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ABSTRACT: The United States Environmental Protection
Agency (U.S. EPA) must characterize potential risks to human
health and the environment associated with manufacture and use
of thousands of chemicals. High-throughput screening (HTS) for
biological activity allows the ToxCast research program to
prioritize chemical inventories for potential hazard. Similar
capabilities for estimating exposure potential would support
rapid risk-based prioritization for chemicals with limited
information; here, we propose a framework for high-throughput
exposure assessment. To demonstrate application, an analysis was
conducted that predicts human exposure potential for chemicals
and estimates uncertainty in these predictions by comparison to
biomonitoring data. We evaluated 1936 chemicals using far-field mass balance human exposure models (USEtox and RAIDAR)
and an indicator for indoor and/or consumer use. These predictions were compared to exposures inferred by Bayesian analysis
from urine concentrations for 82 chemicals reported in the National Health and Nutrition Examination Survey (NHANES). Joint
regression on all factors provided a calibrated consensus prediction, the variance of which serves as an empirical determination of
uncertainty for prioritization on absolute exposure potential. Information on use was found to be most predictive; generally,
chemicals above the limit of detection in NHANES had consumer/indoor use. Coupled with hazard HTS, exposure HTS can
place risk earlier in decision processes. High-priority chemicals become targets for further data collection.

■ INTRODUCTION
The United States Environmental Protection Agency (U.S.
EPA) must consider thousands of chemicals when devoting
limited resources to assess risk to human populations and the
environment.1 Over 10 000 chemicals are currently in
commercial use, of which only a fourth may have been
adequately assessed for potential hazard.1,2 The advent of high-
throughput screening (HTS) approaches to characterize
biological activity in vitro3 motivated the development and
implementation of U.S. EPA’s ToxCast research program4 as
part of the federal Tox21 consortium.5 These programs aim to
advance a new, more efficient testing paradigm based on
“predictive toxicology”, whereby chemicals are prioritized for
further testing and action based on in vitro activity profiles and
potential disruption of key biological pathways.6

Recently, Judson et al.7 described a high-throughput risk
assessment approach: dose−response HTS in vitro toxicity data

are used to identify potential biological targets for chemicals. In
vitro methods are then employed to assess pharmacokinetics to
estimate the human dose needed for each chemical to activate
these targets in vivo.8 Because risk is a function of both hazard
and exposure, complementary rapid exposure screening tools
must be developed to compare against these potential hazards
identified by HTS.9−13

ExpoCast is a U.S. EPA initiative to develop the necessary
approaches and tools for screening, evaluating, and classifying
thousands of chemicals based on the potential for relevant
human exposure.14 As recognized in the National Research
Council (NRC) report “Exposure Science in the 21st Century: A
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Vision and a Strategy”, the “fundamental interdependence” of
hazard and exposure data requires higher throughput exposure
approaches.11 For the majority of chemicals in commerce, the
exposure data necessary for risk-based prioritization are
lacking.8,11 Furthermore, there is a need to assess potential
exposure to chemicals before approval for commercial
production. To meet this need, efficient exposure screening
methods should be amenable to rapid implementation, be
based on basic chemical properties, and provide quantitative
estimates for hundreds to thousands of chemicals.
Physicochemical properties inherent to a given compound

(e.g., octanol−water partition coefficients) and properties of
those compounds in environmental media (e.g., degradation
half-lives in soil) have been used to make high-throughput
estimates of potential chemical exposure.15−18 To date, these
prioritizations have been on a relative rather than an absolute
(i.e., mg kg−1 of body weight day−1) scale. Environmental fate
and transport and multimedia exposure models have been
developed to model distribution and degradation in various
environmental media. These mass balance models can be used
to make predictions of human exposure based on “exposure
factors”, i.e., assumptions of human interactions with environ-
mental media and derivation of food from the environment.9,13

Minimally parametrized by predictions from chemical structure
and release volumes, these models can be used to make high-
throughput exposure estimates.19,20 When other, near-field
sources of exposure also exist, e.g., indoor emissions or direct
contact with chemicals in products, this contribution to overall
exposure can dominate far-field sources.21 Careful consider-
ation of the confidence in these predictions (i.e., uncertainty) is
essential, and a comparison of model predictions to real world
exposure data is highly desirable.11

