ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) Imaging Source Coupled to a FT-ICR Mass Spectrometer

  • Guillaume Robichaud
    Guillaume Robichaud
    W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
  • Jeremy A. Barry
    Jeremy A. Barry
    W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
  • Kenneth P. Garrard
    Kenneth P. Garrard
    Precision Engineering Center, North Carolina State University, Raleigh, NC, USA
  • , and 
  • David C. Muddiman
    David C. Muddiman
    W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
Cite this: J. Am. Soc. Mass Spectrom. 2013, 24, 1, 92–100
Publication Date (Web):December 4, 2012
https://doi.org/10.1007/s13361-012-0505-9
Copyright © 2012 © American Society for Mass Spectrometry 2012

    Article Views

    414

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Mass spectrometry imaging (MSI) allows for the direct monitoring of the abundance and spatial distribution of chemical compounds over the surface of a tissue sample. This technology has opened the field of mass spectrometry to numerous innovative applications over the past 15 years. First used with SIMS and MALDI MS that operate under vacuum, interest has grown for mass spectrometry ionization sources that allow for effective imaging but where the analysis can be performed at ambient pressure with minimal or no sample preparation. We introduce here a versatile source for MALDESI imaging analysis coupled to a hybrid LTQ-FT-ICR mass spectrometer. The imaging source offers single shot or multi-shot capability per pixel with full control over the laser repetition rate and mass spectrometer scanning cycle. Scanning rates can be as fast as 1 pixel/second and a spatial resolution of 45 μm was achieved with oversampling.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information


    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 99 publications.

    1. Allyson L. Mellinger, Kenneth P. Garrard, Sitora Khodjaniyazova, Zahid N. Rabbani, Michael P. Gamcsik, David C. Muddiman. Multiple Infusion Start Time Mass Spectrometry Imaging of Dynamic SIL-Glutathione Biosynthesis Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization. Journal of Proteome Research 2022, 21 (3) , 747-757. https://doi.org/10.1021/acs.jproteome.1c00636
    2. Michael J. Taylor, Andrey Liyu, Akos Vertes, Christopher R. Anderton. Ambient Single-Cell Analysis and Native Tissue Imaging Using Laser-Ablation Electrospray Ionization Mass Spectrometry with Increased Spatial Resolution. Journal of the American Society for Mass Spectrometry 2021, 32 (9) , 2490-2494. https://doi.org/10.1021/jasms.1c00149
    3. Michael J. Taylor, Jessica K. Lukowski, Christopher R. Anderton. Spatially Resolved Mass Spectrometry at the Single Cell: Recent Innovations in Proteomics and Metabolomics. Journal of the American Society for Mass Spectrometry 2021, 32 (4) , 872-894. https://doi.org/10.1021/jasms.0c00439
    4. Kenneth P. Garrard, Måns Ekelöf, Sitora Khodjaniyazova, M. Caleb Bagley, David C. Muddiman. A Versatile Platform for Mass Spectrometry Imaging of Arbitrary Spatial Patterns. Journal of the American Society for Mass Spectrometry 2020, 31 (12) , 2547-2552. https://doi.org/10.1021/jasms.0c00128
    5. Efstathios A. Elia, Marcel Niehaus, Rory T. Steven, Jan-Christoph Wolf, Josephine Bunch. Atmospheric Pressure MALDI Mass Spectrometry Imaging Using In-Line Plasma Induced Postionization. Analytical Chemistry 2020, 92 (23) , 15285-15290. https://doi.org/10.1021/acs.analchem.0c03524
    6. Måns Ekelöf, James Dodds, Sitora Khodjaniyazova, Kenneth P. Garrard, Erin S. Baker, David C. Muddiman. Coupling IR-MALDESI with Drift Tube Ion Mobility-Mass Spectrometry for High-Throughput Screening and Imaging Applications. Journal of the American Society for Mass Spectrometry 2020, 31 (3) , 642-650. https://doi.org/10.1021/jasms.9b00081
