built for the new cluster using a genetic
algorithm-based method, and the toxicity is predicted.

Nearest Neighbor Method. The nearest neighbor method is a
simplification of the variable selection kNN approach described
above. In the nearest neighbor method, the toxicity is simply
predicted as the average of the toxicity of the three most similar
chemicals from the training set. The similarity is defined in terms
of the cosine similarity coefficient (eq 2). In the nearest neighbor
method, the entire available descriptor pool is used to characterize
molecular similarity (as opposed to a subset of the descriptor pool
as in the descriptor selection kNN method). To make a prediction,
each of the neighbors in the training set must exceed a minimum
cosine similarity coefficient of 0.5.

Identification of Outliers in the Data Set. A common problem
for most QSAR studies is the existence of compounds that are
highly dissimilar to all other compounds in the data set. These
compounds are regarded as outliers in the descriptor space and are
likely to present problems in establishing SAR trends, which is
critical to QSAR modeling. In this study, we have identified and
excluded the structural outliers from the modeling at the beginning
of the modeling procedure.

For kNN and RF modeling procedures, we have developed a
method to detect outliers that are dissimilar to other compounds of
the data set in the descriptor space. This procedure included the
following steps. (1) calculation of the distance or similarity matrix
based on the Dragon descriptors of compounds in the descriptor
space, (2) finding the nearest neighbors for all compounds in the
data set based on a predefined similarity threshold, and (3)
identifying those compounds that have no nearest neighbors as
outliers.

To measure similarity, each compound i is represented by a point
in the M-dimensional descriptor space (where M is the total number

∆σ2 )
njnk

nj + nk
∑
i)1

d

(Cj,i - Ck,i)2 (1)

SCi,k )
∑
j)1

#descriptors

xijxkj

� ∑
j)1

#descriptors

xij
2 · ∑

j)1

#descriptors

xkj
2

(2)
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of descriptors) with the coordinates Xi1, Xi2, ..., XiM, where Xis (s )
1, ..., M) are the values of individual descriptors. The molecular
dissimilarity between any two molecules i and j is characterized
by the Euclidean distance between their representative points. The
Euclidean distance dij between points i and j in M-dimensional space
can be calculated as follows (eq 3):

Compounds with the smallest distance between them are
considered to have the highest similarity. The distances (dissimilar-
ity) of compounds in our modeling set are compiled to produce a
chemical similarity threshold DT, calculated as follows (eq 4):

Here, yj is the average Euclidean distance between all compounds
and their kNNs (k was set to 1 in this procedure) of each compound
within the modeling set, σ is the standard deviation of these
Euclidean distances, and Z is an arbitrary parameter to control the
threshold level and was set to 0.5 in this study. The DT threshold
is used to identify outliers as follows. If the distance of a compound
to its nearest neighbor in the modeling set exceeds this threshold,
this compound is considered an “outlier” and excluded from the
modeling set. After excluding 997 structural outliers, the remaining
2475 modeling set compounds were compiled as a new reduced
modeling set to develop kNN and RF toxicity models.

It is important to point out that the identification and exclusion
of outliers are based only on consideration of chemical similarity
but not activity. Thus, the removal of structural outliers could be
regarded as a pretreatment of the modeling set using objective
chemometric approaches.

For the hierarchical and FDA MDL QSAR methods, a chemical
is removed from a cluster if it is both an influential data point
(determined by at least two statistical tests, for example, DFFITS,
leverage, Cook’s distance, and covariance ratio) and an outlier
(determined from studentized deleted residual). The details of these
procedures are given elsewhere (24).

Model ADs. Defining model ADs is an active area of modern
QSAR research (25, 26). Every QSAR model can formally predict
the relevant target property for any compound for which chemical
descriptors can be calculated. However, because each model is
developed using compounds in the training set only [that cover
only a small fraction of the entire chemistry (i.e., descriptor) space],
the special AD for each model should always be defined. As a
consequence, only a certain fraction of compounds in any external
data set is expected to fall within the AD. This fraction is therefore
referred to as the data set coverage. There are several discussions
about model AD in a recent publication (27). In this study, we
present a detailed discussion concerning the effect of the AD on
model predictivity using much larger modeling/validation sets than
any other reported in the literature including our own previous
publications.

AD of kNN and RF. The AD of kNN and RF models is
calculated from the distribution of similarities between each
compound and its kNN in the training set (similarities are computed
as Euclidean distances between compounds represented by their
multiple chemical descriptors). On the basis of the previous studies,
the standard cutoff value to define the AD for a QSAR model places
its boundary at one-half of the standard deviation calculated for
the distribution of distances between each compound in the training
set and its kNNs in the same set. Thus, if the distance of the test
compound from any of its kNNs in the training set exceeds the
threshold, the prediction is considered unreliable. The detailed
description of the algorithm to define this AD is given elsewhere
(18, 28).

AD of the Hierarchical Method. Before any cluster model can
be used to make a prediction for a test chemical, it must be
determined whether the test chemical falls within the AD for the

model. The first constraint, the model ellipsoid constraint, checks
if the test chemical is within the multidimensional ellipsoid defined
by the ranges of descriptor values for the chemicals in the cluster
(for the descriptors appearing in the cluster model). The model
ellipsoid constraint is satisfied if the leverage of the test compound
(h00) is less than the maximum leverage value for all of the
compounds used in the model (29). The second constraint, the Rmax

constraint, checks if the distance from the test chemical to the
centroid of the cluster is less than the maximum distance for any
chemical in the cluster to the cluster centroid. The final constraint,
the fragment constraint, stipulates that the chemicals in the cluster
must contain at least one example of each of the fragments that
are present in the test chemical (15).

AD of the FDA MDL QSAR Method. For the prediction from
the cluster model to be valid, several constraints must be met. The
first two constraints are the model ellipsoid and fragment constraints
described above. The final constraint is that the predicted toxicity
value must be within the range of experimental toxicity values for
the chemicals used to build the model (15).

AD of the Nearest Neighbor Method. For a prediction from
the nearest neighbor method to be made, there must be three
chemicals in the training set that are sufficiently similar to the test
chemical (the similarity coefficient between each chemical and the
test chemical in eq 1 must exceed 0.5).

Results and Discussion

Individual LD50 Models. The statistical parameters of
predictions for the external validation set obtained from all five
QSAR models developed in this study as well as using TOPKAT
are shown in Table 2. It is difficult to compare all models side
by side because the underlying approaches used different
definitions of AD; therefore, the statistical results are shown
for external data sets of different sizes. Indeed, these initial
results suggest that the prediction accuracy and chemical space
coverage are tightly interlinked, and in general, as expected,
higher accuracy is obtained for smaller external data sets within
the AD of each model. Models with the most liberally defined
AD (and consequently, the highest coverage), that is, NN and

dij ) �∑
k)1

M

(Xik - Xjk)2 (3)

DT ) yj + Zσ (4)

Table 2. Statistical Results Obtained with All QSAR Models
for the External Validation Set of 3913 Compounds

models R2 MAE coverage (%)

kNN 0.66 0.44 19
RF 0.70 0.41 19
hierarchical clustering 0.41 0.58 66
NN 0.24 0.61 97
FDA MDL QSAR 0.29 0.60 95
TOPKAT 0.35 0.59 74

Figure 1. MAEs of five QSAR models for the external validation
set.
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FDA MDL QSAR, had the lowest R2 and the highest mean
absolute error (MAE) followed by TOPKAT and hierarchical
clustering, which had progressively higher R2 values (although
similar MAE) and smaller coverage. Nevertheless, for these four
models, the absolute R2 values were relatively low, that is, under
0.5. Only two models (kNN and RF) afforded R2 higher than
0.50 and MAE lower than 0.50 for the external validation set,
but the external data set coverage of these two models is the
lowest (19%) among all models. It could be argued that for
this data set (and perhaps for any large and diverse data set), it
is critical to define a rather restrictive AD to achieve the most
accurate predictions, as discussed in more detail below.

Effect of the Model AD. All five QSAR approaches
implemented method-specific AD except kNN and RF models,
which used the same definition of AD. On average, the use of
AD improved the performance of individual models, although
the improvement came at the expense of the lower chemical
space coverage. The direct comparison between individual

models appears difficult due to different definitions of AD and
different interplay between coverage and accuracy for relevant
models.