However, monitoring environmental chemicals in the
immediate vicinity of a population and identifying biomarkers
of exposure is expensive and labor-intensive.22,23 One program
that contributes to this effort is the National Health and
Nutrition Examination Survey (NHANES). NHANES is a
program designed to assess the health and nutritional status of
adults and children in the U.S. (http://www.cdc.gov/nchs/
nhanes.htm). NHANES covers a few hundred of the thousands
of environmental chemicals and potential metabolites for which
data are needed24 and would seem to provide a good test of
high-throughput exposure models.
In this paper, we describe a framework for high-throughput

exposure assessment. This ExpoCast exposure prioritization
framework is structured such that (1) large numbers of
chemicals can be rapidly and efficiently evaluated (i.e., high
throughput), (2) models and data covering the diversity of
routes of exposure can be incorporated and weighted as
available and needed, and (3) consensus predictions of human
(and ecological) exposure can be developed with an
appropriate characterization of uncertainty. Here, we demon-
strated the ExpoCast framework by applying two screening-
level fate and transport models and an indicator of near-field
use to predict human exposure potential for 1936 chemicals as
a result of environmental release. A consensus exposure
potential prediction model was then calibrated using NHANES
biomonitoring. Results of this analysis provide insight into
crucial determinants of exposure. The estimates of variance
serve as an empirical determination of uncertainty, which has
been used to prioritize 1936 chemicals with respect to
exposure.

■ METHODS

General Approach. The ExpoCast exposure prioritization
framework here is intended to be sufficiently flexible to
incorporate new models as they become available. To rapidly
screen a set of chemicals for exposure, we used linear regression
to evaluate the predictive power of multiple exposure models
by comparison to ground truth, e.g., exposures inferred from
empirical data for a subset of the chemicals. Multivariate
regression on the set of available high-throughput models
provides regression coefficients for each of the models. The
regression coefficients act as both weights for a single calibrated
predictor for the ground truth data set and an assessment of
model performance (a weight of zero indicates a lack of model
predictivity for the data set in question). The variance of the
ground truth about the calibrated predictor provided an
empirical estimate of the uncertainty. The calibrated predictor
and its uncertainty are then extrapolated to the remainder of
the chemicals for which there were no ground truth data.
Within this framework, new models can be evaluated for
predictivity and ability to decrease uncertainty, while new data
can be incorporated to better characterize model performance.
Table 1 includes the definitions of the acronyms and

abbreviations used throughout the text.

Fate and Transport Models. The United Nations
Environment Program and Society for Environmental Toxicol-
ogy and Chemistry toxicity model (USETox), version 1.01,13

and the Risk Assessment IDentification And Ranking model
(RAIDAR), version 2.01,9 multimedia mass balance models
were used to predict quantities that could be related to
exposure potential. Both models were necessarily capable of
running in high-throughput mode and making quantitative
exposure predictions.20 On the basis of the compound-specific
partitioning (e.g., fugacity) and degradation (i.e., media half-
life) properties and the assumption of steady state (i.e., for a
constant emission rate, sufficient time has passed that the
concentration in each media is constant), the models predict
chemical fate and distribution in representative environmental
media (e.g., air, water, soil, sediment, and biota).
Having predicted the concentrations per unit emission in

various environmental media, both models make additional
assumptions to predict multiple human exposure pathways (i.e.,

Table 1. List of Acronyms and Abbreviations

AIC Akaike Information Criterion
CDC Centers for Disease Control and Prevention
CPRI Crop Protection Research Institute
EPI Suite U.S. EPA’s Estimation Program Interface Suite
ExpoCast U.S. EPA’s Exposure foreCast prioritization research program
HTS high-throughput screening
IUR U.S. EPA’s Inventory Update Reporting and Chemical Data

Reporting list
KOW octanol−water partition coefficient
NHANES National Health and Nutrition Examination Survey
NRC National Research Council
PCA principal components analysis
QSAR quantitative structure−activity relationship
RAIDAR Risk Assessment IDentification And Ranking model
ToxCast U.S. EPA’s Toxicity foreCast prioritization research program
U.S. EPA United States Environmental Protection Agency
USEtox United Nations Environment Program and Society for

Environmental Toxicology and Chemistry toxicity model
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inhalation, water ingestion, and various food ingestion) to
calculate an overall population intake fraction (kilograms
absorbed per kilograms emitted).25 Similar quantities can be
predicted for ecological end points. Further discussion of how
the models were harmonized is available in Supplemental
Methods 1 of the Supporting Information.
Chemical Selection. The ToxCast (phases I and II)

chemical list includes over 1000 compounds, including
industrial chemicals, pesticides, consumer product ingredients,
and pharmaceuticals.4 To this list were added roughly a
thousand additional industrial and consumer use chemicals of
general interest. Because RAIDAR and USEtox use separate,
fundamentally different models to predict exposure to inorganic
chemicals, the chemical set was restricted to organic chemicals
to simplify the number of models under evaluation. The full list
of chemicals considered is available in Supplemental Table 2 of
the Supporting Information.
Model Parameterization. Model input parameters (see

Supplemental Table 1 of the Supporting Information) were
obtained primarily from Estimation Program Interface (EPI)
Suite. In addition to estimation models, EPI Suite contains a
database of experimentally obtained physicochemical properties
that were used in place of quantitative structure−activity
relationship (QSAR)-derived values when available.
Two sets of data were used to provide surrogates for

chemical release to the environment. Information on the
chemical production volume was obtained from the 2006 U.S.
EPA Inventory Update Reporting and Chemical Data
Reporting (IUR) (http://www.epa.gov/oppt/cdr/index.html)
and used as a gross measure of the amount of compound
released into the environment. Note that production volumes
are provided in coarse bands (e.g., 1−10 million lb/year). For
pesticides, Crop Protection Research Institute (CPRI) 2002
data on application levels by state and crop were aggregated,
and resulting national application levels were used as a
substitute for the overall production volume. Compounds
that were not covered by CPRI and were not on the IUR were
assumed to be produced between 0 and 25 thousand lb/year,
the minimum requirement for being listed in the IUR.
Chemicals were identified as pesticides based on their

presence on the CPRI list; all other chemicals were assumed to
be industrial compounds. Two broad release profiles (pesticidal
and industrial) were assumed and, depending upon the fate and
transport model used, were characterized in slightly different
manners. For pesticides, application was assumed to be equally
to soil and air (50% soil and 50% air for RAIDAR and 50%
continental agricultural soil and 50% continental air for
USEtox), i.e., spraying. To assess environmental impact for
chemicals handled under the Toxic Substances Control Act
(TSCA), it is typical to assume either release from a smoke
stack into the air or releases into water, because other releases
onto land, water, or public treatment works are effectively
releases into water.17,26 Because the vast majority of the
chemicals of interest here are those amenable to in vitro HTS
[i.e., non-volatile and soluble in dimethyl sulfoxide (DMSO)],
all chemicals other than pesticides were assumed to largely be
released to water (80% water, 10% soil, and 10% air) for
RAIDAR and continental freshwater (75% continental fresh-
water and 5% to each of continental natural soil, agricultural
soil, air, and seawater and urban air) for USEtox.17 The release
profiles used for each compound are presented in Supplemental
Table 6 of the Supporting Information.

Chemical Use Information. Chemical use information was
estimated from the ACToR database (http://www.epa.gov/
actor/). The sources for various chemical data were primarily
federal, state, and international regulatory listings for chemicals
falling into specific classes. These data were assigned to various
use categories. Chemicals with data from multiple sources were
assigned to multiple categories. Filters were applied to eliminate
inappropriate assignments. The number of times that a
chemical appeared on lists assigned to each category was
tabulated; a threshold (3) was used to make a Boolean
classification of whether a chemical was in a category.
Chemicals above the threshold were automatically assigned to
the category; chemicals with no hits were automatically not
assigned to the category; and chemicals with fewer hits than the
threshold were manually curated. Five categories, personal care
products, consumer use, fragrance, pharmaceutical, and food
additive, were aggregated into a single “near-field” indicator
variable (i.e., having a value of 1 if some near-field use exists
and 0 otherwise).