    7. Anqi Tu, David C. Muddiman. Internal Energy Deposition in Infrared Matrix-Assisted Laser Desorption Electrospray Ionization With and Without the Use of Ice as a Matrix. Journal of the American Society for Mass Spectrometry 2019, 30 (11) , 2380-2391. https://doi.org/10.1007/s13361-019-02323-2
    8. William M. Gilliland, Jr., Heather M.A. Prince, Amanda Poliseno, Angela D.M. Kashuba, Elias P. Rosen. Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry Imaging of Human Hair to Characterize Longitudinal Profiles of the Antiretroviral Maraviroc for Adherence Monitoring. Analytical Chemistry 2019, 91 (16) , 10816-10822. https://doi.org/10.1021/acs.analchem.9b02464
    9. Sylwia A. Stopka, Laith Z. Samarah, Jared B. Shaw, Andrey V. Liyu, Dušan Veličković, Beverly J. Agtuca, Caroline Kukolj, David W. Koppenaal, Gary Stacey, Ljiljana Paša-Tolić, Christopher R. Anderton, Akos Vertes. Ambient Metabolic Profiling and Imaging of Biological Samples with Ultrahigh Molecular Resolution Using Laser Ablation Electrospray Ionization 21 Tesla FTICR Mass Spectrometry. Analytical Chemistry 2019, 91 (8) , 5028-5035. https://doi.org/10.1021/acs.analchem.8b05084
    10. Clara L. Feider, Anna Krieger, Rachel J. DeHoog, Livia S. Eberlin. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Analytical Chemistry 2019, 91 (7) , 4266-4290. https://doi.org/10.1021/acs.analchem.9b00807
    11. Robert W. Johnson, Jr., Nari Talaty. Tissue Imaging by Mass Spectrometry: A Practical Guide for the Medicinal Chemist. ACS Medicinal Chemistry Letters 2019, 10 (2) , 161-167. https://doi.org/10.1021/acsmedchemlett.8b00480
    12. Mark T. Bokhart, Milad Nazari, Kenneth P. Garrard, David C. Muddiman. MSiReader v1.0: Evolving Open-Source Mass Spectrometry Imaging Software for Targeted and Untargeted Analyses. Journal of the American Society for Mass Spectrometry 2018, 29 (1) , 8-16. https://doi.org/10.1007/s13361-017-1809-6
    13. Mark T. Bokhart, Jeffrey Manni, Kenneth P. Garrard, Måns Ekelöf, Milad Nazari, David C. Muddiman. IR-MALDESI Mass Spectrometry Imaging at 50 Micron Spatial Resolution. Journal of the American Society for Mass Spectrometry 2017, 28 (10) , 2099-2107. https://doi.org/10.1007/s13361-017-1740-x
    14. Måns Ekelöf, Erin K. McMurtrie, Milad Nazari, Suzanne D. Johanningsmeier, David C. Muddiman. Direct Analysis of Triterpenes from High-Salt Fermented Cucumbers Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI). Journal of the American Society for Mass Spectrometry 2017, 28 (2) , 370-375. https://doi.org/10.1007/s13361-016-1541-7
    15. Fengjian Shi, Paul M. Flanigan , IV, Jieutonne J. Archer, Robert J. Levis. Ambient Molecular Analysis of Biological Tissue Using Low-Energy, Femtosecond Laser Vaporization and Nanospray Postionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2016, 27 (3) , 542-551. https://doi.org/10.1007/s13361-015-1302-z
    16. Elias P. Rosen, Corbin G. Thompson, Mark T. Bokhart, Heather M. A. Prince, Craig Sykes, David C. Muddiman, and Angela D. M. Kashuba . Analysis of Antiretrovirals in Single Hair Strands for Evaluation of Drug Adherence with Infrared-Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry Imaging. Analytical Chemistry 2016, 88 (2) , 1336-1344. https://doi.org/10.1021/acs.analchem.5b03794
    17. Elias P. Rosen, Mark T. Bokhart, Milad Nazari, and David C. Muddiman . Influence of C-Trap Ion Accumulation Time on the Detectability of Analytes in IR-MALDESI MSI. Analytical Chemistry 2015, 87 (20) , 10483-10490. https://doi.org/10.1021/acs.analchem.5b02641
    18. Elias P. Rosen, Mark T. Bokhart, H. Troy Ghashghaei, David C. Muddiman. Influence of Desorption Conditions on Analyte Sensitivity and Internal Energy in Discrete Tissue or Whole Body Imaging by IR-MALDESI. Journal of the American Society for Mass Spectrometry 2015, 26 (6) , 899-910. https://doi.org/10.1007/s13361-015-1114-1
    19. Jeffrey M. Spraggins, David G. Rizzo, Jessica L. Moore, Kristie L. Rose, Neal D. Hammer, Eric P. Skaar, Richard M. Caprioli. MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data. Journal of the American Society for Mass Spectrometry 2015, 26 (6) , 974-985. https://doi.org/10.1007/s13361-015-1147-5
    20. Olga S. Ovchinnikova, Tamin Tai, Vera Bocharova, Mahmut Baris Okatan, Alex Belianinov, Vilmos Kertesz, Stephen Jesse, and Gary J. Van Berkel . Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform. ACS Nano 2015, 9 (4) , 4260-4269. https://doi.org/10.1021/acsnano.5b00659
    21. Jeremy T. O’Brien, Evan R. Williams, and Hoi-Ying N. Holman . Ambient Infrared Laser Ablation Mass Spectrometry (AIRLAB-MS) of Live Plant Tissue with Plume Capture by Continuous Flow Solvent Probe. Analytical Chemistry 2015, 87 (5) , 2631-2638. https://doi.org/10.1021/ac503383p
    22. Bernhard Spengler . Mass Spectrometry Imaging of Biomolecular Information. Analytical Chemistry 2015, 87 (1) , 64-82. https://doi.org/10.1021/ac504543v
    23. Jeremy A. Barry, Guillaume Robichaud, Mark T. Bokhart, Corbin Thompson, Craig Sykes, Angela D. M. Kashuba, David C. Muddiman. Mapping Antiretroviral Drugs in Tissue by IR-MALDESI MSI Coupled to the Q Exactive and Comparison with LC-MS/MS SRM Assay. Journal of the American Society for Mass Spectrometry 2014, 25 (12) , 2038-2047. https://doi.org/10.1007/s13361-014-0884-1
    24. Guillaume Robichaud, Jeremy A. Barry, David C. Muddiman. IR-MALDESI Mass Spectrometry Imaging of Biological Tissue Sections Using Ice as a Matrix. Journal of the American Society for Mass Spectrometry 2014, 25 (3) , 319-328. https://doi.org/10.1007/s13361-013-0787-6
    25. Ingela Lanekoff, Kristin Burnum-Johnson, Mathew Thomas, Joshua Short, James P. Carson, Jeeyeon Cha, Sudhansu K. Dey, Pengxiang Yang, Maria C. Prieto Conaway, and Julia Laskin . High-Speed Tandem Mass Spectrometric in Situ Imaging by Nanospray Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry 2013, 85 (20) , 9596-9603. https://doi.org/10.1021/ac401760s
    26. Jeremy A. Barry, Guillaume Robichaud, David C. Muddiman. Mass Recalibration of FT-ICR Mass Spectrometry Imaging Data Using the Average Frequency Shift of Ambient Ions. Journal of the American Society for Mass Spectrometry 2013, 24 (7) , 1137-1145. https://doi.org/10.1007/s13361-013-0659-0
    27. Guillaume Robichaud, Kenneth P. Garrard, Jeremy A. Barry, David C. Muddiman. MSiReader: An Open-Source Interface to View and Analyze High Resolving Power MS Imaging Files on Matlab Platform. Journal of the American Society for Mass Spectrometry 2013, 24 (5) , 718-721. https://doi.org/10.1007/s13361-013-0607-z
    28. Xing Guo, Xin Wang, Caiyan Tian, Jianxiong Dai, Zhongjun Zhao, Yixiang Duan. Development of mass spectrometry imaging techniques and its latest applications. Talanta 2023, 264 , 124721. https://doi.org/10.1016/j.talanta.2023.124721
    29. Yury Desyaterik, Joseph N. Mwangi, MaryPeace McRae, Austin M. Jones, Angela D. M. Kashuba, Elias P. Rosen. Application of infrared matrix-assisted laser desorption electrospray ionization mass spectrometry for morphine imaging in brain tissue. Analytical and Bioanalytical Chemistry 2023, 206 https://doi.org/10.1007/s00216-023-04861-x
    30. Lanaia Ítala Louzeiro Maciel, Ricardo Alves Bernardo, Rafael Oliveira Martins, Almir Custodio Batista Junior, João Victor Ataíde Oliveira, Andréa Rodrigues Chaves, Boniek Gontijo Vaz. Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis. Analytical and Bioanalytical Chemistry 2023, 415 (18) , 4125-4145. https://doi.org/10.1007/s00216-023-04783-8