Figure 1 shows the distribution of MAE values for the
prediction of external validation set for TOPKAT, five individual
models, and consensus model developed in this study (see the
additional discussion of the consensus model below). The results
included the MAE of these models for all external compounds,
those located within the AD of each model, and those outside
of AD. Notably, all models showed similar predictivity when
applied to the entire external set, but the effect of AD was indeed
model-specific. Six (TOPKAT, kNN, RF, hierarchical clustering,
FDA MDL QSAR, and consensus) out of seven QSAR models
that used the AD showed the improvement in the prediction
accuracy for external validation set as a result of excluding those
compounds outside of the AD. The result of NN practically
did not change after applying the AD criteria. This is not
surprising given that there were only very few compounds that
were outside of the structural AD in this model.

Table 3. Statistical Results Obtained from All QSAR Models for the External Validation Set of 3913 Compounds

TOPKAT AD (2896 compounds
predicted, 74% coverage)

hierarchical clustering AD
(2583 compounds predicted, 66% coverage)

kNN and RF AD (743 compounds
predicted, 19% coverage)

models R2 MAE R2 MAE R2 MAE

kNN 0.41 0.55 0.40 0.57 0.66 0.44
RF 0.33 0.54 0.41 0.56 0.70 0.41
hierarchical clustering 0.33 0.59 0.41 0.58 0.65 0.45
NN 0.35 0.57 0.41 0.58 0.66 0.44
FDA MDL QSAR 0.37 0.57 0.40 0.59 0.64 0.45
TOPKAT 0.35 0.59 0.25 0.70 0.54 0.52
consensusa 0.42 0.52 0.48 0.51 0.71 0.39

a TOPKAT results were not included in the consensus model.

Table 4. Comparison of the Average Experimental LD50 Values for the Modeling Set Compounds, Validation Set Compounds,
and the Validation Set Compounds with Large Prediction Errors (MAE > 1.0)

a N is the number of compounds.
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The different predictivity of the external validation set
obtained from five QSAR models does not necessarily indicate
that statistical approaches or descriptors used to develop these
models have greatly different predictive power for this specific
toxicity end point. It is noticeable that the resulting predictive
accuracy strongly correlates to the model coverage that is
decided by the model AD. Once a more restrictive AD was
applied, the predictive accuracy improved significantly (Table
2). For this reason, it is interesting to study the performance of
each model when the same model AD was implemented.
Because only a small number of compounds were out of the
ADs of NN and FDA MDL QSAR models, the remaining two
model ADs (ADs of hierarchical clustering and kNN/RF) and
the AD of TOPKAT were used to study the prediction accuracy
of each model under the same prediction coverage (Table 3).

When using the same model AD, the prediction coverage of
the external prediction set obtained from each individual QSAR
models is almost but not exactly the same. This is because there
are some compounds (less than 1% of the total external
compounds) that cannot be predicted using the hierarchical
clustering method even if all of the constraints are relaxed. At
similar levels of prediction coverage, the individual predictions
using models generated in this study are similar to each other.
Interestingly, the results generated using all models are ap-

proximately the same (in terms of R2 and MAE) when using
TOPKAT defined AD, with the kNN method arguably showing
slightly better performance. However, somewhat surprisingly,
with the decrease of the chemical space coverage, most of the
individual models developed in this study appear consistently
superior to TOPKAT (Table 3). It may be concluded that the
prediction accuracy is not sensitive to the statistical approaches
employed in this paper but strongly depends on the model AD.
Again, as noted above, it could be concluded that the higher
accuracy of prediction comes at the expense of reducing the
chemical space coverage.

Compounds That Can Not Be Correctly Predicted by
Individual Models. There are some compounds that could not
be predicted accurately by any of the five individual models.
Using MAE > 1.0 as criteria, there are 520 validation set
compounds with large prediction errors for any of the individual
models. Some specific chemical scaffolds could be identified
from these 520 compounds. These scaffolds and the comparison
between the average LD50 values of the associated compounds
in the modeling set, external validation set, and those validation
set compounds that have large prediction errors are listed in
Table 4. The average LD50 value of these compounds is 3.4,
and it is much higher than that of the compounds in the modeling
set (2.47). Therefore, the relatively small fraction of compounds
with high values of acute toxicity in the modeling set is a
potential reason of the low prediction accuracy for these 520
compounds.

Ten out of 17 steroidlike compounds in the validation set
have large prediction errors. As shown in Table 4, the five
steroids in the modeling set have lower acute toxicity (average
LD50 ) 2.5) than these 10 compounds (average LD50 ) 4.6). A
similar observation is true for the esters. Compounds with the
same scaffolds and high acute toxicity need to be added into
the modeling set to accurately predict these types of compounds.
On the contrary, all five dioxins in the validation set have much
lower toxicity (average LD50 ) 5.1) than those three in the
modeling set (average LD50 ) 8.2). Therefore, dioxins with
lower acute toxicity need to be added to the modeling set to
accurately predict this type of compounds. There is no clear
difference between the average LD50 value of 49 thiophosphates
with large prediction errors in the validation set and the 285
thiophospates in the modeling set. However, the activity range

Figure 2. Prediction of external compounds by consensus model and
TOPKAT with different consensus prediction fraction levels.

Figure 3. Correlation of experimental and consensus predicted LD50 values when the consensus prediction fraction is 80% (compounds are within
AD of four or more individual models).
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of these 49 thiophosphates in the validation set is from 1.2 to
6.3, which is much larger than the activity range of 285
thiophospates in the modeling set, which is from 1.6 to 5.4.
For this reason, thiophosphates with both high and low acute
toxicity values need to be added to the validation set to improve
the model predictivity for this type of compounds. These results
indicate the existing shortcomings of the TOPKAT LD50

modeling set. Apparently, the modeling set should be balanced
not only in terms of chemical diversity of compounds but also
their activity distribution to afford higher external accuracy of
models.

Consensus Modeling. The statistical results obtained with
individual models indicate that different modeling techniques
may have different advantages for predicting the rat oral LD50

of organic compounds. Although the performances of our
individual models are comparable or slightly better than that of
TOPKAT, it is difficult to judge which model is better than
others and which model should be chosen to predict rat acute
toxicity potential of new compounds. For this reason, following
a strategy that was proven successful in our previous studies
(11), a simple consensus model was developed that integrated
all of the individual models. In this approach, the LD50 value
for each compound is predicted as the arithmetic average of all
LD50 values predicted by individual models taking into account
the model ADs. Note that additional averaging schemes giving,
for example, different weights to different contributing models
could be used in principle. However, there has not been
sufficient research in the QSAR modeling community into
looking for the most optimal scheme for the ensemble QSAR
modeling. Thus, we chose the simplest approach in this study.
The detailed comparison between consensus predictions and
those of other models when using the same AD is listed in Table
3. The data clearly demonstrate that the predictive accuracy of
consensus model is higher than that for any individual model.
In addition, we used the Wilcoxon test to calculate the p values
for the differences in MAEs obtained by consensus prediction
vs individual methods. Under almost all conditions, the im-
provement achieved by consensus prediction, as compared with
any individual model, is statistically significant (p < 0.01), and
the only exception is when comparing consensus prediction with
RF for the 743 compounds in the AD of RF models (p ) 0.4).

From the discussion above, it is clear that the AD is an
important factor that affects the predictive accuracy of each
individual model. In the consensus prediction, model AD was
implemented by introducing the concept of “consensus predic-
tion fraction”. Because the consensus prediction is the average
of predictions using all five models, the fraction of the prediction
could be defined as the number of individual model predictions
that are available to predict a new compound (due to the AD
limitations). Thus, if only one model could predict a compound,
the consensus prediction fraction is 20% for this compound. If
all five models could make the prediction, the prediction fraction
of the consensus model is 100%. Different cutoff values for
the prediction fraction could be set to get different prediction
accuracy (and different coverage) based on this threshold. Figure
2 shows the change of prediction accuracy of external set, which
is indicated by R2 and MAE, obtained by consensus prediction
with different fraction cutoff values. For comparison, the
TOPKAT prediction for the same external compounds is also
shown in the same Figure 2. Increasing the prediction fraction
level increased the prediction accuracy but decreased the
prediction coverage. Figure 3 shows the relationship between
experimental and consensus-predicted LD50 values when the
prediction fraction is 80%. The compounds outside of the AD

in this consensus prediction are also shown (Figure 3). Obvi-
ously, the removal of outliers improves the correlation. Fur-
thermore, it is also interesting to compare the prediction
coverage and accuracy that is indicated by R2 and MAE. Figure
4 shows the inverse correlation between the coverage and the
R2 (or direct correlation between the coverage and MAE) for
all individual models (including TOPKAT) and consensus model
(including the results of different prediction fractions). It is clear
that the prediction accuracy obtained by this consensus model
is higher than that for any individual model under any conditions
(Figure 4).

A further understanding of the predictive ability of the models
used in this study can be obtained by analyzing compounds for
which consensus prediction gave higher accuracy than any of
the individual models. It is clear that if all five individual models
make similar predictions for a compound, the value from
consensus prediction will be similar to any of those generated
with individual models. The possible improvement of the
prediction accuracy due to the use of consensus prediction could

Figure 4. Relationship between prediction coverage and (a) R2 or (b)
MAE for the external compounds.

QSAR Modeling of Rat LD50 Values Chem. Res. Toxicol., Vol. 22, No. 12, 2009 1919



be achieved when the individual predictions are different. Table
5 lists 10 compounds, which have the most significant difference
between individual predictions.

There are many external validation set compounds (such as
1, 4, 5, and 9 in Table 4) whose individual LD50 predictions
include one value with a large deviation from the others, which
is usually the one that has the largest prediction error. Therefore,
by taking the average for consensus prediction, we could
compensate for the large error of such individual result.

On the other hand, compounds 2, 3, 6-8, and 10 show large
errors for the majority of their individual predictions. The
consensus model is able to make accurate prediction, such as
for compound 8, or prediction with moderate error, as for the
remaining compounds in the table, because individually pre-
dicted LD50 values are both lower and higher than the
experimental LD50 value so that the errors to some extent cancel
each other. The differences in model predictions arise because
they use different descriptors and/or different modeling methods,
which could model different aspects of toxicological affects.
Thus, the consensus modeling allows for these different effects
to be incorporated into a single (and on average, more accurate)
prediction.

Conclusions

Several QSAR approaches have been used to develop toxicity
models of the largest available set of diverse organic compounds
tested for the oral acute toxicity in rats. The resulting models
(for the most part incorporating specific ADs) were validated
by predicting the toxicity of a large external validation set. It
was observed that all models showed somewhat different but
comparable performance for the validation set when compared
to the commercial toxicity predictor TOPKAT. Formally, the
highest accuracies were achieved by kNN and RF approaches
(R2 ) 0.66 and 0.70, respectively), but this required a decrease
in space coverage (to ca. 19%). However, when the same model
AD was implemented, the individual models showed similar
performance as applied to the validation set. Here, the use of
AD improved the prediction accuracy using individual models
but decreased the predictive coverage of the validation set.
Notably, with the decrease of the prediction coverage, models
developed in this study showed slightly higher prediction
accuracy as compared to TOPKAT.

The most significant result of our studies is the demonstrated
superior performance of the consensus modeling approach when
all models are used concurrently and predictions from individual
models are averaged (see Figure 1). The predictive accuracy of
the consensus QSAR models was shown to be superior to any
individual model when predicting the same set of external
compounds. By using different cutoff values for the prediction
fraction, trade-offs between the accuracy and the coverage of

consensus prediction results can easily be seen. The predictivity
of consensus models was found to be superior to that of
TOPKAT when predicting the same external compounds.
Finally, these studies indicated that a well-organized modeling
set that covers not only a broad chemical space but also broad
activity ranges of major chemical scaffolds in this chemical
space is necessary to develop successful QSAR toxicity predic-
tors. Additional studies of this data set are ongoing and will be
reported in the future. All successful models reported in this
paper will be made available for use as LD50 predictors via
both the ChemBench web portal (http://chembench.mml.unc.edu)
and via EPA website (http://www.epa.gov/nrmrl/std/cppb/qsar/
index.html). Meanwhile, interested researchers can send us any
compounds of interest for LD50 prediction.
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