Biomonitoring Data. The National Health and Nutrition
Examination Survey (NHANES) is conducted by the Centers
for Disease Control and Prevention (CDC) at multiple
locations throughout the United States. NHANES provides a
report on the urine concentrations of many chemicals. For this
analysis, the total adult (age 20 and older) population was used.
We note that, in some cases, NHANES data have been recalled
and that our analysis includes only those data that the CDC
supports as of May 2013.27

A reverse pharmacokinetics approach28,29 was used to infer
exposure from NHANES biomonitoring data for creatinine-
adjusted urine concentrations. Assumptions similar to those by
Mage et al.28 were made, chiefly that the individuals were at
steady state as a result of a constant rate of exposure. An
average daily creatinine excretion of 122.6 mg/dL,27 the body
weight measured by NHANES,27 and an average daily urine
volume of 1.4 L30 were used along with a mapping (see
Supplemental Figures 1 and 7 of the Supporting Information)
derived from the NHANES reports between parent and
metabolite compounds (including the relative molecular
weights) to convert the urine concentration to an exposure in
units of mg kg−1 day−1. Further discussion of the
pharmacokinetic approach is available in Supplemental
Methods 2 of the Supporting Information.

Statistical Analysis. The statistical analysis was carried out
in three stages: (1) Using Bayesian methods (Markov Chain
Monte Carlo via JAGS, version 3.1.031), log geometric mean
exposures to parent compounds were estimated from
population quantiles of distributions of product concentrations
in NHANES urine samples. To use estimates that fell below the
limit of detection, it was assumed that the population
distribution of compounds in urine was log-normal. This
assumption was checked by comparing geometric mean
population exposures computed this way to the geometric
means provided in the NHANES reports. Errors were smaller
than 20%. Stoichiometric relationships (see Supplemental
Table 7 of the Supporting Information) between parent and
urine product (e.g., metabolite) were either assumed to be
known fixed values or were themselves estimated, preserving
mass balance. (2) A null model (one value for all chemicals)
and 22 nested linear models were examined for fitness. The 22
models related log geometric mean population exposures to
predictors consisting of subsets of log RAIDAR and USEtox
unit emissions, log production volumes, near-field contrast, and
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the interaction effects of near-field contrast and the log unit
emission estimates and log production volume. Each model was
fit to repeated samples of the posterior distribution of the log
geometric mean inferred parent exposure concentrations from
stage 1. Production volumes were drawn from a distribution
reflecting the uncertainty for that chemical (e.g., 1−10 million
lb/year). Models were selected by comparing mean Akaike
Information Criterion (AIC)32 values, and the model selection
was checked using 10-fold cross-validation. (3) The model
selected from stage 2 was fit to the NHANES samples using
Bayesian methods, combining the estimation process described
in stage 1 with the model relating log exposure to predictors
identified in stage 2. Predictive intervals for exposure estimates
were computed as quantiles of the resulting posterior predictive
distributions.
Full details of the statistical analysis are provided in

Supplemental Methods 3 of the Supporting Information.

■ RESULTS
Data Availability. The breakdown of available chemical-

specific data is illustrated in Figure 1. Of the 2127 chemicals

initially considered (see Supplemental Table 2 of the
Supporting Information), the physicochemical data required
for model parametrization (see Supplemental Table 1 of the
Supporting Information) could be found or calculated for only
1950 of these chemicals (leaving 167 without complete sets of
model parameters). Experimental data were used for only six of
the model parameters (see Supplemental Table 1 of the
Supporting Information), and only 4.8% of the chemicals had
data for all six. EPI Suite’s QSARs were used if SMILES
descriptions were available, and the QSARs did not fail for that
structure. All parameter values are given in Supplemental Table
3 of the Supporting Information.
As identified by principal components analysis (PCA), the

half-lives in environmental media and the bioconcentration
factor, which is a measure of the concentration in fish relative to
surrounding water, most distinguished one compound from

another (see Supplemental Figure 2 of the Supporting
Information). While 50.7% of the chemicals had measured
KOW and 54.3% had measured water solubility, half-lives were
determined only from QSARs calibrated to the results of a 17
member expert panel that categorized 200 chemicals into semi-
quantitative time categories (hours, days, weeks, months, and
longer than months).33

With the necessary transformations for the model inputs to
USEtox and RAIDAR (given in Supplemental Tables 4 and 5 of
the Supporting Information, respectively) and the assumed
release profiles (see Supplemental Table 6 of the Supporting
Information), compound-specific exposure model predictions
could be made (see Supplemental Table 14 of the Supporting
Information) for 1950 chemicals. Of the 1950 chemicals for
which EPI Suite did not fail, a further 14 chemicals had no use
data, leaving 1936 chemicals for which exposure predictions
could be made.
The IUR provided production volumes for 6759 chemicals,

and the CPRI provided usage for 153 pesticides, allowing for
release estimates for a total of 6907 unique compounds, of
which 975 overlapped with the 1936 chemicals. Most restrictive
was the NHANES biomonitoring data, which covered only 96
of the 1936 chemicals, 14 of which were removed for having no
indication of production/release (e.g., metabolites only; see
Supplemental Table 8 of the Supporting Information) or for
being inorganic (arsenic), leaving 82 ground truth chemicals.

Environmental Model Predictions. Figure 2 clusters
chemicals based on USEtox and RAIDAR predictions of
partitioning into various environmental media. The continental
USEtox media predictions and the RAIDAR predictions are
similar (USEtox also predicts the global concentrations
resulting from the same continental release).
Using the environmental partitioning results from Figure 2,

both RAIDAR and USEtox make assumptions about human
exposure pathways that allow for human exposure metrics to be
calculated, including an overall population intake in units of
kilograms exposed to the population per kilograms emitted
(i.e., intake fraction). Figure 3 shows general agreement
between the predicted intake fractions for the two models,
except for select chemicals with relatively low hydrophobicity
(log KOW < 1). This discrepancy is largely due to differences in
the way that the models simulate chemical accumulation in
vegetation as a function of whether non-hydrophobic
compounds will eventually reach the plants at steady state.
Plotted with triangles in Figure 3 are compounds that would

be considered to be “likely bioaccumulators” [log KOW > 4.5
and a bioaccumulation factor (BAF) > 1000].18 Most likely
bioaccumulators are predicted to have high intake fractions.
The domain of applicability of the NHANES chemicals used

for ground truthing can be in part assessed by the convex hull
of the intake for the NHANES chemicals (shown by a polygon
in Figure 3). Although it does not completely cover the range
of values predicted by USEtox and RAIDAR, the 82 NHANES
chemicals do cover a wide region of predicted intake fractions.
Chemicals with high intake fractions appear to be slightly
underrepresented by NHANES, with only 4.2% of the
NHANES chemicals having intake fractions greater than 10−3

for both models, while this occurs for ∼12% of the overall
chemicals.
Generally, the chemical properties of (see Supplemental

Figure 2 of the Supporting Information) and chemical-specific
model predictions and production volume data for (Figure 3
and see Supplemental Figures 3 and 4 of the Supporting

Figure 1. There is limited exposure data for actually evaluating high-
throughput exposure models. From an initial list of 2127 chemicals,
including all ToxCast to date, 1936 chemicals had sufficient
physicochemical properties available to parametrize fate and transport
models and use data. Production/release data were available for 975 of
these chemicals. Of 82 parent chemical exposures that can be inferred
from the NHANES data set, 31 of these chemicals had to be assumed
to be produced at less than 25 000 lbs/year because they were not on
the IUR or CPRI lists.
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Information) the 1854 chemicals without NHANES data
appear to be within the range of the 82 chemicals with
NHANES data, indicating that most chemicals may be within
the domain of applicability of the empirical calibration.
Evaluation of Predicted Exposure via Model Calibra-

tion. The ultimate goal of this research was to develop a
framework to determine the effectiveness of high-throughput
exposure models for ground-truth chemicals and apply the
resulting calibration to other chemicals with no monitoring
data. On the basis of the analysis of the 82 parent chemical
exposures inferred from NHANES, a calibrated model with
intercept and regression coefficients for the unit USEtox and
RAIDAR predictions for the near-field chemicals only and a

separate intercept only for the far-field chemicals (coefficients
given in Supplemental Table 11 of the Supporting Information)
were selected from among the five most parsimonious models.
This model was selected for including both RAIDAR and
USEtox predictions and having a low AIC, which is a statistical
measure of model parsimony (see Supplemental Table 9 of the
Supporting Information).32 The AIC value for this model was
found to be stable with respect to 10-fold cross-validation (see
Supplemental Figure 6 of the Supporting Information). A
model excluding USEtox (coefficients given in Supplemental
Table 12 of the Supporting Information) was slightly more
parsimonious, but the difference was not statistically significant.

Figure 2. Far-field models predict the distribution of chemicals into environmental media, from which human exposure can be inferred via exposure
factors. The current models make predictions for 1936 chemicals, which have been clustered here on the basis of the amount (kg) of compound
predicted to be present in each environmental medium as the result of a unit emission (1 kg/day). The two-way clustering used Euclidean distance
of the logarithm of the partition fraction and complete linkage (pair with maximum distance used to compare clusters).
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Near-field use was the single most predictive chemical aspect
(p value of 0.01 without any other factors). Those chemicals
flagged as having indoor/consumer use yield significantly
greater NHANES-inferred exposures on average than for the
chemicals that were not flagged. Neither USEtox nor RAIDAR
total predictions (i.e., predicted unit emission multiplied by
production volume) alone are significantly associated with the
82 NHANES chemicals (p values of 0.077 and 0.194,
respectively; see Supplemental Table 10 of the Supporting
Information). Generally, chemicals above the limit of detection
in NHANES had consumer/indoor use, while those with only
the far-field sources for which the fate and transport models
were designed were below the limit of detection. The 10-fold
cross-validation diagnostics did not indicate that the
correlations were driven by specific chemicals (see Supple-
mental Figures 5 and 6 of the Supporting Information).
The ability of this method to predict potential exposure is

evaluated in Figure 4, where the empirically calibrated, optimal
predictor (see Supplemental Table 11 of the Supporting
Information) based on RAIDAR, USEtox, and the near-field
indicator is compared to the geometric mean U.S. population
exposures inferred from NHANES urine metabolites (see
Supplemental Table 13 of the Supporting Information).
Despite the large scatter, the joint model predictor appears to
be without obvious bias (i.e., does not under-/overpredict).
Taking no correlation as a null hypothesis, the p value for the
calibrated predictor is 0.017.
The relative certainty in the exposures inferred by reverse

toxicokinetics (y axis) is indicated by the vertical confidence

Figure 3. USEtox and RAIDAR predict intake fraction (kilograms
exposed to the population per kilograms emitted) via exposure factors
that translate predicted environmental media concentrations into
human exposure metrics. Of particular interest are putative
bioaccumulators (indicated by triangles), compounds with log KOW
< 1 (indicated by squares), and the NHANES chemicals (indicated by
open symbols). A convex hull of the NHANES chemicals indicates
reasonable coverage of the predicted exposure space by those
chemicals. Approximately 88% of the chemicals are predicted by
both models to have intake fractions below 10−3.

Figure 4. Correlation of inferred exposures and the consensus model indicates predictive power (p value of 0.017). Exposures inferred from
NHANES biomonitoring data were linearly regressed on the unit emission predictions of RAIDAR, USEtox, and a near-field use indicator variable to
create a calibrated predictor for predicted exposure (mg kg−1 day−1). The solid line indicates the 1:1 line (perfect predictor). Bayesian analysis was
used to distribute urine products using mass balance, giving the 95% confidence intervals (light lines) and medians (solid triangles for compounds
with near-field use and open circles for far-field use only). The regression coefficients are available in Supplemental Table 11 of the Supporting
Information. The uncertainty of the inferred exposures (width of the vertical confidence interval) is strongly dependent upon the number of general
population quantiles with concentrations below the limit of detection in NHANES.
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interval in Figure 4. Those chemicals with a large uncertainty in
the inferred exposure estimate likely have complex parent
exposure−urine product relationships (e.g., the metabolite
dimethylphosphate can result from exposure to 17 different
parent organophosphate pesticides; see Supplemental Figure 1
of the Supporting Information) or were below the limit of
detection. Note that the vertical placement of plot symbols in
Figure 4 indicates the median-inferred exposure; for chemicals
where many or all NHANES urine products were below the
limit of detection, the median is no more likely to be the true
exposure value than any other value within the vertical
confidence interval.
Given the predictions of the empirically calibrated consensus

model, ranking on the basis of predicted exposure was
conducted for all 1936 chemicals based on the upper limit of
the 95% confidence interval from the empirical calibration to
the NHANES data. However, as shown in Figure 5, the large
uncertainty associated with the far-field models and coarse
near-field indicator predictor, indicated by the horizontal error
bars at each plot point, should lead to skepticism of specific
predicted values. Despite this uncertainty as to the specific
exposure level within the confidence interval, Figure 5 indicates
that, for all but the top 100 chemicals, there is 95% confidence
that exposures will be less than 0.29 mg kg−1 of body weight
day−1. For the bottom 1000 chemicals, there is 95% confidence
that exposures are less than 0.27 μg kg−1 of body weight day−1.

■ DISCUSSION

This study demonstrated the feasibility of HTS exposure
profiling for quantitative predictions of exposure potential for

1936 chemicals. Linear regression on exposures inferred from
NHANES data allowed for evaluation of correlation (model
predictive ability) and an empirical calibration such that
exposures consistent with NHANES data were predicted for
all chemicals. More importantly, the variance about this
calibrated predictor provided an empirical quantification of
uncertainty. Finally, this work has identified large data needs to
provide either initial or improved prediction of environmental
chemical exposure. Of special importance is the need to better
model and reflect variations in near-field sources of exposure.
Both environmental half-lives and physicochemical proper-

ties have long been considered drivers of environmental fate
and potential exposure.15−18 However, positive correlation
between exposure prioritizations based on these properties and
other measures of exposure have been elusive.15,34 Thus, the
predictive ability of the selected model indicates value gained
by this modeling approach.
Exposures are inferred via reverse toxicokinetics from the

NHANES data set for 82 chemicals, and the inferences for
these chemicals alone allow for model evaluation. The
properties of (see Supplemental Figure 2 of the Supporting
Information) and predictions for (Figure 3 and see
Supplemental Figures 3 and 4 of the Supporting Information)
these chemicals are roughly representative of the 1936
chemicals. These inferred exposures provide a data set for
comparison to exposure model predictions and allow for
calibration and an empirical determination of predictive
uncertainty. Some of the inferred exposures have large
uncertainty themselves, likely because of complex parent
exposure−urine product relationships or urine concentrations
that were below the limit of detection.

Figure 5. Predicted human exposure (mg kg−1 day−1) for 1936 chemicals found by empirically calibrating high-throughput model predictions to be
consistent with exposures inferred from NHANES. The uncertainty in each prediction is indicated by the horizontal 95% confidence interval.
NHANES chemicals used for the calibration are indicated by the lighter confidence interval bars. The black tick marks on the left hand side indicate
compounds with only far-field uses.
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Exposure inference from the NHANES data was conducted
under the assumption of steady-state conditions. Although this
assumption was necessary for the current analysis, it is unlikely
to be true for most chemicals, particularly those that are rapidly
metabolized. As medium- to high-throughput pharmacokinetic
data becomes available (e.g., the study by Wetmore et al.8), it
may eventually be possible to characterize the confidence in
these inferences with respect to the drivers of variability (e.g.,
exposure frequency, duration, and chemical metabolism/
excretion half-life). As finer grained chemical use information
becomes available, it might be used jointly with basic
pharmacokinetic data to eliminate the need for the steady-
state assumption altogether. At this time, the steady-state
assumption appears to be the best available for high-throughput
exposure methods and is a contributor to the overall
uncertainty estimated here.
Given the observed importance of near-field relative to far-

field releases, future efforts for human health assessment should
focus less on refinement of far-field models and, rather,
emphasize additional exposure data and models that character-
ize proximate sources/uses. In the NHANES data, chemicals
with near-field sources are generally above the limit of
detection, whereas those with far-field only sources were
generally below the limit of detection, providing only minimal
information for evaluating far-field exposure routes. Most of the
NHANES compounds with products in urine above the limit of
detection have significant and diverse use in the home that
could produce near-field releases. For these chemicals, near-
field sources are a much more significant driver than the diffuse,
continent-wide sources of far-field models.35