    31. Michael Caleb Bagley, Kenneth P. Garrard, David C. Muddiman. The development and application of matrix assisted laser desorption electrospray ionization: The teenage years. Mass Spectrometry Reviews 2023, 42 (1) , 35-66. https://doi.org/10.1002/mas.21696
    32. Xiaowei Song, Chao Li, Yifan Meng. Mass spectrometry imaging advances and application in pharmaceutical research. Acta Materia Medica 2022, 1 (4) https://doi.org/10.15212/AMM-2022-0046
    33. Xin Ma, Facundo M. Fernández. Advances in mass spectrometry imaging for spatial cancer metabolomics. Mass Spectrometry Reviews 2022, 60 https://doi.org/10.1002/mas.21804
    34. Aaron S. Devanathan, Nicole R. White, Yury Desyaterik, Gabriela De la Cruz, Michael Nekorchuk, Margaret Terry, Kathleen Busman-Sahay, Lourdes Adamson, Paul Luciw, Yuri Fedoriw, Jacob D. Estes, Elias P. Rosen, Angela D. M. Kashuba. Quantitative Imaging Analysis of the Spatial Relationship between Antiretrovirals, Reverse Transcriptase Simian-Human Immunodeficiency Virus RNA, and Fibrosis in the Spleens of Nonhuman Primates. Antimicrobial Agents and Chemotherapy 2022, 66 (8) https://doi.org/10.1128/aac.00609-22
    35. Yanru Wu, Chi Wut Wong, Eric N. Chiles, Allyson L. Mellinger, Hosung Bae, Sunhee Jung, Ted Peterson, Jamie Wang, Marcos Negrete, Qiang Huang, Lihua Wang, Cholsoon Jang, David C. Muddiman, Xiaoyang Su, Ian Williamson, Xiling Shen. Glycerate from intestinal fructose metabolism induces islet cell damage and glucose intolerance. Cell Metabolism 2022, 34 (7) , 1042-1053.e6. https://doi.org/10.1016/j.cmet.2022.05.007
    36. Joseph N. Mwangi, William M. Gilliland, Nicole White, Craig Sykes, Amanda Poliseno, Kelly A. Knudtson, Lisa Hightow-Weidman, Angela D. M. Kashuba, Elias P. Rosen. Mass Spectroscopy Imaging of Hair Strands Captures Short-Term and Long-Term Changes in Emtricitabine Adherence. Antimicrobial Agents and Chemotherapy 2022, 66 (4) https://doi.org/10.1128/aac.02176-21
    37. Pegah Khamehgir-Silz, Stefanie Gerbig, Nadine Volk, Sabine Schulz, Bernhard Spengler, Markus Hecker, Andreas H. Wagner. Comparative lipid profiling of murine and human atherosclerotic plaques using high-resolution MALDI MSI. Pflügers Archiv - European Journal of Physiology 2022, 474 (2) , 231-242. https://doi.org/10.1007/s00424-021-02643-x
    38. Chaemin Lim, Jacob D. Ramsey, Duhyeong Hwang, Susana C. M. Teixeira, Chi‐Duen Poon, Joshua D. Strauss, Elias P. Rosen, Marina Sokolsky‐Papkov, Alexander V. Kabanov. Drug‐Dependent Morphological Transitions in Spherical and Worm‐Like Polymeric Micelles Define Stability and Pharmacological Performance of Micellar Drugs. Small 2022, 18 (4) https://doi.org/10.1002/smll.202103552
    39. Qian Wu, Hongmei Lu. Quantitative Mass Spectrometry Imaging with Liquid Microjunction Surface Sampling. 2022, 181-194. https://doi.org/10.1007/978-1-0716-2030-4_13
    40. Ying Xi, David C. Muddiman. Enhancing Metabolomic Coverage in Positive Ionization Mode Using Dicationic Reagents by Infrared Matrix-Assisted Laser Desorption Electrospray Ionization. Metabolites 2021, 11 (12) , 810. https://doi.org/10.3390/metabo11120810
    41. Aaron S. Devanathan, Angela D.M. Kashuba. Human Immunodeficiency Virus Persistence in the Spleen: Opportunities for Pharmacologic Intervention. AIDS Research and Human Retroviruses 2021, 37 (10) , 725-735. https://doi.org/10.1089/aid.2020.0266
    42. M. Caleb Bagley, David C. Muddiman. Investigations of β‐carotene radical cation formation in infrared matrix‐assisted laser desorption electrospray ionization (IR‐MALDESI). Rapid Communications in Mass Spectrometry 2021, 35 (16) https://doi.org/10.1002/rcm.9133
