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Ecological risks to aquatic organisms are typically assessed
using acute toxicity data for relatively few species and with
limited understanding of relative species sensitivity. We
developed a comprehensive set of interspecies correlation
estimation (ICE) models based on acute toxicity data for aquatic
organisms and evaluated three key sources of model
uncertainty: taxonomic relatedness, chemical mode of action
(MOA), and model parameters. Models are least-squares
regressions of acute toxicity of surrogate and predicted species.
A total of 780 models were derived from acute values for 77
species of aquatic organisms and over 550 chemicals. Cross-
validation of models showed that accurate model prediction
was greatest for models with surrogate and predicted taxa within
the same family (91% of predictions within 5-fold of measured
values). Recursive partitioning provided user guidance for
selection of robust models using model mean square error and
taxonomic relatedness. Models built with a single MOA

were more robust than models built using toxicity values with
multiple MOAs, and improve predictions among species

pairs with large taxonomic distance (e.g., within phylum). These
results indicate that between-species toxicity extrapolation
can be improved using MOA-based models for less related taxa
pairs and for those specific MOAs.

Introduction

One of the greatest challenges in ecological risk assessment
is to extrapolate across a broad range of species exposed to
contaminants using limited toxicity data for commonly tested
species (1). Generally, this requires extrapolation of toxicity
data from a limited number of standard test species to a
much larger number and diversity of species with unknown
sensitivity. A traditional approach has been to apply generic
safety factors to available test data. While used extensively,
this approach contains large uncertainty because of limited
knowledge of species sensitivity relationships. An alternative
method that has been used determines a hazard concentra-
tion from a percentile (e.g., fifth) of a species sensitivity
distribution (SSD) as a value that is representative of the
more sensitive species (2). Application of SSDs is limited by
their requirements for taxonomic diversity and chemical
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specific toxicity data for a number species. Where measured
toxicity data are limited, additional methods are needed for
populating SSDs and extrapolating chemical sensitivity
relationships to ecological communities and untested taxa,
such as endangered species.

Interspecies correlation estimation (ICE) models are
log—linear least-squares regressions of the acute toxicity (EC/
LC50) of chemicals measured in two species. An ICE model
for a particular species-taxon pair can be used to estimate
the toxicity to the predicted taxon using the known toxicity
of that chemical in the surrogate species. Earlier development
of ICE models has demonstrated that the species sensitivity
relationship is a statistically viable approach for estimating
acute toxicity (3-6) however, the validation and uncertainty
of these models has been lacking for aquatic species. ICE
models have been developed and validated for wildlife species
(7) and their use in developing SSDs has been demonstrated
for both wildlife (8, 9) and aquatic organisms (10, 11).
Previously developed ICE models for both aquatic organisms
and wildlife have been available on the U.S. Environmental
Protection Agency (EPA) Web-based Interspecies Correlation
Estimation (Web-ICE; http://www.epa.gov/ceampubl/fchain/
webice/) application since 2007. This study aims to build on
the previous work of ICE model development (3-6, 12)
through uncertainty analyses that assess model accuracy
relative to taxonomic relatedness, chemical mode of action
(MOA), and model parameters.

We developed a suite of ICE models for a diversity of
aquatic invertebrates, fish and some amphibians using strict
standardization criteria for test methods and conditions
(Tables S2 and S3, Supporting Information (SI)). Two critical
factors of uncertainty in aquatic toxicity extrapolation,
taxonomic relatedness and chemical MOA, were explored
by assessing the effect on model uncertainty. Models were
developed for 77 species using data compiled from diverse
sources. Model uncertainty analyses determined (i) how
closely to measured values ICE models predict toxicity, (ii)
the relationship between ICE models and taxonomic relat-
edness of the surrogate and predicted taxa, (iii) which model
parameters and attributes should be prioritized to select
robust models a priori, and (iv) if single MOA ICE models
improve toxicity estimations compared to models comprised
of multiple MOAs.

Methods and Materials

Data Collection. The aquatic toxicity data set was comprised
of 5487 acute EC/LC50 values for 180 species and 1258
chemicals. These data were compiled from the U.S. EPA
ECOTOX (13), U.S. EPA Office of Pesticide Programs ec-
otoxicity database (accessed January 2007), U.S. EPA Office
of Water Ambient Water Quality Criteria (14), U.S. EPA OPPT
Pre-Manufacture Notification (PMN), U.S. EPA OPPT High
Production Volume (HPV) Challenge Program, U.S. EPA
Office of Research and Development data sources (e.g., ref
15), Mayer and Ellersieck (16), and the open literature (see
refs 17, 18). All model data were consistent with standard
acute toxicity test condition requirements outlined by the
American Society for Testing and Materials (19, and earlier
editions), and the U.S. EPA Office of Prevention, Pesticides,
and Toxic Substances (20).

Data were subjected to rigorous quality assurance and
standardization guidelines to ensure model relationships
were reflective of intrinsic species sensitivity and contained
minimal extraneous variation. Each record required a
reported chemical name or structure with chemical active
ingredient >90% and a reported end point of death (LC50)
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or immobilization (EC50). Model data included 48 h EC/
LC50 for daphnids, midges, and mosquitoes and 96 h EC/
LC50 for fish and all other invertebrates. Open-ended toxicity
values (i.e., > 100 ug/L or <100 ug/L) were excluded. Data
were standardized by life stage by using only juveniles for
fishes, amphibians, insects, molluscs, and decapods; all life
stages were included for other groups (18).

All toxicity records for cadmium, chromium III, copper,
lead, nickel, silver, zinc, pentachlorophenol, and ammonia
were normalized according to Ambient Water Quality Cri-
teria (14). Records that did not contain the water quality
parameters necessary for normalization were excluded from
the database. Large metal salts (molecular weight >200; e.g.,
copper naphthenate) were not normalized because of
uncertainty in the relationship between their toxicity, hard-
ness, and dissociation, and were treated as separate
compounds.

Where multiple toxicity values were obtained for a species
and chemical, the range of the minimum and maximum
values for each chemical and species pair was calculated.
These ranges, which represent interlaboratory variation of
toxicity tests as well as identifying outliers, were within a
factor of 2, 5, and 10 for 57, 86, and 94%, respectively. Where
the range was greater than 10-fold, the original sources of
suspected outliers were re-evaluated for data quality. If
outliers could not be clearly identified, all data records for
that chemical were removed for that species to eliminate
potential data quality uncertainty (approximately 1.5% of
species-chemical records). The geometric mean of toxicity
values was determined where data were reported as a range
or values were collected from multiple sources for a species
and chemical.

Chemical Mode of Action (MOA) Assignments. A clas-
sification scheme for MOA for acute toxicity to fish and
aquatic invertebrates was developed and applied to 707
organic and metallic compounds in the database. MOAs
were first assigned using the U.S. EPA ASTER (assessment
tools for the evaluation of risk; http://www.epa.gov/med/
Prods_Pubs/aster.htm) MOA expert system. ASTER MOA
assignments are based on the mode of acute toxicity in the
fathead minnow and the structural fragments present in
the chemical (21, 22). Nonpolar narcosis is the default
MOA assigned by ASTER, but is only assigned if the
structural characteristics of the chemical do not suggest
a more specific MOA may be involved (22). ASTER MOA
assignments were confirmed or revised based on profes-
sional judgment, including an assessment of chemical
structure and available information on the mechanism of
acute toxicity, therapeutic category, and pesticidal activity
determined by review of Internet data sources, reports,
and peer reviewed articles. Approximately 13% of ASTER-
determined MOAs were superseded through this process.

Broad and specific MOA assignments were based on a
review of the mode of action of action in fishes and supporting
information on the mode of action in nontarget aquatic
invertebrates. Broad MOA categories were developed by
combining specific ASTER MOA categories (e.g., broad MOA
narcosis is composed of multiple specific ASTER MOAs
including nonpolar narcosis and polar narcosis). Specific
MOA was a subcategory of broad MOA determined through
best professional judgment or ASTER assignment (e.g.,
Broad MOA = AChE inhibition, Specific MOA = carbamate-
mediated AChE inhibition). Each chemical was assigned to
one of 11 broad and 21 specific modes of action (same MOA
for fish and invertebrates), including uncertain/undeter-
mined categories (SI Table S1).

Model Development and Validation. ICE Models were
developed as model II least-squares regression in which
variables are independent and subject to measurement error
(12). An algorithm was written in S-plus (23) that paired every
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species with every other species having data available for at
least three chemicals in common. For each species pair, a
log—linear model calculated the ICE equation as
Logo(predicted taxa) = a + b x Logj(surrogate species),
where aand b are the intercept and slope, respectively. Only
significant models (p-value < 0.05) were used for further
analyses.

Each model with a sample size of four or greater was
validated using leave-one-out cross-validation. In this ap-
proach, each pair of acute values for surrogate and predicted
species was systematically removed from the original model.
A new model (submodel) was built with the remaining data
and used to estimate the toxicity value of the removed
predicted species from the respective surrogate species
toxicity value. To compare the accuracy of a large number
of diverse models, the N-fold difference of each estimated
and actual value (nontransformed data) was used to deter-
mine the fit of the estimated toxicity value. The N-fold
difference was determined as the maximum value of the
estimated/actual or actual/estimated. Preliminary inspection
of the ratio of estimated/actual was conducted to determine
if ICE models were under- or overestimating toxicity. In
general, half of estimated toxicity values were greater than
the measured value and half were less, indicating that ICE
models did not have a tendency for under or overestimation.

Model Uncertainty. The accuracy of model predictions
was related to taxonomic relatedness using the results of the
cross-validation and assigning each model a taxonomic
distance value based on the taxonomy of the surrogate and
predicted species. Distances were assigned such that sur-
rogate and predicted species within the same genus = 1;
family = 2; order = 3; class = 4; phylum = 5; kingdom = 6.
Each cross-validated data point was assigned to a prediction
category based on the N-fold difference of predicted and
actual values. The categories were 5-fold (<5-fold), 10-fold
(>5-fold, <10-fold), 50-fold (>10-fold, <50-fold), and greater
than 50-fold. The cross-validated data were compared among
taxonomic distance and cross-validation categories using a
Chi-square test for differences in probabilities (24).

Cross-validation results were used in a recursive parti-
tioning approach (regression tree) to identify model attributes
associated with high prediction certainty. The N-fold dif-
ference was dependent upon submodel attributes intercept,
slope, R?, p-value, degrees of freedom, mean square error,
taxonomic distance, and the distance of the surrogate input
value from the range of surrogate toxicity values used to
develop the submodel. The latter variable was determined
as the difference of the log-transformed input value from the
average + standard deviation of the log-transformed sur-
rogate toxicity values. Data points cross-validated using
submodels that were not significant at the p < 0.05 level and
those with a fold difference of greater than 1000 were excluded
from the analysis. The regression tree was built using JMP
software (25).

Single MOA models were developed for all possible species
pairs and broad and specific MOA categories. Within data
subsets of each MOA, every species was paired with every
other species for model development. All MOA models with
four or greater data points were cross-validated using the
leave-one-out approach described above. MOA-based models
were compared to models developed using all chemical data
(all data models) by pairing models by surrogate and
predicted species and comparing model MSE with a sign
test. This analysis tested the hypotheses that single MOA
models are more robust, indicated by lower MSE, than models
developed with multiple MOAs. Separate comparisons were
conducted for all broad and specific MOAs where possible.
All data models that originally contained only one MOA as
aresult of limited chemical diversity in the database for the
surrogate and predicted species were not included in these



TABLE 1. Percentage of Cross-Validated Observations within
Each Prediction Category Grouped by Closest Shared Taxon

shared percentage within prediction category
taxonomic  significant
level models (N) 5-fold  10-fold  50-fold  >50-fold
genus 254 94 2 3 1
family 700 91 5 3 1
order 208 86 10 3 0
class 4432 80 9 8 3
phylum 764 61 14 17 8
kingdom 4556 56 15 19 10

comparisons because these models would be identical to
the respective MOA-specific model.

The accuracy of toxicity prediction was compared between
MOA-specific and all data models using the N-fold difference
of data points removed from both models for the same species
pair. For each taxonomic distance category, median fold
difference of data points predicted by all data models was
compared to that the respective MOA-specific models using
Wilcoxon signed rank test.

Results

Model Uncertainty. There were 780 significant ICE models
(p < 0.05) developed for 77 species from the database of all
chemical toxicity records (SI Table S2). A total of 10 914 data
points from 696 models were cross-validated. Model cross-
validation showed a strong relationship between taxonomic
distance and cross-validation prediction category (chi-square
= 82.8, d.f. = 15, p< 0.0001). The percentage of data points
in the 5-fold prediction category decreased with increasing
taxonomic distance, whereas those in 50 and >50-fold
difference category increased (Table 1). Overall, models built
for two species in the same family predicted within 5 and
10-fold of the actual value for 91 and 96% of data points,
respectively (Table 1). Information on all models, including
statistics and parameters necessary for toxicity estimation
(slope, intercept, degrees of freedom, number of chemicals
in model, MSE, sum of squares) are available on the U.S. EPA
Web-ICE application (http://www.epa.gov/ceampubl/fchain/
webice/).

Regression Tree. The regression tree developed from
modeling the N-fold difference against model attributes
included 10 090 data points. The data were first partitioned
using taxonomic distance, grouping submodels with taxo-
nomic distances 1—4 separate from those of 5—6. For models

with taxonomic distances 1—4, the data were next partitioned
by the distance of the input value from the range of x-values
used to develop the submodel. This splitindicated that input
values that were greater than 2 orders of magnitude than the
mean + standard deviation have a mean fold difference of
over 100. A third split of data that were within 2 orders of
magnitude of the mean + deviation was performed using
the submodel MSE and indicated that submodels with MSE
< 0.22 predicted toxicity with an average fold difference of
4.40. For models with taxonomic distance of 5 and 6, models
were next partitioned by those with MSE of less than and
greater than 2.2, and then by the distance of the input value
from the mean + deviation (Figure 1).

MOA-Based Models. MOA-based models were developed
for 7 broad MOAs (494 models, 46 species) and 15 specific
MOAs (424 models, 44 species). The diversity of models
developed with specific MOAs were limited due to the
reduced amount of data available within some MOAs (e.g.,
respiratory toxicity), as such comparisons with all data models
were only made for six broad and eight specific MOAs (Table
2; SI Figure S1). Using MOA-specific data resulted in
significant models for species pairs that did not have
significant models developed using all chemical data. These
new species pairs included a total of 32 broad and 22 specific
MOA models. Conversely, ICE models built from all chemical
data for 466 species pairs did not have any significant models
using broad or specific MOA data subsets. Broad and specific
MOA models are provided in SI Table S3. In general, single
MOA models had lower MSE than all data models that have
multiple and variable MOAs (SI Figure S1). The exceptions
were the broad MOA metallic stress, and two specific MOAs:
iono-regulatory toxicity and organophosphate AChE inhibi-
tors (Table 2).

The improvement in prediction accuracy of MOA-based
models was dependent on taxonomic relatedness and the
type of MOA. Overall, the prediction accuracy of single MOA
models did not improve for models of taxonomic distances
1-5 (within phylum). Despite lower MSE, the N-fold dif-
ference of cross-validated data points was not significantly
different between all data models and single MOA models
(Table 2, Figure 2). At taxonomic distance of 6 (within
kingdom), MOA-based models were a significant improve-
ment over all data models for many MOAs. The median fold
difference of single MOA models was significantly lower than
those of all data models for species pairs with taxonomic
distance of six for the following MOAs: AChE inhibition,
organophosphate AChE inhibition, narcosis, nonpolar nar-
cosis, neurotoxicity, pyrethroid neurotoxicity, and reactivity.

All Data
N = 10030
15.82 (63.41)

1
Taxonomic Distance (1,2,3,4)
N = 5181
7.43 (34.00)

1
Taxonomic Distance (5,6)
N = 4849
24.79 (83.24)

X Range Distance (< 2.27)
N = 5170
7.22(32.71)

N =11
107.03 (186.28)

X Range Distance (> 2.27)

MSE (< 2.20) MSE (> 2.20)
N = 4697 N = 152
22.82 (79.04) 85.58 (155.97)

MSE (< 0.22) MSE (> 0.22)
N = 2628 N = 2542
4.40 (26.51) 10.14 (37.86)

X Range Distance (> -0.34)

X Range Distance (< -0.34)
N=728
35.75 (95.06)

N = 3969
20.45 (75.50)

FIGURE 1. Regr

tree of cross-validated data point modeled against model attributes. Each split identifies the model attribute

by which submodels are partitioned. N is the number of submodels included in each split, followed by mean (standard deviation) of
the fold-difference of cross-validated data points predicted by submodels within each partition.
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TABLE 2. Comparison of Mean Sguare Error (MSE) for Models
Built with All MOA data to Those Built With MOA-Specific
Data®

percent MSE

number of  lower in
mode of action” models® MOA models p-value
AChE inhibition 164 59 0.0173
carbamate AChE 28 96 <0.0001
inhibition
organophosphate 82 55 0.2199
AChE inhibition
metallic stress 10 60 0.3770
iono-regulatory toxicity 10 80 0.0547
narcosis 92 95 <0.0001
polar narcosis 8 100 0.0039
ester narcosis 22 95 <0.0001
nonpolar narcosis 86 92 <0.0001
neurotoxicity 122 87 <0.0001
OC neurotoxicity 80 93 <0.0001
pyrethroid neurotoxicity 8 100 0.0039
reactivity 36 97 <0.0001
uncoupler/Inhibitor of 12 100 0.0002

oxidative phosphorylation

? Models built from broad MOAs include data from all
specific MOAs listed in Table 1. » The “number of models”
is the total number of models that could be compared
between each MOA and all chemical datasets. Only models
that were significant when built with one mode of action
were included. ¢ The percent of lower MOA models is the
percentage of models for which MSE was lower in the
MOA model compared to the all data model.

Neurotoxicity also had significant lower median fold differ-
ence for models with taxonomic distance of four, which was
driven by the specific MOA organochlorine neurotoxicity
(Figure 2). Model prediction accuracy did not improve for
other MOAs at any taxonomic distance.

Discussion

Interspecies toxicity extrapolation using regression analysis
of acute effects has been explored in ecotoxicology for decades
(3-5, 26, 27). Although earlier studies were based on limited
species, chemicals, and chemical MOAs, they provided
evidence that regression models could be used to predict
acute toxicity (3) and were more robust for closely related
species (5) and within chemical categories (4). This study
developed ICE models with the most diverse species and
chemical database to date and performed quantitative
uncertainty analyses in relation to taxonomic distance,
chemical MOA, and model parameters. These analyses
provided guidance on model selection and use in ecological
risk assessment. The models were derived using standardized
acute toxicity values for aquatic invertebrates and fish. While
the relevance of LC50 values to population protection is
uncertain, acute toxicity data are the most comprehensive
source of species sensitivity data for contaminants; both in
terms of number of chemicals and species diversity. Acute
toxicity values are an integral part of developing U.S. Ambient
Water Quality Criteria, and are a foundation of developing
screening values for ecological risk assessment interna-
tionally (2).

The taxonomic relatedness of the surrogate and predicted
species was identified as a driving factor for prediction
accuracy in all analyses. Using closely related species as
surrogates for toxicity has been long recommended in risk
assessment (5) and closely related species have been previ-
ously shown to produce more robust regression models
(4, 5, 7). While Slooff (5) found higher correlation coefficients
for species within the same taxonomic class, species and
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chemical diversity was limited and no distinct relationship
was discernible. The relationship between toxicity and
taxonomic relatedness has also been shown in other analyses
of toxicological data. Baird and van den Brink (28) identified
biological traits that accounted for 71% of the variability in
sensitivity, correlating physiological similarities with species
sensitivity. Raimondo et al. (17) showed that closely related
species tended to group in similar quartiles of SSDs for some
MOAs. The mechanisms underlying the importance of
taxonomic relatedness in toxicity prediction likely involve
species differences in toxicokinetics. For example, more
closelyrelated species may have greater similarities in uptake,
disposition, and biotransformation.

Chemical MOA is a primary factor in species sensitivity
and is a critical component of toxicity estimation using
approaches such as QSAR (29), acute-to-chronic ratios (30)
and the read-across approach (31). MOA assignments are
one source of uncertainty in ICE models, in part due to limited
knowledge of the mechanisms of acute toxicity in aquatic
species, and the assignment of the same MOA to both fish
and invertebrates. Additionally, some MOA assignments such
as reactivity contained multiple specific mechanisms. These
MOA categories were generalized/combined because of
uncertainty in the specific mechanism of acute toxicity and
requirements for adequate model sample sizes. Despite these
uncertainties, MOA-specific ICE models improved interspe-
cies toxicity extrapolation, particularly for unrelated taxa.

MOA-specific models were developed for over 50 species
pairs that did not have significant sensitivity correlations
using all chemical data, indicating a significant reduction in
toxicity variability within MOA classes (SI Tables S2 and S3).
While all analyses indicate that MOA specific models are
more robust, the abundance and diversity of models is
considerably less than models developed using all chemicals
because of more limited data. The 466 significant species
that did not have any correlations using MOA-specific data
were primarily those with low sample sizes that did not
contain enough data for MOA-specific models (87% with N
<10). Other species pairs that did not have significant MOA-
specific models were those with high variability of all data
(e.g., MSE > 1.0), which was preserved within MOA category.

While MOA-specific models generally improved toxicity
estimation for unrelated species, their predictions for closely
related species was not significantly better than all chemical
data models. In these cases, the limited paired data of MOA-
specific models relative to all data models likely increased
uncertainty as the result of smaller sample sizes. For closely
related species, accuracy for many all data models is similar
to MOA-specific models. The mechanisms underlying the
relationships between taxonomic relatedness and MOA may
be attributed to species differences in both toxicokinetics
and toxicodynamics. For example, closely related species
may have greater similarity in sites of toxic action across the
range of chemical MOA’s within an all data model. In contrast,
invertebrates and fish may have similar intrinsic sensitivity
to nonspecific toxicants like narcotics, but differential
responses to chemicals with more specific mechanisms such
as acetylcholinesterase inhibition.

An important application of ICE models is the ability to
populate SSDs with toxicity values for species without
chemical specific data. Previous research has shown that
ICE generated SSDs produce fifth percentile hazard levels
similar to those derived with only measured values for both
wildlife and aquatic species (8, 9, 11). The SSD is a widely
applied approach that uses a distribution of toxicity for
multiple species to determine a concentration that is
considered nonlethal to most species (32) and are used in
risk assessments throughout the United States and Europe
(33, 34). While there is a general consensus that SSDs maybe
built with 8—10 diverse species or genera (33), large sample
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sizes (up to 60) are recommended for greater confidence in
hazard level estimation (35, 8). Toxicity estimated from ICE
models can supplement SSD data sets to increase number
and diversity of species within the distribution and reduce
hazard level uncertainty.

Prior to inclusion of ICE estimated data into ecological
risk assessment, model predictions should be evaluated for
confidence. Models predictions should be evaluated based
on close taxonomic distance, model MSE (<0.22), and the
model domain of applicability. There remains some variability
in predictions that was not explained by the uncertainty
analyses, and further analysis of outliers will be conducted
in future analyses. Our results provide the user a means by
which to quantify the uncertainty surrounding ICE predic-
tions, which should provide a greater level of confidence
than alternative, arbitrarily selected safety factors (36).

The uncertainty analyses described in this study are based
on cross-validation, which may not be considered a true
validation of each model. However, cross-validation dem-
onstrates the validity of the ICE modeling approach for
predicting acute toxicity. Although models built with only
three data points could not be validated using this approach,
they are included in the Web-ICE suite of models based on
the verification of the least-squares regression approach for
predicting acute toxicity. Additionally, since the analyses
described in this study are based on cross-validation, which
verifies the approach rather than specific models, these
conclusions should be preserved for updated ICE models
developed with additional data.

ICE models predict acute toxicity, here defined as EC/
LC50 values for 48 or 96 h of exposure under standardized

conditions, to aquatic organisms with quantifiable confidence
and known uncertainty. Taxonomic relatedness, model MSE,
and the range of toxicity values used to develop models should
be used to select models with high certainty. Model predic-
tions may be used to supplement toxicity data used in
ecological risk assessment through either direct toxicity
estimation to species of concern or development of species
sensitivity distributions. The ICE models developed from all
chemical data discussed here are available in U.S. EPA Web-
ICE version 3.1 (Release January 2010; http://www.epa.gov/
ceampubl/fchain/webice/). The MOA-specific models will
be added to Web-ICE following development of genus and
family level models and should be available in 2011.
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Supporting Information Availahle

The number of records and chemicals for each broad and
specific MOA are listed in Table S1. ICE models inclusive of
all chemical data are available in Table S2. Model of Action-
specific ICE models described in this study are available in
Table S3. Graphical examples of models developed for all
data compared to respective MOA-specific models are
provided in Figure S1. This material is available free of charge
via the Internet at http://pubs.acs.org.
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