Many proposed near-field models are sensitive to the same
physicochemical properties as fate and transport models and
would benefit from improved data.36,37 Measured and predicted
data from EPI Suite were not evaluated for quality. Any
uncertainties and errors are distinct from those of the evaluated
models but contribute to the empirically estimated uncertainty.
Further, EPI Suite could not predict all necessary properties for
167 of the chemicals initially considered. HTS for phys-
icochemical properties38 could reduce or eliminate the need for
some QSARs to predict these properties while allowing other
QSAR methods to expand into new regions of chemical space.
Assays amenable to HTS exist for physicochemical properties38

as well as for half-lives in environmental media.39 In vitro assays
to estimate biotransformation half-lives may be especially
valuable.34 The rate-limiting step in half-life assays is typically
the chemical-specific analytical chemistry methods, which are
available for many ToxCast chemicals.8

Additional data are also needed to better characterize the
release of compounds into the environment. A determination
of whether a chemical was a “pesticide” was solely based on
whether or not the chemical was on a list compiled by the
CPRI. This list is not complete, and points to the need for
more reliable sources of information for large numbers of
chemicals. For those chemicals covered by CPRI, data on the
kilograms applied agriculturally were available. For all other
chemicals, production volume data were used as a crude
surrogate for actual chemical release. This simplification is a key
issue for models such as USEtox and RAIDAR; the volume
released into the environment is a multiplicative factor, and
results are extremely sensitive to errors in the emission
characterization.40 Although U.S. EPA IUR production volume
category data are available for many chemicals, these categories
can span an order of magnitude and are not directly linked to

intended use, e.g., environmental versus indoor releases.
However, as shown in Figure 1, many NHANES chemicals
were produced at levels less than 25 thousand lb/year and their
presence in the urine of the general population was driven by
near-field use rather than these traditional metrics of
production and far-field environmental release.
Finally, expanded monitoring data are needed to better

characterize actual exposures. For the majority of chemicals,
where resources, such as NHANES data, are not available, new
more flexible approaches are needed to quantify population-
level chemical exposures. HTS techniques are becoming
available that can simultaneously screen for thousands of
xenobiotic chemicals as well as endogenous markers of
biological response and exposure in serum.41

Here, we demonstrated a method for rapid exposure-based
prioritization of chemicals using minimal information. How-
ever, characterizing risk for large numbers of chemicals requires
reliable information regarding both hazard and exposure, with
appropriate uncertainty and variability. Ultimately, predicting
distributions of potential exposures in a high-throughput
manner must complement the high-throughput hazard assess-
ment work that is underway.7,8 In the study by Wetmore et al.,8

the vast majority of human oral equivalent (mg kg−1 day−1)
doses needed to cause ToxCast bioactivities were in excess of
10−4 mg kg−1 day−1, while in Figure 5, we find that, even with
large estimated uncertainty, the upper limit of the 95%
confidence intervals for the bottom 668 chemicals are below
this level. At this initial stage, however, our results are primarily
appropriate for identifying areas of future research vital to
providing sufficient high-throughput exposure assessment.
Future work will also be needed to address population

variability. Here, we have calibrated to the NHANES total
population numbers; however, chemical data are available for
specific demographics (e.g., children aged 6−11), and
calibrations to these demographics may identify drivers of
exposure that vary among populations. The exposure scenarios
of the models applied here as well as future models can be
customized to represent demographics beyond the general
population (e.g., highly exposed and sensitive subpopulations).
The ExpoCast exposure prioritization framework is designed

to apply to large numbers of chemicals, to incorporate new
models as they become available, to weight model components
appropriately, and to make predictions of human (and in due
course ecological) exposure, all with an appropriate character-
ization of uncertainty. This framework meets the mandate of
the NRC for an objective, standardized, and transparent
approach to high-throughput exposure modeling.11

As new models are incorporated into the ExpoCast
framework, the results reported here will serve as a baseline.
There is a clear need to develop screening tools for near-field
human exposures. We hope that the value of future exposure
prioritization work can now be quantitatively demonstrated by
reducing the large uncertainties currently associated with
predicting human exposure to environmental chemicals.
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