    43. Erin M. B. Scholz, Joseph N. Mwangi, Gabriela De la Cruz, Michael Nekorchuk, Chi Ngai Chan, Kathleen Busman-Sahay, Lourdes Adamson, Paul Luciw, Yuri Fedoriw, Jacob D. Estes, Elias P. Rosen, Angela D. M. Kashuba. Quantitative Imaging Analysis of the Spatial Relationship between Antiretrovirals, Reverse Transcriptase Simian-Human Immunodeficiency Virus RNA, and Collagen in the Mesenteric Lymph Nodes of Nonhuman Primates. Antimicrobial Agents and Chemotherapy 2021, 65 (6) https://doi.org/10.1128/AAC.00019-21
    44. Enrico Davoli, Massimo Zucchetti, Cristina Matteo, Paolo Ubezio, Maurizio D'Incalci, Lavinia Morosi. THE SPACE DIMENSION AT THE MICRO LEVEL: MASS SPECTROMETRY IMAGING OF DRUGS IN TISSUES. Mass Spectrometry Reviews 2021, 40 (3) , 201-214. https://doi.org/10.1002/mas.21633
    45. Kevin J. Zemaitis, Alexandra M. Izydorczak, Alexis C. Thompson, Troy D. Wood. Streamlined Multimodal DESI and MALDI Mass Spectrometry Imaging on a Singular Dual-Source FT-ICR Mass Spectrometer. Metabolites 2021, 11 (4) , 253. https://doi.org/10.3390/metabo11040253
    46. Bindesh Shrestha. Ionization sources for imaging mass spectrometry. 2021, 11-22. https://doi.org/10.1016/B978-0-12-818998-6.00002-4
    47. Megan M. Knuth, Whitney L. Stutts, Morgan M. Ritter, Kenneth P. Garrard, Seth W. Kullman. Vitamin D deficiency promotes accumulation of bioactive lipids and increased endocannabinoid tone in zebrafish. Journal of Lipid Research 2021, 62 , 100142. https://doi.org/10.1016/j.jlr.2021.100142
    48. Al Mamun, Ariful Islam, Fumihiro Eto, Tomohito Sato, Tomoaki Kahyo, Mitsutoshi Setou. Mass spectrometry-based phospholipid imaging: methods and findings. Expert Review of Proteomics 2020, 17 (11-12) , 843-854. https://doi.org/10.1080/14789450.2020.1880897
    49. Ying Xi, Anqi Tu, David C. Muddiman. Lipidomic profiling of single mammalian cells by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Analytical and Bioanalytical Chemistry 2020, 412 (29) , 8211-8222. https://doi.org/10.1007/s00216-020-02961-6
    50. M. Caleb Bagley, Crystal L. Pace, Måns Ekelöf, David C. Muddiman. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging analysis of endogenous metabolites in cherry tomatoes. The Analyst 2020, 145 (16) , 5516-5523. https://doi.org/10.1039/D0AN00818D
    51. Muhammad Shemyal Nisar, Xiangwei Zhao. High resolution mass spectrometry for single cell analysis. International Journal of Mass Spectrometry 2020, 450 , 116302. https://doi.org/10.1016/j.ijms.2020.116302
    52. Kei Zaitsu. Introduction to ambient ionization mass spectrometry. 2020, 1-32. https://doi.org/10.1016/B978-0-12-817220-9.00001-1
    53. Alessandra Tata, Michael Woolman, Emma Bluemke, Arash Zarrine-Afsar. Ambient laser-based mass spectrometry analysis methods: a survey of core technologies and reported applications. 2020, 119-169. https://doi.org/10.1016/B978-0-12-817220-9.00005-9
    54. Pieter C. Kooijman, Konstantin O. Nagornov, Anton N. Kozhinov, David P. A. Kilgour, Yury O. Tsybin, Ron M. A. Heeren, Shane R. Ellis. Increased throughput and ultra-high mass resolution in DESI FT-ICR MS imaging through new-generation external data acquisition system and advanced data processing approaches. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-018-36957-1
    55. Jinjuan Xue, Yu Bai, Huwei Liu. Recent advances in ambient mass spectrometry imaging. TrAC Trends in Analytical Chemistry 2019, 120 , 115659. https://doi.org/10.1016/j.trac.2019.115659
    56. Anqi Tu, David C. Muddiman. Systematic evaluation of repeatability of IR-MALDESI-MS and normalization strategies for correcting the analytical variation and improving image quality. Analytical and Bioanalytical Chemistry 2019, 411 (22) , 5729-5743. https://doi.org/10.1007/s00216-019-01953-5
    57. Masanobu Nishidate, Mitsuhiro Hayashi, Hiroaki Aikawa, Kouji Tanaka, Naoyuki Nakada, Shin-ichi Miura, Shoraku Ryu, Tatsuya Higashi, Yoshinori Ikarashi, Yasuhiro Fujiwara, Akinobu Hamada. Applications of MALDI mass spectrometry imaging for pharmacokinetic studies during drug development. Drug Metabolism and Pharmacokinetics 2019, 34 (4) , 209-216. https://doi.org/10.1016/j.dmpk.2019.04.006
    58. Qurat ul Ain Farooq, Noor ul Haq, Abdul Aziz, Sara Aimen, Muhammad Inam ul Haq. Mass Spectrometry for Proteomics and Recent Developments in ESI, MALDI and other Ionization Methodologies. Current Proteomics 2019, 16 (4) , 267-276. https://doi.org/10.2174/1570164616666190204154653
    59. Bryn Flinders, Tom Bassindale, Ron M. A. Heeren. Recent Technological Developments in MALDI-MSI Based Hair Analysis. 2019, 133-149. https://doi.org/10.1007/978-3-030-20542-3_9
    60. Frédéric Aubriet, Vincent Carré. Fourier transform ion cyclotron resonance mass spectrometry and laser: A versatile tool. 2019, 281-322. https://doi.org/10.1016/B978-0-12-814013-0.00010-7
    61. Michael D Weber, Elizabeth Andrews, Heather A Prince, Craig Sykes, Elias P Rosen, Camden Bay, Nicholas J Shaheen, Ryan D Madanick, Evan S Dellon, Kristina De Paris, Julie AE Nelson, Cynthia L Gay, Angela DM Kashuba. Virological and Immunological Responses to Raltegravir and Dolutegravir in the Gut-Associated Lymphoid Tissue of HIV-Infected Men and Women. Antiviral Therapy 2018, 23 (6) , 495-504. https://doi.org/10.3851/IMP3236
    62. Jong-Jae Yi, Kyeongsoon Park, Won-Je Kim, Jin-Kyu Rhee, Woo Sung Son. Spectroscopic methods to analyze drug metabolites. Archives of Pharmacal Research 2018, 41 (4) , 355-371. https://doi.org/10.1007/s12272-018-1010-x
    63. Milad Nazari, Alexandra A. Malico, Måns Ekelöf, Sean Lund, Gavin J. Williams, David C. Muddiman. Direct analysis of terpenes from biological buffer systems using SESI and IR-MALDESI. Analytical and Bioanalytical Chemistry 2018, 410 (3) , 953-962. https://doi.org/10.1007/s00216-017-0570-9
    64. Milad Nazari, Mark T. Bokhart, Philip L. Loziuk, David C. Muddiman. Quantitative mass spectrometry imaging of glutathione in healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). The Analyst 2018, 143 (3) , 654-661. https://doi.org/10.1039/C7AN01828B
    65. Milad Nazari, Måns Ekelöf, Sitora Khodjaniyazova, Nathaniel L. Elsen, Jon D. Williams, David C. Muddiman. Direct screening of enzyme activity using infrared matrix-assisted laser desorption electrospray ionization. Rapid Communications in Mass Spectrometry 2017, 31 (22) , 1868-1874. https://doi.org/10.1002/rcm.7971
    66. Yunlong Zhang, Ran Zhang, Milad Nazari, Michael C. Bagley, Eric S. Miller, Philip G. Williams, David C. Muddiman, Jonathan S. Lindsey. Mass spectrometric detection of chlorophyll a and the tetrapyrrole secondary metabolite tolyporphin A in the filamentous cyanobacterium HT-58-2. Approaches to high-throughput screening of intact cyanobacteria. Journal of Porphyrins and Phthalocyanines 2017, 21 (11) , 759-768. https://doi.org/10.1142/S108842461750078X
    67. Antoine Masson, Jeremy T. O'Brien, Evan R. Williams, Hoi-Ying N. Holman. Towards Integrating Synchrotron FTIR Microscopy with Mass Spectrometry at the Berkeley Synchrotron Infrared Structural Biology (BSISB) Program. Synchrotron Radiation News 2017, 30 (4) , 17-23. https://doi.org/10.1080/08940886.2017.1338418
    68. Pierre-Maxence Vaysse, Ron M. A. Heeren, Tiffany Porta, Benjamin Balluff. Mass spectrometry imaging for clinical research – latest developments, applications, and current limitations. The Analyst 2017, 142 (15) , 2690-2712. https://doi.org/10.1039/C7AN00565B
    69. Takashi NISHIKAZE. Desorption/Ionization for Biomolecular Analysis. Journal of the Mass Spectrometry Society of Japan 2017, 65 (1) , 7-10. https://doi.org/10.5702/massspec.S16-56
    70. Paul J. Trim, Marten F. Snel. Small molecule MALDI MS imaging: Current technologies and future challenges. Methods 2016, 104 , 127-141. https://doi.org/10.1016/j.ymeth.2016.01.011
    71. Fengjian Shi, Jieutonne J. Archer, Robert J. Levis. Nonresonant, femtosecond laser vaporization and electrospray post-ionization mass spectrometry as a tool for biological tissue imaging. Methods 2016, 104 , 79-85. https://doi.org/10.1016/j.ymeth.2016.02.016
    72. Manoj Ghaste, Robert Mistrik, Vladimir Shulaev. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics. International Journal of Molecular Sciences 2016, 17 (6) , 816. https://doi.org/10.3390/ijms17060816
    73. Philip Loziuk, Florian Meier, Caroline Johnson, H. Troy Ghashghaei, David C. Muddiman. TransOmic analysis of forebrain sections in Sp2 conditional knockout embryonic mice using IR-MALDESI imaging of lipids and LC-MS/MS label-free proteomics. Analytical and Bioanalytical Chemistry 2016, 408 (13) , 3453-3474. https://doi.org/10.1007/s00216-016-9421-3
    74. Marta Martin-Lorenzo, Gloria Alvarez-Llamas, Liam A. McDonnell, Fernando Vivanco. Molecular histology of arteries: mass spectrometry imaging as a novel ex vivo tool to investigate atherosclerosis. Expert Review of Proteomics 2016, 13 (1) , 69-81. https://doi.org/10.1586/14789450.2016.1116944
    75. Milad Nazari, David C. Muddiman. MALDESI: Fundamentals, Direct Analysis, and MS Imaging. 2016, 169-182. https://doi.org/10.1007/978-3-319-04819-2_9
    76. Milad Nazari, David C. Muddiman. Polarity switching mass spectrometry imaging of healthy and cancerous hen ovarian tissue sections by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). The Analyst 2016, 141 (2) , 595-605. https://doi.org/10.1039/C5AN01513H
    77. M. T. Bokhart, D. C. Muddiman. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens. The Analyst 2016, 141 (18) , 5236-5245. https://doi.org/10.1039/C6AN01189F
    78. Gongfang Hu, Rui Liu, Eric J. Alexy, Amit Kumar Mandal, David F. Bocian, Dewey Holten, Jonathan S. Lindsey. Panchromatic chromophore–tetrapyrrole light-harvesting arrays constructed from Bodipy, perylene, terrylene, porphyrin, chlorin, and bacteriochlorin building blocks. New Journal of Chemistry 2016, 40 (9) , 8032-8052. https://doi.org/10.1039/C6NJ01782G
    79. Eric Handberg, Konstantin Chingin, Nannan Wang, Ximo Dai, Huanwen Chen. Mass spectrometry imaging for visualizing organic analytes in food. Mass Spectrometry Reviews 2015, 34 (6) , 641-658. https://doi.org/10.1002/mas.21424
    80. Sarah J. Parker, Koen Raedschelders, Jennifer E. Van Eyk. Emerging proteomic technologies for elucidating context-dependent cellular signaling events: A big challenge of tiny proportions. PROTEOMICS 2015, 15 (9) , 1486-1502. https://doi.org/10.1002/pmic.201400448
    81. Corbin G. Thompson, Mark T. Bokhart, Craig Sykes, Lourdes Adamson, Yuri Fedoriw, Paul A. Luciw, David C. Muddiman, Angela D. M. Kashuba, Elias P. Rosen. Mass Spectrometry Imaging Reveals Heterogeneous Efavirenz Distribution within Putative HIV Reservoirs. Antimicrobial Agents and Chemotherapy 2015, 59 (5) , 2944-2948. https://doi.org/10.1128/AAC.04952-14
    82. Mark T. Bokhart, Elias Rosen, Corbin Thompson, Craig Sykes, Angela D. M. Kashuba, David C. Muddiman. Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization. Analytical and Bioanalytical Chemistry 2015, 407 (8) , 2073-2084. https://doi.org/10.1007/s00216-014-8220-y
    83. Milad Nazari, David C. Muddiman. Cellular-level mass spectrometry imaging using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) by oversampling. Analytical and Bioanalytical Chemistry 2015, 407 (8) , 2265-2271. https://doi.org/10.1007/s00216-014-8376-5
    84. Jeremy A. Barry, M. Reid Groseclose, Guillaume Robichaud, Stephen Castellino, David C. Muddiman. Assessing drug and metabolite detection in liver tissue by UV-MALDI and IR-MALDESI mass spectrometry imaging coupled to FT-ICR MS. International Journal of Mass Spectrometry 2015, 377 , 448-455. https://doi.org/10.1016/j.ijms.2014.05.012
    85. Sung-Gun Park, Kermit K. Murray. Laser Ablation Sample Transfer for Mass Spectrometry Imaging. 2015, 129-139. https://doi.org/10.1007/978-1-4939-1357-2_13
    86. Kristin H. Cochran, Jeremy A. Barry, Guillaume Robichaud, David C. Muddiman. Analysis of trace fibers by IR-MALDESI imaging coupled with high resolving power MS. Analytical and Bioanalytical Chemistry 2015, 407 (3) , 813-820. https://doi.org/10.1007/s00216-014-8042-y
    87. Guillaume Robichaud, Jeremy A. Barry, David C. Muddiman. Atmospheric Pressure Mass Spectrometry Imaging. 2014, 1-44. https://doi.org/10.1002/9780470027318.a9399
    88. Florian Meier, Kenneth P. Garrard, David C. Muddiman. Silver dopants for targeted and untargeted direct analysis of unsaturated lipids via infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Rapid Communications in Mass Spectrometry 2014, 28 (22) , 2461-2470. https://doi.org/10.1002/rcm.7041
    89. Peter Nemes, Akos Vertes. Laser Ablation Electrospray Ionization Mass Spectrometry: Mechanisms, Configurations and Imaging Applications. 2014, 348-371. https://doi.org/10.1039/9781782628026-00348
    90. Trust T. Razunguzwa, Holly D. Henderson, Brent R. Reschke, Callee M. Walsh, Matthew J. Powell. Laser-Ablation Electrospray Ionization Mass Spectrometry (LAESI®-MS): Ambient Ionization Technology for 2D and 3D Molecular Imaging. 2014, 462-481. https://doi.org/10.1039/9781782628026-00462
    91. Tarick J. El-Baba, Corinne A. Lutomski, Beixi Wang, Ellen D. Inutan, Sarah Trimpin. Toward high spatial resolution sampling and characterization of biological tissue surfaces using mass spectrometry. Analytical and Bioanalytical Chemistry 2014, 406 (17) , 4053-4061. https://doi.org/10.1007/s00216-014-7778-8
    92. Paul Flanigan, Robert Levis. Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry. Annual Review of Analytical Chemistry 2014, 7 (1) , 229-256. https://doi.org/10.1146/annurev-anchem-071213-020343
    93. András Kiss, Donald F. Smith, Brent R. Reschke, Matthew J. Powell, Ron M. A. Heeren. Top-down mass spectrometry imaging of intact proteins by laser ablation ESI FT-ICR MS. PROTEOMICS 2014, 14 (10) , 1283-1289. https://doi.org/10.1002/pmic.201300306
    94. Erin Gemperline, Bingming Chen, Lingjun Li. Challenges and recent advances in mass spectrometric imaging of neurotransmitters. Bioanalysis 2014, 6 (4) , 525-540. https://doi.org/10.4155/bio.13.341
    95. Andrew F. Harron, Khoa Hoang, Charles N. McEwen. High mass resolution tissue imaging at atmospheric pressure using laserspray ionization mass spectrometry. International Journal of Mass Spectrometry 2013, 352 , 65-69. https://doi.org/10.1016/j.ijms.2013.07.016
    96. Andreas Römpp, Karl Christian Schäfer, Sabine Guenther, Zheng Wang, Martin Köstler, Arne Leisner, Carmen Paschke, Thorsten Schramm, Bernhard Spengler. High-resolution atmospheric pressure infrared laser desorption/ionization mass spectrometry imaging of biological tissue. Analytical and Bioanalytical Chemistry 2013, 405 (22) , 6959-6968. https://doi.org/10.1007/s00216-013-7180-y
    97. Christopher B. Lietz, Erin Gemperline, Lingjun Li. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites. Advanced Drug Delivery Reviews 2013, 65 (8) , 1074-1085. https://doi.org/10.1016/j.addr.2013.04.009
    98. Bindesh Shrestha, Robert Javonillo, John R. Burns, Zsolt Pirger, Akos Vertes. Comparative local analysis of metabolites, lipids and proteins in intact fish tissues by LAESI mass spectrometry. The Analyst 2013, 138 (12) , 3444. https://doi.org/10.1039/c3an00631j
    99. Yue Ren, Jiangjiang Liu, Linfan Li, Morgan N. McLuckey, Zheng Ouyang. Direct mass spectrometry analysis of untreated samples of ultralow amounts using extraction nano-electrospray. Analytical Methods 2013, 5 (23) , 6686. https://doi.org/10.1039/c3ay41149d

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect