ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Spatial Two-Photon Fluorescence Cross-Correlation Spectroscopy for Controlling Molecular Transport in Microfluidic Structures

View Author Information
Experimental Biophysics Group, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
Cite this: Anal. Chem. 2002, 74, 17, 4472–4479
Publication Date (Web):July 27, 2002
https://doi.org/10.1021/ac025625p
Copyright © 2002 American Chemical Society

    Article Views

    1036

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The increasing availability of microfluidic systems of various geometries and materials for the downscaling of chemical or biochemical processes raises a strong demand for adequate techniques to precisely determine flow parameters and to control fluid and particle manipulation. Of all readout parameters, fluorescence analysis of the fluid or suspended particles is particularly attractive, as it can be employed without mechanical interference and with a sensitivity high enough to detect single molecules in aqueous environments. In this study, we present the determination of flow parameters, such as velocity and direction, in microstructured channels by fluorescence correlation spectroscopy (FCS), a method based on single molecule spectroscopy carried out in confocal optical setups. Different modes of FCS, such as auto- and dual-beam cross-correlation techniques by one- and two-photon excitation, are discussed. Known advantages of two-photon excitation, such as highly restricted detection volumes and low scattering background, are shown to be particularly valuable for measurements in tiny channel systems. Although conventional autocorrelation is sufficient for describing the velocity of single molecules, dual-beam cross-correlation allows the separation of isotropic and anisotropic dynamics, for example, to monitor flow directions or to discriminate against photophysical effects that could be mistaken for mobility parameters. It can be shown that time-gated two-photon excitation in the dual-beam mode significantly lowers the undesired cross-talk between the two measurement volumes. Finally, some applications, such as the calibration of microfluidic sorting units and flow profiling, are demonstrated.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. Tel:  +49-551-201-1165. Fax:  +49-551-201-1435. E-mail:  [email protected].

    Cited By

    This article is cited by 105 publications.

    1. Wenqian Wang, Yuanqing Ma, Simone Bonaccorsi, Vu Thanh Cong, Elvis Pandžić, Zhengmin Yang, Jesse Goyette, Fabio Lisi, Richard D. Tilley, Katharina Gaus, J. Justin Gooding. Investigating Spatial Heterogeneity of Nanoparticles Movement in Live Cells with Pair-Correlation Microscopy and Phasor Analysis. Analytical Chemistry 2021, 93 (8) , 3803-3812. https://doi.org/10.1021/acs.analchem.0c04285
    2. Chao-Chen Lin, Michael Bachmann, Simon Bachler, Koushik Venkatesan, Petra S. Dittrich. Tunable Membrane Potential Reconstituted in Giant Vesicles Promotes Permeation of Cationic Peptides at Nanomolar Concentrations. ACS Applied Materials & Interfaces 2018, 10 (49) , 41909-41916. https://doi.org/10.1021/acsami.8b12217
    3. Claudia Hackl, Reinhild Beyreiss, David Geissler, Stefan Jezierski, and Detlev Belder . Rapid Prototyping of Electrochromatography Chips for Improved Two-Photon Excited Fluorescence Detection. Analytical Chemistry 2014, 86 (8) , 3773-3779. https://doi.org/10.1021/ac500793e
    4. Marco Brucale, Benjamin Schuler, and Bruno Samorì . Single-Molecule Studies of Intrinsically Disordered Proteins. Chemical Reviews 2014, 114 (6) , 3281-3317. https://doi.org/10.1021/cr400297g
    5. Reinhild Beyreiss, David Geißler, Stefan Ohla, Stefan Nagl, Tjorben Nils Posch, and Detlev Belder . Label-Free Fluorescence Detection of Aromatic Compounds in Chip Electrophoresis Applying Two-Photon Excitation and Time-Correlated Single-Photon Counting. Analytical Chemistry 2013, 85 (17) , 8150-8157. https://doi.org/10.1021/ac4010937
    6. Marco Travagliati, Salvatore Girardo, Dario Pisignano, Fabio Beltram, and Marco Cecchini . Easy Monitoring of Velocity Fields in Microfluidic Devices Using Spatiotemporal Image Correlation Spectroscopy. Analytical Chemistry 2013, 85 (17) , 8080-8084. https://doi.org/10.1021/ac4019796
    7. Luigi Sanguigno, Ilaria De Santo, Filippo Causa, and Paolo Netti. A Closed Form for Fluorescence Correlation Spectroscopy Experiments in Submicrometer Structures. Analytical Chemistry 2010, 82 (23) , 9663-9670. https://doi.org/10.1021/ac102084m
    8. Jaemyeong Jung,, Rachelle Ihly,, Eric Scott,, Ming Yu, and, Alan Van Orden. Probing the Complete Folding Trajectory of a DNA Hairpin Using Dual Beam Fluorescence Fluctuation Spectroscopy. The Journal of Physical Chemistry B 2008, 112 (1) , 127-133. https://doi.org/10.1021/jp076248t
    9. Joshua B. Edel,, Pedro Lahoud,, Anthony E. G. Cass, and, Andrew J. deMello. Discrimination between Single Escherichia coli Cells Using Time-Resolved Confocal Spectroscopy. The Journal of Physical Chemistry B 2007, 111 (5) , 1129-1134. https://doi.org/10.1021/jp066267n
    10. Byoungsok Jung,, Yonggang Zhu, and, Juan G. Santiago. Detection of 100 aM Fluorophores Using a High-Sensitivity On-Chip CE System and Transient Isotachophoresis. Analytical Chemistry 2007, 79 (1) , 345-349. https://doi.org/10.1021/ac060949p
    11. Hye Yoon Park,, Xiangyun Qiu,, Elizabeth Rhoades,, Jonas Korlach,, Lisa W. Kwok,, Warren R. Zipfel,, Watt W. Webb, and, Lois Pollack. Achieving Uniform Mixing in a Microfluidic Device:  Hydrodynamic Focusing Prior to Mixing. Analytical Chemistry 2006, 78 (13) , 4465-4473. https://doi.org/10.1021/ac060572n
    12. Balakrishnan Kannan,, Jia Yi Har,, Ping Liu,, Ichiro Maruyama,, Jeak Ling Ding, and, Thorsten Wohland. Electron Multiplying Charge-Coupled Device Camera Based Fluorescence Correlation Spectroscopy. Analytical Chemistry 2006, 78 (10) , 3444-3451. https://doi.org/10.1021/ac0600959
    13. Jaemyeong Jung and, Alan Van Orden. A Three-State Mechanism for DNA Hairpin Folding Characterized by Multiparameter Fluorescence Fluctuation Spectroscopy. Journal of the American Chemical Society 2006, 128 (4) , 1240-1249. https://doi.org/10.1021/ja0560736
    14. Jaemyeong Jung and, Alan Van Orden. Folding and Unfolding Kinetics of DNA Hairpins in Flowing Solution by Multiparameter Fluorescence Correlation Spectroscopy. The Journal of Physical Chemistry B 2005, 109 (8) , 3648-3657. https://doi.org/10.1021/jp0453515
    15. Aleeta M. Powe,, Kristin A. Fletcher,, Nadia N. St. Luce,, Mark Lowry,, Sharon Neal,, Matthew E. McCarroll,, Philip B. Oldham,, Linda B. McGown, and, Isiah M. Warner. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Analytical Chemistry 2004, 76 (16) , 4614-4634. https://doi.org/10.1021/ac040095d
    16. Torsten Vilkner,, Dirk Janasek, and, Andreas Manz. Micro Total Analysis Systems. Recent Developments. Analytical Chemistry 2004, 76 (12) , 3373-3386. https://doi.org/10.1021/ac040063q
    17. Keir Fogarty and, Alan Van Orden. Two-Beam Fluorescence Cross-Correlation Spectroscopy for Simultaneous Analysis of Positive and Negative Ions in Continuous-Flow Capillary Electrophoresis. Analytical Chemistry 2003, 75 (23) , 6634-6641. https://doi.org/10.1021/ac035022t
    18. Petra S. Dittrich and, Petra Schwille. An Integrated Microfluidic System for Reaction, High-Sensitivity Detection, and Sorting of Fluorescent Cells and Particles. Analytical Chemistry 2003, 75 (21) , 5767-5774. https://doi.org/10.1021/ac034568c
    19. Jason L. Pittman,, Charles S. Henry, and, S. Douglass Gilman. Experimental Studies of Electroosmotic Flow Dynamics in Microfabricated Devices during Current Monitoring Experiments. Analytical Chemistry 2003, 75 (3) , 361-370. https://doi.org/10.1021/ac026132n
    20. Daniel Y. K. Aik, Thorsten Wohland. Fluorescence Correlation Spectroscopy in Space and Time. 2022, 233-273. https://doi.org/10.1007/4243_2022_36
    21. Michael L. Dawes, Christian Soeller, Steffen Scholpp. Studying molecular interactions in the intact organism: fluorescence correlation spectroscopy in the living zebrafish embryo. Histochemistry and Cell Biology 2020, 154 (5) , 507-519. https://doi.org/10.1007/s00418-020-01930-5
    22. Olivier Français, Morgan Madec, Norbert Dumas, Denis Funfschilling, Wilfried Uhring. Basics of Micro/Nano Fluidics and Biology. 2020, 7-87. https://doi.org/10.1007/978-981-13-6549-2_2
    23. Maddalena Collini, Fabrizio Radaelli, Laura Sironi, Nicolo G. Ceffa, Laura D’Alfonso, Margaux Bouzin, Giuseppe Chirico. Adaptive optics microspectrometer for cross-correlation measurement of microfluidic flows. Journal of Biomedical Optics 2019, 24 (02) , 1. https://doi.org/10.1117/1.JBO.24.2.025004
    24. Morteza Heidarinejad, Hideki Nakamura, Takafumi Inoue. Stimulation-induced changes in diffusion and structure of calmodulin and calmodulin-dependent protein kinase II proteins in neurons. Neuroscience Research 2018, 136 , 13-32. https://doi.org/10.1016/j.neures.2018.01.003
    25. Petra Schwille. There and back again: from the origin of life to single molecules. European Biophysics Journal 2018, 47 (4) , 493-498. https://doi.org/10.1007/s00249-018-1295-1
    26. Namita Shokeen, Christopher Issa, Ashis Mukhopadhyay. Comparison of nanoparticle diffusion using fluorescence correlation spectroscopy and differential dynamic microscopy within concentrated polymer solutions. Applied Physics Letters 2017, 111 (26) https://doi.org/10.1063/1.5016062
    27. Valerica Raicu, William F. Schmidt. Advanced Microscopy Techniques. 2017, 39-75. https://doi.org/10.1007/978-3-319-60174-8_3
    28. Svenja Lippok, Matthias Radtke, Tobias Obser, Lars Kleemeier, Reinhard Schneppenheim, Ulrich Budde, Roland R. Netz, Joachim O. Rädler. Shear-Induced Unfolding and Enzymatic Cleavage of Full-Length VWF Multimers. Biophysical Journal 2016, 110 (3) , 545-554. https://doi.org/10.1016/j.bpj.2015.12.023
    29. Dominik Wöll. Fluorescence Correlation Spectroscopy Studies of Polymer Systems. 2016, 255-297. https://doi.org/10.1007/978-3-319-26788-3_8
    30. Nantana Nuchtavorn, Worapot Suntornsuk, Susan M. Lunte, Leena Suntornsuk. Recent applications of microchip electrophoresis to biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis 2015, 113 , 72-96. https://doi.org/10.1016/j.jpba.2015.03.002
    31. Matteo Iannacone. Hepatic effector CD8+ T-cell dynamics. Cellular & Molecular Immunology 2015, 12 (3) , 269-272. https://doi.org/10.1038/cmi.2014.78
    32. , , Nicolo' G. Ceffa, Paolo Pozzi, Margaux Bouzin, Cassia A. Marquezin, Laura Sironi, Laura D'Alfonso, Maddalena Collini, Giuseppe Chirico. Fluorescence cross-correlation spectroscopy for time dependent flows: a numerical investigation. 2015, 93200R. https://doi.org/10.1117/12.2077088
    33. Petru Ghenuche, Juan de Torres, Patrick Ferrand, Jérôme Wenger. Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays. Applied Physics Letters 2014, 105 (13) https://doi.org/10.1063/1.4896852
    34. Chaoqing Dong, Jicun Ren. Coupling of fluorescence correlation spectroscopy with capillary and microchannel analytical systems and its applications. ELECTROPHORESIS 2014, 35 (16) , 2267-2278. https://doi.org/10.1002/elps.201300648
    35. Paolo Pozzi, Laura Sironi, Laura D’Alfonso, Margaux Bouzin, Maddalena Collini, Giuseppe Chirico, Piersandro Pallavicini, Franco Cotelli, Efrem A. Foglia. Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos. Journal of Biomedical Optics 2014, 19 (6) , 067007. https://doi.org/10.1117/1.JBO.19.6.067007
    36. Nirmalya Bag, Thorsten Wohland. Imaging Fluorescence Fluctuation Spectroscopy: New Tools for Quantitative Bioimaging. Annual Review of Physical Chemistry 2014, 65 (1) , 225-248. https://doi.org/10.1146/annurev-physchem-040513-103641
    37. G. Majer, J. P. Melchior. Characterization of the fluorescence correlation spectroscopy (FCS) standard Rhodamine 6G and calibration of its diffusion coefficient in aqueous solutions. The Journal of Chemical Physics 2014, 140 (9) https://doi.org/10.1063/1.4867096
    38. Stephane Broillet, Akihiro Sato, Stefan Geissbuehler, Christophe Pache, Arno Bouwens, Theo Lasser, Marcel Leutenegger. Optical coherence correlation spectroscopy (OCCS). Optics Express 2014, 22 (1) , 782. https://doi.org/10.1364/OE.22.000782
    39. B. Wunderlich, D. Nettels, B. Schuler. Taylor dispersion and the position-to-time conversion in microfluidic mixing devices. Lab Chip 2014, 14 (1) , 219-228. https://doi.org/10.1039/C3LC51002F
    40. Dominik Wöll. Fluorescence correlation spectroscopy in polymer science. RSC Advances 2013, 4 (5) , 2447-2465. https://doi.org/10.1039/C3RA44909B
    41. Bengt Wunderlich, Daniel Nettels, Stephan Benke, Jennifer Clark, Sascha Weidner, Hagen Hofmann, Shawn H Pfeil, Benjamin Schuler. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Nature Protocols 2013, 8 (8) , 1459-1474. https://doi.org/10.1038/nprot.2013.082
    42. Jason D. Fowlkes, C. Patrick Collier. Single-molecule mobility in confined and crowded femtolitre chambers. Lab on a Chip 2013, 13 (5) , 877. https://doi.org/10.1039/c2lc40907k
    43. Kaloian Koynov, Hans-Jürgen Butt. Fluorescence correlation spectroscopy in colloid and interface science. Current Opinion in Colloid & Interface Science 2012, 17 (6) , 377-387. https://doi.org/10.1016/j.cocis.2012.09.003
    44. Klaus Mathwig, Dileep Mampallil, Shuo Kang, Serge G. Lemay. Electrical Cross-Correlation Spectroscopy: Measuring Picoliter-per-Minute Flows in Nanochannels. Physical Review Letters 2012, 109 (11) https://doi.org/10.1103/PhysRevLett.109.118302
    45. Nirmalya Bag, Jagadish Sankaran, Alexandra Paul, Rachel S. Kraut, Thorsten Wohland. Calibration and Limits of Camera‐Based Fluorescence Correlation Spectroscopy: A Supported Lipid Bilayer Study. ChemPhysChem 2012, 13 (11) , 2784-2794. https://doi.org/10.1002/cphc.201200032
    46. Sungmin Hong, Pei-Hsiang Tsou, Chao-Kai Chou, Hirohito Yamaguchi, Chin B. Su, Mien-Chie Hung, Jun Kameoka. Microfluidic three-dimensional hydrodynamic flow focusing for the rapid protein concentration analysis. Biomicrofluidics 2012, 6 (2) https://doi.org/10.1063/1.4730332
    47. R. Schmitz, S. Yordanov, H. J. Butt, K. Koynov, B. Dünweg. Studying flow close to an interface by total internal reflection fluorescence cross-correlation spectroscopy: Quantitative data analysis. Physical Review E 2011, 84 (6) https://doi.org/10.1103/PhysRevE.84.066306
    48. Doogie Oh, Alexandra Zidovska, Yangqing Xu, Daniel J. Needleman. Development of Time-Integrated Multipoint Moment Analysis for Spatially Resolved Fluctuation Spectroscopy with High Time Resolution. Biophysical Journal 2011, 101 (6) , 1546-1554. https://doi.org/10.1016/j.bpj.2011.08.013
    49. I. V. Perevoshchikova, E. A. Kotova, Y. N. Antonenko. Fluorescence correlation spectroscopy in biology, chemistry, and medicine. Biochemistry (Moscow) 2011, 76 (5) , 497-516. https://doi.org/10.1134/S0006297911050014
    50. Silvia Carlotto, Ilaria Fortunati, Camilla Ferrante, Petra Schwille, Antonino Polimeno. Time correlated fluorescence characterization of an asymmetrically focused flow in a microfluidic device. Microfluidics and Nanofluidics 2011, 10 (3) , 551-561. https://doi.org/10.1007/s10404-010-0689-x
    51. Yong Hwee Foo, Vladimir Korzh, Thorsten Wohland. Fluorescence Correlation and Cross-Correlation Spectroscopy Using Fluorescent Proteins for Measurements of Biomolecular Processes in Living Organisms. 2011, 213-248. https://doi.org/10.1007/4243_2011_16
    52. Nancy L. Thompson, Punya Navaratnarajah, Xiang Wang. Total Internal Reflection with Fluorescence Correlation Spectroscopy. 2011, 345-380. https://doi.org/10.1007/978-1-4419-9672-5_13
    53. Fabian Erdel, Katharina Müller-Ott, Michael Baum, Malte Wachsmuth, Karsten Rippe. Dissecting chromatin interactions in living cells from protein mobility maps. Chromosome Research 2011, 19 (1) , 99-115. https://doi.org/10.1007/s10577-010-9155-6
    54. M. Collini, L. D’Alfonso, M. Caccia, L. Sironi, M. Panzica, G. Chirico, I. Rivolta, B. Lettiero, G. Miserocchi. In Vitro–In Vivo Fluctuation Spectroscopies. 2011, 165-181. https://doi.org/10.1007/978-3-642-15175-0_10
    55. Kateryna Artyushkova, Anthony L. Garcia, Gabriel P. Lõpez. Detecting molecular separation in nano-fluidic channels through velocity analysis of temporal image sequences by multivariate curve resolution. Microfluidics and Nanofluidics 2010, 9 (2-3) , 447-459. https://doi.org/10.1007/s10404-009-0562-y
    56. Xianke Shi, Thorsten Wohland. Fluorescence Correlation Spectroscopy. 2010, 6-1-6-34. https://doi.org/10.1201/9781420078893-c6
    57. . 8Chapter Applications to Cellular/Particle Analysis. 2010, 229-264. https://doi.org/10.1201/b15110-12
    58. Tyler J. Arbour, Jörg Enderlein. Application of dual-focus fluorescence correlation spectroscopy to microfluidic flow-velocity measurement. Lab on a Chip 2010, 10 (10) , 1286. https://doi.org/10.1039/b924594d
    59. Stoyan Yordanov, Andreas Best, Hans-Jürgen Butt, Kaloian Koynov. Direct studies of liquid flows near solid surfaces by total internal reflection fluorescence cross-correlation spectroscopy. Optics Express 2009, 17 (23) , 21149. https://doi.org/10.1364/OE.17.021149
    60. Jagadish Sankaran, Manoj Manna, Lin Guo, Rachel Kraut, Thorsten Wohland. Diffusion, Transport, and Cell Membrane Organization Investigated by Imaging Fluorescence Cross-Correlation Spectroscopy. Biophysical Journal 2009, 97 (9) , 2630-2639. https://doi.org/10.1016/j.bpj.2009.08.025
    61. William K. Ridgeway, Effrosyni Seitaridou, Rob Phillips, James R. Williamson. RNA–protein binding kinetics in an automated microfluidic reactor. Nucleic Acids Research 2009, 37 (21) , e142-e142. https://doi.org/10.1093/nar/gkp733
    62. Nancy L. Thompson, Xiang Wang, Punya Navaratnarajah. Total internal reflection with fluorescence correlation spectroscopy: Applications to substrate-supported planar membranes. Journal of Structural Biology 2009, 168 (1) , 95-106. https://doi.org/10.1016/j.jsb.2009.02.013
    63. Frank Schleifenbaum, Christian Blum, Vinod Subramaniam, Alfred J. Meixner. Single-molecule spectral dynamics at room temperature. Molecular Physics 2009, 107 (18) , 1923-1942. https://doi.org/10.1080/00268970802635004
    64. Ke Liu, Yu Tian, Sean M. Burrows, Randall D. Reif, Dimitri Pappas. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy. Analytica Chimica Acta 2009, 651 (1) , 85-90. https://doi.org/10.1016/j.aca.2009.08.007
    65. Ramón Carriles, Dawn N. Schafer, Kraig E. Sheetz, Jeffrey J. Field, Richard Cisek, Virginijus Barzda, Anne W. Sylvester, Jeffrey A. Squier. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Review of Scientific Instruments 2009, 80 (8) https://doi.org/10.1063/1.3184828
    66. Daniel J. Needleman, Yangqing Xu, Timothy J. Mitchison. Pin-Hole Array Correlation Imaging: Highly Parallel Fluorescence Correlation Spectroscopy. Biophysical Journal 2009, 96 (12) , 5050-5059. https://doi.org/10.1016/j.bpj.2009.03.023
    67. . Nano‐High Performance Liquid Chromatography. 2009, 145-166. https://doi.org/10.1002/9780470434925.ch6
    68. Philip R. Nicovich, Robert M. Dickson. Three‐dimensional Flow Mapping in Microfluidic Channels with Widefield Cross‐correlation Microscopy. Israel Journal of Chemistry 2009, 49 (3-4) , 293-301. https://doi.org/10.1560/IJC.49.3-4.293
    69. Keir Fogarty, Alan Van Orden. Fluorescence correlation spectroscopy for ultrasensitive DNA analysis in continuous flow capillary electrophoresis. Methods 2009, 47 (3) , 151-158. https://doi.org/10.1016/j.ymeth.2008.09.010
    70. Mireia Baeza, José Luis Montesinos, Julián Alonso, Jordi Bartrolí. Simple modeling of the physical sample dispersion process in rectangular meso (micro) channels with pressure-driven flows. Analytical and Bioanalytical Chemistry 2009, 393 (4) , 1233-1243. https://doi.org/10.1007/s00216-008-2532-8
    71. Claus B. Müller, Kerstin Weiß, Anastasia Loman, Jörg Enderlein, Walter Richtering. Remote temperature measurements in femto-liter volumes using dual-focus-Fluorescence Correlation Spectroscopy. Lab on a Chip 2009, 9 (9) , 1248. https://doi.org/10.1039/b807910b
    72. Céline Boutin, Rodolphe Jaffiol, Jérôme Plain, Pascal Royer. Surface Modified Single Molecules Free-Diffusion Evidenced by Fluorescence Correlation Spectroscopy. Journal of Fluorescence 2008, 18 (6) , 1115-1122. https://doi.org/10.1007/s10895-008-0361-y
    73. Yoann Blancquaert, Jie Gao, Jacques Derouard, Antoine Delon. Spatial fluorescence cross‐correlation spectroscopy by means of a spatial light modulator. Journal of Biophotonics 2008, 1 (5) , 408-418. https://doi.org/10.1002/jbio.200810007
    74. Kambiz M. Hamadani, Shimon Weiss. Nonequilibrium Single Molecule Protein Folding in a Coaxial Mixer. Biophysical Journal 2008, 95 (1) , 352-365. https://doi.org/10.1529/biophysj.107.127431
    75. Maika Felten, Wolfgang Staroske, Magnus S. Jaeger, Petra Schwille, Claus Duschl. Accumulation and filtering of nanoparticles in microchannels using electrohydrodynamically induced vortical flows. ELECTROPHORESIS 2008, 29 (14) , 2987-2996. https://doi.org/10.1002/elps.200700844
    76. Zdeněk Petrášek, Petra Schwille. Photobleaching in Two‐Photon Scanning Fluorescence Correlation Spectroscopy. ChemPhysChem 2008, 9 (1) , 147-158. https://doi.org/10.1002/cphc.200700579
    77. E. Haustein, P. Schwille. Ultrashort Laser Pulses in Single Molecule Spectroscopy. 2008, 279-309. https://doi.org/10.1007/978-3-540-73566-3_11
    78. Alan Van Orden, Jaemyeong Jung. Review fluorescence correlation spectroscopy for probing the kinetics and mechanisms of DNA hairpin formation. Biopolymers 2008, 89 (1) , 1-16. https://doi.org/10.1002/bip.20826
    79. Gregory T. Roman, Robert T. Kennedy. Fully integrated microfluidic separations systems for biochemical analysis. Journal of Chromatography A 2007, 1168 (1-2) , 170-188. https://doi.org/10.1016/j.chroma.2007.06.010
    80. Ling Chin Hwang, Thorsten Wohland. Recent Advances in Fluorescence Cross-correlation Spectroscopy. Cell Biochemistry and Biophysics 2007, 49 (1) , 1-13. https://doi.org/10.1007/s12013-007-0042-5
    81. A W Henkel, P S Dittrich, T W Groemer, E A Lemke, J Klingauf, H W Klafki, P Lewczuk, H Esselmann, P Schwille, J Kornhuber, J Wiltfang. Immune complexes of auto-antibodies against Aβ1-42 peptides patrol cerebrospinal fluid of non-Alzheimer's patients. Molecular Psychiatry 2007, 12 (6) , 601-610. https://doi.org/10.1038/sj.mp.4001947
    82. Elke Haustein, Petra Schwille. Fluorescence Correlation Spectroscopy: Novel Variations of an Established Technique. Annual Review of Biophysics and Biomolecular Structure 2007, 36 (1) , 151-169. https://doi.org/10.1146/annurev.biophys.36.040306.132612
    83. Zdeněk Petrášek, Madhavi Krishnan, Ingolf Mönch, Petra Schwille. Simultaneous two‐photon fluorescence correlation spectroscopy and lifetime imaging of dye molecules in submicrometer fluidic structures. Microscopy Research and Technique 2007, 70 (5) , 459-466. https://doi.org/10.1002/jemt.20428
    84. Xiaotao Pan, Willy Foo, Wanrong Lim, Marcus H. Y. Fok, Ping Liu, Hanry Yu, Ichiro Maruyama, Thorsten Wohland. Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements. Review of Scientific Instruments 2007, 78 (5) https://doi.org/10.1063/1.2740053
    85. Thomas Dertinger, Victor Pacheco, Iris von der Hocht, Rudolf Hartmann, Ingo Gregor, Jörg Enderlein. Two‐Focus Fluorescence Correlation Spectroscopy: A New Tool for Accurate and Absolute Diffusion Measurements. ChemPhysChem 2007, 8 (3) , 433-443. https://doi.org/10.1002/cphc.200600638
    86. Xiaotao Pan, Hanry Yu, Xianke Shi, Vladimir Korzh, Thorsten Wohland. Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy. Journal of Biomedical Optics 2007, 12 (1) , 014034. https://doi.org/10.1117/1.2435173
    87. Johannes Bayer, Joachim O. Rädler. DNA microelectrophoresis using double focus fluorescence correlation spectroscopy. ELECTROPHORESIS 2006, 27 (20) , 3952-3963. https://doi.org/10.1002/elps.200500947
    88. Rodolphe Jaffiol, Yoann Blancquaert, Antoine Delon, Jacques Derouard. Spatial fluorescence cross-correlation spectroscopy. Applied Optics 2006, 45 (6) , 1225. https://doi.org/10.1364/AO.45.001225
    89. . Fluorescence Correlation Spectroscopy. 2006, 797-840. https://doi.org/10.1007/978-0-387-46312-4_24
    90. P.S. Dittrich, S.P. Schäfer, P. Schwille. Characterization of the Photoconversion on Reaction of the Fluorescent Protein Kaede on the Single-Molecule Level. Biophysical Journal 2005, 89 (5) , 3446-3455. https://doi.org/10.1529/biophysj.105.061713
    91. Petra S. Dittrich, Andreas Manz. Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in μTAS?. Analytical and Bioanalytical Chemistry 2005, 382 (8) , 1771-1782. https://doi.org/10.1007/s00216-005-3335-9
    92. Joseph P. Skinner, Yan Chen, Joachim D. Müller. Position-Sensitive Scanning Fluorescence Correlation Spectroscopy. Biophysical Journal 2005, 89 (2) , 1288-1301. https://doi.org/10.1529/biophysj.105.060749
    93. Benedict Hebert, Santiago Costantino, Paul W. Wiseman. Spatiotemporal Image Correlation Spectroscopy (STICS) Theory, Verification, and Application to Protein Velocity Mapping in Living CHO Cells. Biophysical Journal 2005, 88 (5) , 3601-3614. https://doi.org/10.1529/biophysj.104.054874
    94. Chuanwu Xi, Lutgarde Raskin, Stephen A. Boppart. Evaluation of Microfluidic Biosensor Development Using Microscopic Analysis of Molecular Beacon Hybridization Kinetics. Biomedical Microdevices 2005, 7 (1) , 7-12. https://doi.org/10.1007/s10544-005-6166-8
    95. Massimiliano Stagi, Petra S. Dittrich, Nadja Frank, Asparouh I. Iliev, Petra Schwille, Harald Neumann. Breakdown of Axonal Synaptic Vesicle Precursor Transport by Microglial Nitric Oxide. The Journal of Neuroscience 2005, 25 (2) , 352-362. https://doi.org/10.1523/JNEUROSCI.3887-04.2005
    96. Paul C. Brister, Kalyan K. Kuricheti, Volker Buschmann, Kenneth D. Weston. Fluorescence correlation spectroscopy for flow rate imaging and monitoring—optimization, limitations and artifacts. Lab Chip 2005, 5 (7) , 785-791. https://doi.org/10.1039/B500129C
    97. Jurjen Emmelkamp, Floor Wolbers, Helene Andersson, Ralph S. DaCosta, Brian C. Wilson, Istvan Vermes, Albert van den Berg. The potential of autofluorescence for the detection of single living cells for label‐free cell sorting in microfluidic systems. ELECTROPHORESIS 2004, 25 (21-22) , 3740-3745. https://doi.org/10.1002/elps.200406070
    98. Yuxiao Wang, Oliver Y.-H. Tai, C. H. Wang, Alex K.-Y. Jen. One-, two-, and three-photon absorption induced fluorescence of a novel chromophore in chloroform solution. The Journal of Chemical Physics 2004, 121 (16) , 7901-7907. https://doi.org/10.1063/1.1791092
    99. Kalyan K. Kuricheti, Volker Buschmann, Kenneth D. Weston. Application of Fluorescence Correlation Spectroscopy for Velocity Imaging in Microfluidic Devices. Applied Spectroscopy 2004, 58 (10) , 1180-1186. https://doi.org/10.1366/0003702042335957
    100. Beno H. Kunst, Arjen Schots, Antonie J. W. G. Visser. Design of a confocal microfluidic particle sorter using fluorescent photon burst detection. Review of Scientific Instruments 2004, 75 (9) , 2892-2898. https://doi.org/10.1063/1.1781366
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect