ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Comprehensive Lipidome Analysis by Shotgun Lipidomics on a Hybrid Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer

  • Reinaldo Almeida
    Reinaldo Almeida
    Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences University of Southern Denmark, 5230, Odense, Denmark
  • Josch Konstantin Pauling
    Josch Konstantin Pauling
    Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences University of Southern Denmark, 5230, Odense, Denmark
  • Elena Sokol
    Elena Sokol
    Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences University of Southern Denmark, 5230, Odense, Denmark
    More by Elena Sokol
  • Hans Kristian Hannibal-Bach
    Hans Kristian Hannibal-Bach
    Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences University of Southern Denmark, 5230, Odense, Denmark
  • , and 
  • Christer S. Ejsing
    Christer S. Ejsing
    Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences University of Southern Denmark, 5230, Odense, Denmark
Cite this: J. Am. Soc. Mass Spectrom. 2015, 26, 1, 133–148
Publication Date (Web):November 13, 2014
https://doi.org/10.1007/s13361-014-1013-x
Copyright © 2014 © American Society for Mass Spectrometry 2014

    Article Views

    574

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    Here we report on the application of a novel shotgun lipidomics platform featuring an Orbitrap Fusion mass spectrometer equipped with an automated nanoelectrospray ion source. To assess the performance of the platform for in-depth lipidome analysis, we evaluated various instrument parameters, including its high resolution power unsurpassed by any other contemporary Orbitrap instrumentation, its dynamic quantification range and its efficacy for in-depth structural characterization of molecular lipid species by quadrupole-based higher-energy collisional dissociation (HCD), and ion trap-based resonant-excitation collision-induced dissociation (CID). This evaluation demonstrated that FTMS analysis with a resolution setting of 450,000 allows distinguishing isotopes from different lipid species and features a linear dynamic quantification range of at least four orders of magnitude. Evaluation of fragmentation analysis demonstrated that combined use of HCD and CID yields complementary fragment ions of molecular lipid species. To support global lipidome analysis, we designed a method, termed MSALL, featuring high resolution FTMS analysis for lipid quantification, and FTMS2 analysis using both HCD and CID and ITMS3 analysis utilizing dual CID for in-depth structural characterization of molecular glycerophospholipid species. The performance of the MSALL method was benchmarked in a comparative analysis of mouse cerebellum and hippocampus. This analysis demonstrated extensive lipidome quantification covering 311 lipid species encompassing 20 lipid classes, and identification of 202 distinct molecular glycerophospholipid species when applying a novel high confidence filtering strategy. The work presented here validates the performance of the Orbitrap Fusion mass spectrometer for in-depth lipidome analysis.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information


    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 101 publications.

    1. Dain R. Brademan, Katherine A. Overmyer, Yuchen He, William D. Barshop, Jesse D. Canterbury, Brandon J. Bills, Benton J. Anderson, Paul D. Hutchins, Seema Sharma, Vlad Zabrouskov, Graeme C. McAlister, Joshua J. Coon. Improved Structural Characterization of Glycerophospholipids and Sphingomyelins with Real-Time Library Searching. Analytical Chemistry 2023, 95 (20) , 7813-7821. https://doi.org/10.1021/acs.analchem.2c04633
    2. Dustin R. Klein, Molly S. Blevins, Luis A. Macias, Martin V. Douglass, M. Stephen Trent, Jennifer S. Brodbelt. Localization of Double Bonds in Bacterial Glycerophospholipids Using 193 nm Ultraviolet Photodissociation in the Negative Mode. Analytical Chemistry 2020, 92 (8) , 5986-5993. https://doi.org/10.1021/acs.analchem.0c00221
    3. Inger Ødum Nielsen, André Vidas Olsen, Jano Dicroce-Giacobini, Elena Papaleo, Klaus Kaae Andersen, Marja Jäättelä, Kenji Maeda, Mesut Bilgin. Comprehensive Evaluation of a Quantitative Shotgun Lipidomics Platform for Mammalian Sample Analysis on a High-Resolution Mass Spectrometer. Journal of the American Society for Mass Spectrometry 2020, 31 (4) , 894-907. https://doi.org/10.1021/jasms.9b00136
    4. Andrew P. Bowman, Greg T. Blakney, Christopher L. Hendrickson, Shane R. Ellis, Ron M. A. Heeren, Donald F. Smith. Ultra-High Mass Resolving Power, Mass Accuracy, and Dynamic Range MALDI Mass Spectrometry Imaging by 21-T FT-ICR MS. Analytical Chemistry 2020, 92 (4) , 3133-3142. https://doi.org/10.1021/acs.analchem.9b04768
    5. Marcus Höring, Christer S. Ejsing, Martin Hermansson, Gerhard Liebisch. Quantification of Cholesterol and Cholesteryl Ester by Direct Flow Injection High-Resolution Fourier Transform Mass Spectrometry Utilizing Species-Specific Response Factors. Analytical Chemistry 2019, 91 (5) , 3459-3466. https://doi.org/10.1021/acs.analchem.8b05013
    6. Rose M. Gathungu, Pablo Larrea, Matthew J. Sniatynski, Vasant R. Marur, John A. Bowden, Jeremy P. Koelmel, Pamela Starke-Reed, Van S. Hubbard, Bruce S. Kristal. Optimization of Electrospray Ionization Source Parameters for Lipidomics To Reduce Misannotation of In-Source Fragments as Precursor Ions. Analytical Chemistry 2018, 90 (22) , 13523-13532. https://doi.org/10.1021/acs.analchem.8b03436
    7. Chunyan Wang, Cheng Wang, Fang Liu, Shuo Rainosek, Tucker A. Patterson, William Slikker, Jr., Xianlin Han. Lipidomics Reveals Changes in Metabolism, Indicative of Anesthetic-Induced Neurotoxicity in Developing Brains. Chemical Research in Toxicology 2018, 31 (9) , 825-835. https://doi.org/10.1021/acs.chemrestox.8b00186
    8. Evelyn Rampler, Angela Criscuolo, Martin Zeller, Yasin El Abiead, Harald Schoeny, Gerrit Hermann, Elena Sokol, Ken Cook, David A. Peake, Bernard Delanghe, Gunda Koellensperger. A Novel Lipidomics Workflow for Improved Human Plasma Identification and Quantification Using RPLC-MSn Methods and Isotope Dilution Strategies. Analytical Chemistry 2018, 90 (11) , 6494-6501. https://doi.org/10.1021/acs.analchem.7b05382
    9. Sandra F. Gallego, Kurt Højlund, Christer S. Ejsing. Easy, Fast, and Reproducible Quantification of Cholesterol and Other Lipids in Human Plasma by Combined High Resolution MSX and FTMS Analysis. Journal of the American Society for Mass Spectrometry 2018, 29 (1) , 34-41. https://doi.org/10.1007/s13361-017-1829-2
    10. Kai Schuhmann, Henrik Thomas, Jacobo Miranda Ackerman, Konstantin O. Nagornov, Yury O. Tsybin, and Andrej Shevchenko . Intensity-Independent Noise Filtering in FT MS and FT MS/MS Spectra for Shotgun Lipidomics. Analytical Chemistry 2017, 89 (13) , 7046-7052. https://doi.org/10.1021/acs.analchem.7b00794
    11. Chris Bielow, Guido Mastrobuoni, Marica Orioli, and Stefan Kempa . On Mass Ambiguities in High-Resolution Shotgun Lipidomics. Analytical Chemistry 2017, 89 (5) , 2986-2994. https://doi.org/10.1021/acs.analchem.6b04456
    12. Eileen Ryan and Gavin E. Reid . Chemical Derivatization and Ultrahigh Resolution and Accurate Mass Spectrometry Strategies for “Shotgun” Lipidome Analysis. Accounts of Chemical Research 2016, 49 (9) , 1596-1604. https://doi.org/10.1021/acs.accounts.6b00030
    13. Miroslav Lísa and Michal Holčapek . High-Throughput and Comprehensive Lipidomic Analysis Using Ultrahigh-Performance Supercritical Fluid Chromatography–Mass Spectrometry. Analytical Chemistry 2015, 87 (14) , 7187-7195. https://doi.org/10.1021/acs.analchem.5b01054
    14. Gerard Baquer, Lluc Sementé, Toufik Mahamdi, Xavier Correig, Pere Ràfols, María García‐Altares. What are we imaging? Software tools and experimental strategies for annotation and identification of small molecules in mass spectrometry imaging. Mass Spectrometry Reviews 2023, 42 (5) , 1927-1964. https://doi.org/10.1002/mas.21794
    15. Mia Øgaard Mønsted, Mesut Bilgin, Marek Kuzma, Helena Pelantová, Kristina Pedersen, Petra Tomášová, Anastasiia Nazmutdinova, Blanka Šedivá, David Funda, Josué L. Castro‐Mejía, Laurits Juulskov Holm, Dennis Sandris Nielsen, Martin Haupt‐Jorgensen. Reduced phosphatidylcholine level in the intestinal mucus layer of prediabetic NOD mice. APMIS 2023, 131 (6) , 237-248. https://doi.org/10.1111/apm.13302
    16. Marcus Höring, Gerhard Liebisch. Direct Infusion (Shotgun) Electrospray Mass Spectrometry. 2023, 41-90. https://doi.org/10.1002/9783527836512.ch3
    17. Shane R. Ellis, Jens Soltwisch. Mass Spectrometry Imaging of Lipids. 2023, 117-150. https://doi.org/10.1002/9783527836512.ch5
    18. Michaela Chocholoušková, Denise Wolrab, Ondřej Peterka, Robert Jirásko, Michal Holčapek. Lipidomics Quantitation. 2023, 255-270. https://doi.org/10.1002/9783527836512.ch9
    19. Mads Møller Foged, Kenji Maeda, Mesut Bilgin. Profiling the Mammalian Lipidome by Quantitative Shotgun Lipidomics. 2023, 89-102. https://doi.org/10.1007/978-1-0716-2966-6_8
    20. Meher A. Saleem, Anna Mueller, Sanjoy K. Bhattacharya. Lipidomics Analysis with Triple Quadrupole Mass Spectrometry. 2023, 103-106. https://doi.org/10.1007/978-1-0716-2966-6_9
    21. Martina Zandl-Lang, Barbara Plecko, Harald Köfeler. Lipidomics—Paving the Road towards Better Insight and Precision Medicine in Rare Metabolic Diseases. International Journal of Molecular Sciences 2023, 24 (2) , 1709. https://doi.org/10.3390/ijms24021709
    22. Nicole L. Henriksen, Karina S. Asmussen, Xiaoyu Pan, Ping-Ping Jiang, Yuki Mori, Line I. Christiansen, Richard R. Sprenger, Christer S. Ejsing, Stanislava Pankratova, Thomas Thymann. Brain lipidomics and neurodevelopmental outcomes in intrauterine growth restricted piglets fed dairy or vegetable fat diets. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-07133-3
    23. Steffen Schmidt, Sandra F. Gallego, Iris Daphne Zelnik, Sergey Kovalchuk, Nanna Albæk, Richard R. Sprenger, Charlotte Øverup, Yael Pewzner-Jung, Anthony H. Futerman, Marie W. Lindholm, Ole N. Jensen, Christer S. Ejsing. Silencing of ceramide synthase 2 in hepatocytes modulates plasma ceramide biomarkers predictive of cardiovascular death. Molecular Therapy 2022, 30 (4) , 1661-1674. https://doi.org/10.1016/j.ymthe.2021.08.021
    24. Xianlin Han, Richard W. Gross. The foundations and development of lipidomics. Journal of Lipid Research 2022, 63 (2) , 100164. https://doi.org/10.1016/j.jlr.2021.100164
    25. Mike F Renne, Xue Bao, Margriet WJ Hokken, Adolf S Bierhuizen, Martin Hermansson, Richard R Sprenger, Tom A Ewing, Xiao Ma, Ruud C Cox, Jos F Brouwers, Cedric H De Smet, Christer S Ejsing, Anton IPM de Kroon. Molecular species selectivity of lipid transport creates a mitochondrial sink for di‐unsaturated phospholipids. The EMBO Journal 2022, 41 (2) https://doi.org/10.15252/embj.2020106837
    26. Philip Hallenborg, Benjamin Anderschou Holbech Jensen, Even Fjære, Rasmus Koefoed Petersen, Mohammed-Samir Belmaâti, Sarah Søndergård Rasmussen, Jon Petur Gunnarsson, Pernille Lauritzen, Kenneth King Yip Cheng, Martin Hermansson, Si Brask Sonne, Christer S. Ejsing, Aimin Xu, Irina Kratchmarova, Marcus Krüger, Lise Madsen, Karsten Kristiansen, Blagoy Blagoev. Adipose MDM2 regulates systemic insulin sensitivity. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-01240-3
    27. Jessica Minnier, Mark R. Emmett, Ruby Perez, Liang-Hao Ding, Brooke L. Barnette, Rianna E. Larios, Changjin Hong, Tae Hyun Hwang, Yongjia Yu, Christina M. Fallgren, Michael D. Story, Michael M. Weil, Jacob Raber. Associations between lipids in selected brain regions, plasma miRNA, and behavioral and cognitive measures following 28Si ion irradiation. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-93869-3
    28. Seul Kee Byeon, Anil K. Madugundu, Akhilesh Pandey. Automated data-driven mass spectrometry for improved analysis of lipids with dual dissociation techniques. Journal of Mass Spectrometry and Advances in the Clinical Lab 2021, 22 , 43-49. https://doi.org/10.1016/j.jmsacl.2021.10.003
    29. Brooke L. Barnette, Yongjia Yu, Robert L. Ullrich, Mark R. Emmett. Mitochondrial Effects in the Liver of C57BL/6 Mice by Low Dose, High Energy, High Charge Irradiation. International Journal of Molecular Sciences 2021, 22 (21) , 11806. https://doi.org/10.3390/ijms222111806
    30. Jérémy Marchand, Yann Guitton, Estelle Martineau, Anne-Lise Royer, David Balgoma, Bruno Le Bizec, Patrick Giraudeau, Gaud Dervilly. Extending the Lipidome Coverage by Combining Different Mass Spectrometric Platforms: An Innovative Strategy to Answer Chemical Food Safety Issues. Foods 2021, 10 (6) , 1218. https://doi.org/10.3390/foods10061218
    31. Thomas Züllig, Harald C. Köfeler. HIGH RESOLUTION MASS SPECTROMETRY IN LIPIDOMICS. Mass Spectrometry Reviews 2021, 40 (3) , 162-176. https://doi.org/10.1002/mas.21627
    32. Michael R. Bukowski, Matthew J. Picklo. Simple, Rapid Lipidomic Analysis of Triacylglycerols in Bovine Milk by Infusion‐Electrospray Mass Spectrometry. Lipids 2021, 56 (2) , 243-255. https://doi.org/10.1002/lipd.12292
    33. Nicole L. Henriksen, Karoline Aasmul-Olsen, Ramakrishnan Venkatasubramanian, Mikkel K. E. Nygaard, Richard R. Sprenger, Anne B. Heckmann, Marie S. Ostenfeld, Christer S. Ejsing, Simon F. Eskildsen, Anette Müllertz, Per T. Sangild, Stine B. Bering, Thomas Thymann. Dairy-Derived Emulsifiers in Infant Formula Show Marginal Effects on the Plasma Lipid Profile and Brain Structure in Preterm Piglets Relative to Soy Lecithin. Nutrients 2021, 13 (3) , 718. https://doi.org/10.3390/nu13030718
    34. Richard R. Sprenger, Martin Hermansson, Ditte Neess, Lena Sokol Becciolini, Signe Bek Sørensen, Rolf Fagerberg, Josef Ecker, Gerhard Liebisch, Ole N. Jensen, Dennis E. Vance, Nils J. Færgeman, Robin W. Klemm, Christer S. Ejsing. Lipid molecular timeline profiling reveals diurnal crosstalk between the liver and circulation. Cell Reports 2021, 34 (5) , 108710. https://doi.org/10.1016/j.celrep.2021.108710
    35. Fong-Fu Hsu. Mass Spectrometry-Based Lipidomics: An Overview. 2021, 1-10. https://doi.org/10.1007/978-1-0716-1410-5_1
    36. Ya Xie, Zongyuan Wu, Zuojian Qin, Bangfu Wu, Xin Lv, Fang Wei, Hong Chen. Methods of Lipidomic Analysis: Extraction, Derivatization, Separation, and Identification of Lipids. 2021, 173-187. https://doi.org/10.1007/978-3-030-51652-9_12
    37. Marcus Höring, Christer S. Ejsing, Sabrina Krautbauer, Verena M. Ertl, Ralph Burkhardt, Gerhard Liebisch. Accurate quantification of lipid species affected by isobaric overlap in Fourier-transform mass spectrometry. Journal of Lipid Research 2021, 62 , 100050. https://doi.org/10.1016/j.jlr.2021.100050
    38. Harald C. Köfeler, Robert Ahrends, Erin S. Baker, Kim Ekroos, Xianlin Han, Nils Hoffmann, Michal Holčapek, Markus R. Wenk, Gerhard Liebisch. Recommendations for good practice in MS-based lipidomics. Journal of Lipid Research 2021, 62 , 100138. https://doi.org/10.1016/j.jlr.2021.100138
    39. Tianrun Xu, Chunxiu Hu, Qiuhui Xuan, Guowang Xu. Recent advances in analytical strategies for mass spectrometry-based lipidomics. Analytica Chimica Acta 2020, 1137 , 156-169. https://doi.org/10.1016/j.aca.2020.09.060
    40. Bianca M. Esch, Sergej Limar, André Bogdanowski, Christos Gournas, Tushar More, Celine Sundag, Stefan Walter, Jürgen J. Heinisch, Christer S. Ejsing, Bruno André, Florian Fröhlich, . Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae. PLOS Genetics 2020, 16 (8) , e1008745. https://doi.org/10.1371/journal.pgen.1008745
    41. Fernando Martínez-Montañés, Albert Casanovas, Richard R. Sprenger, Magdalena Topolska, David L. Marshall, Marta Moreno-Torres, Berwyck L.J. Poad, Stephen J. Blanksby, Martin Hermansson, Ole N. Jensen, Christer S. Ejsing. Phosphoproteomic Analysis across the Yeast Life Cycle Reveals Control of Fatty Acyl Chain Length by Phosphorylation of the Fatty Acid Synthase Complex. Cell Reports 2020, 32 (6) , 108024. https://doi.org/10.1016/j.celrep.2020.108024
    42. Michel Raetz, Ron Bonner, Gérard Hopfgartner. SWATH-MS for metabolomics and lipidomics: critical aspects of qualitative and quantitative analysis. Metabolomics 2020, 16 (6) https://doi.org/10.1007/s11306-020-01692-0
    43. Bruna Neves, Sofia Duarte, Pedro Domingues, Dolores Pérez-Sala, Maria Manuel Oliveira, Maria do Rosário Domingues, Tânia Melo. Advancing Target Identification of Nitrated Phospholipids in Biological Systems by HCD Specific Fragmentation Fingerprinting in Orbitrap Platforms. Molecules 2020, 25 (9) , 2120. https://doi.org/10.3390/molecules25092120
    44. Thomas Züllig, Martin Trötzmüller, Harald C. Köfeler. Lipidomics from sample preparation to data analysis: a primer. Analytical and Bioanalytical Chemistry 2020, 412 (10) , 2191-2209. https://doi.org/10.1007/s00216-019-02241-y
    45. Eylan Yutuc, Roberto Angelini, Mark Baumert, Natalia Mast, Irina Pikuleva, Jillian Newton, Malcolm R. Clench, David O. F. Skibinski, Owain W. Howell, Yuqin Wang, William J. Griffiths. Localization of sterols and oxysterols in mouse brain reveals distinct spatial cholesterol metabolism. Proceedings of the National Academy of Sciences 2020, 117 (11) , 5749-5760. https://doi.org/10.1073/pnas.1917421117
    46. Joshua M. Mitchell, Robert M. Flight, Hunter N.B. Moseley. Deriving Lipid Classification Based on Molecular Formulas. Metabolites 2020, 10 (3) , 122. https://doi.org/10.3390/metabo10030122
    47. Zhuojun Wu, Giulia Ilaria Bagarolo, Sven Thoröe-Boveleth, Joachim Jankowski. “Lipidomics”: Mass spectrometric and chemometric analyses of lipids. Advanced Drug Delivery Reviews 2020, 159 , 294-307. https://doi.org/10.1016/j.addr.2020.06.009
    48. Alexander Triebl, Bo Burla, Jayashree Selvalatchmanan, Jeongah Oh, Sock Hwee Tan, Mark Y. Chan, Natalie A. Mellet, Peter J. Meikle, Federico Torta, Markus R. Wenk. Shared reference materials harmonize lipidomics across MS-based detection platforms and laboratories. Journal of Lipid Research 2020, 61 (1) , 105-115. https://doi.org/10.1194/jlr.D119000393
    49. D.R.N. Vos, A.P. Bowman, R.M.A. Heeren, B. Balluff, S.R. Ellis. Class-specific depletion of lipid ion signals in tissues upon formalin fixation. International Journal of Mass Spectrometry 2019, 446 , 116212. https://doi.org/10.1016/j.ijms.2019.116212
    50. Christophe A.C. Freyre, Pascal C. Rauher, Christer S. Ejsing, Robin W. Klemm. MIGA2 Links Mitochondria, the ER, and Lipid Droplets and Promotes De Novo Lipogenesis in Adipocytes. Molecular Cell 2019, 76 (5) , 811-825.e14. https://doi.org/10.1016/j.molcel.2019.09.011
    51. Pieter C. Kooijman, Konstantin O. Nagornov, Anton N. Kozhinov, David P. A. Kilgour, Yury O. Tsybin, Ron M. A. Heeren, Shane R. Ellis. Increased throughput and ultra-high mass resolution in DESI FT-ICR MS imaging through new-generation external data acquisition system and advanced data processing approaches. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-018-36957-1
    52. Leonie Wenning, Christer S. Ejsing, Florian David, Richard R. Sprenger, Jens Nielsen, Verena Siewers. Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis. Microbial Cell Factories 2019, 18 (1) https://doi.org/10.1186/s12934-019-1098-9
    53. Woo-Young Kang, Patrick T. Thompson, Salim S. El-Amouri, Teresa W.M. Fan, Andrew N. Lane, Richard M. Higashi. Improved segmented-scan spectral stitching for stable isotope resolved metabolomics (SIRM) by ultra-high-resolution Fourier transform mass spectrometry. Analytica Chimica Acta 2019, 1080 , 104-115. https://doi.org/10.1016/j.aca.2019.06.019
    54. William J. Griffiths, Yuqin Wang. Sterolomics in biology, biochemistry, medicine. TrAC Trends in Analytical Chemistry 2019, 120 , 115280. https://doi.org/10.1016/j.trac.2018.10.016
    55. Changfeng Hu, Chunyan Wang, Lijiao He, Xianlin Han. Novel strategies for enhancing shotgun lipidomics for comprehensive analysis of cellular lipidomes. TrAC Trends in Analytical Chemistry 2019, 120 , 115330. https://doi.org/10.1016/j.trac.2018.11.028
    56. Denise Wolrab, Robert Jirásko, Michaela Chocholoušková, Ondřej Peterka, Michal Holčapek. Oncolipidomics: Mass spectrometric quantitation of lipids in cancer research. TrAC Trends in Analytical Chemistry 2019, 120 , 115480. https://doi.org/10.1016/j.trac.2019.04.012
    57. Michel Raetz, Eva Duchoslav, Ron Bonner, Gérard Hopfgartner. Hybrid SWATH/MS and HR-SRM/MS acquisition for phospholipidomics using QUAL/QUANT data processing. Analytical and Bioanalytical Chemistry 2019, 411 (22) , 5681-5690. https://doi.org/10.1007/s00216-019-01946-4
    58. Tiffany Porta Siegel, Kim Ekroos, Shane R. Ellis. Reshaping Lipid Biochemistry by Pushing Barriers in Structural Lipidomics. Angewandte Chemie 2019, 131 (20) , 6560-6569. https://doi.org/10.1002/ange.201812698
    59. Tiffany Porta Siegel, Kim Ekroos, Shane R. Ellis. Reshaping Lipid Biochemistry by Pushing Barriers in Structural Lipidomics. Angewandte Chemie International Edition 2019, 58 (20) , 6492-6501. https://doi.org/10.1002/anie.201812698
    60. Edoardo Longo, Ksenia Morozova, Sine Yener, Emanuele Boselli, Franco Biasioli, Matteo Scampicchio. Direct flow injection profiling of acyl glycerols from food products using isopropanol as solvent. Journal of Mass Spectrometry 2019, 54 (5) , 412-421. https://doi.org/10.1002/jms.4346
    61. Josch K. Pauling. Computational Lipidomics. 2019, 894-899. https://doi.org/10.1016/B978-0-12-809633-8.20298-7
    62. Sihui Wang, Fatima-Zahra Idrissi, Martin Hermansson, Alexandra Grippa, Christer S. Ejsing, Pedro Carvalho. Seipin and the membrane-shaping protein Pex30 cooperate in organelle budding from the endoplasmic reticulum. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-05278-2
    63. Fong-Fu Hsu. Mass spectrometry-based shotgun lipidomics – a critical review from the technical point of view. Analytical and Bioanalytical Chemistry 2018, 410 (25) , 6387-6409. https://doi.org/10.1007/s00216-018-1252-y
    64. Amani M. Batarseh, Sarah K. Abbott, Eva Duchoslav, Ayedh Alqarni, Stephen J. Blanksby, Todd W. Mitchell. Discrimination of isobaric and isomeric lipids in complex mixtures by combining ultra-high pressure liquid chromatography with collision and ozone-induced dissociation. International Journal of Mass Spectrometry 2018, 431 , 27-36. https://doi.org/10.1016/j.ijms.2018.05.016
    65. Ethan M. McBride, Guido F. Verbeck. Investigation by direct-infusion ESI–MS and GC–MS of an alleged Leuckart route-specific impurity of methamphetamine. Forensic Science International 2018, 288 , 278-282. https://doi.org/10.1016/j.forsciint.2018.05.007
    66. Corey Giles, Ryusuke Takechi, Virginie Lam, Satvinder S. Dhaliwal, John C.L. Mamo. Contemporary lipidomic analytics: opportunities and pitfalls. Progress in Lipid Research 2018, 71 , 86-100. https://doi.org/10.1016/j.plipres.2018.06.003
    67. Shane R. Ellis, Martin R. L. Paine, Gert B. Eijkel, Josch K. Pauling, Peter Husen, Mark W. Jervelund, Martin Hermansson, Christer S. Ejsing, Ron M. A. Heeren. Automated, parallel mass spectrometry imaging and structural identification of lipids. Nature Methods 2018, 15 (7) , 515-518. https://doi.org/10.1038/s41592-018-0010-6
    68. Ethan M. McBride, Reagann E. Keller, Guido F. Verbeck. Direct-infusion electrospray ionization-mass spectrometry profiling of fentanyl and acetylfentanyl reaction mixtures. International Journal of Mass Spectrometry 2018, 428 , 55-61. https://doi.org/10.1016/j.ijms.2018.03.004
    69. Vitor Teixeira, Lisa Johnsen, Fernando Martínez-Montañés, Alexandra Grippa, Laura Buxó, Fatima-Zahra Idrissi, Christer S. Ejsing, Pedro Carvalho. Regulation of lipid droplets by metabolically controlled Ldo isoforms. Journal of Cell Biology 2018, 217 (1) , 127-138. https://doi.org/10.1083/jcb.201704115
    70. Mohamed A. Salem, Patrick Giavalisco. Semi-targeted Lipidomics of Plant Acyl Lipids Using UPLC-HR-MS in Combination with a Data-Independent Acquisition Mode. 2018, 137-155. https://doi.org/10.1007/978-1-4939-7819-9_10
    71. S. Ouahoud, M. D. Fiet, F. Martínez-Montañés, C. S. Ejsing, O. Kuss, M. Roden, D. F. Markgraf. Lipid droplet consumption is functionally coupled to vacuole homeostasis independent of lipophagy. Journal of Cell Science 2018, 192 https://doi.org/10.1242/jcs.213876
    72. Valeria Benedusi. Lipidomics. Materials and Methods 2018, 8 https://doi.org/10.13070/mm.en.8.2665
    73. Josch K. Pauling, Martin Hermansson, Jürgen Hartler, Klaus Christiansen, Sandra F. Gallego, Bing Peng, Robert Ahrends, Christer S. Ejsing, . Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLOS ONE 2017, 12 (11) , e0188394. https://doi.org/10.1371/journal.pone.0188394
    74. Miao Wang, Chunyan Wang, Xianlin Han. Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry-What, how and why?. Mass Spectrometry Reviews 2017, 36 (6) , 693-714. https://doi.org/10.1002/mas.21492
    75. Xianlin Han. Lipidomics for precision medicine and metabolism: A personal view. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2017, 1862 (8) , 804-807. https://doi.org/10.1016/j.bbalip.2017.02.012
    76. Gerhard Liebisch, Kim Ekroos, Martin Hermansson, Christer S. Ejsing. Reporting of lipidomics data should be standardized. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2017, 1862 (8) , 747-751. https://doi.org/10.1016/j.bbalip.2017.02.013
    77. Kosuke Saito, Yasuo Ohno, Yoshiro Saito. Enrichment of resolving power improves ion-peak quantification on a lipidomics platform. Journal of Chromatography B 2017, 1055-1056 , 20-28. https://doi.org/10.1016/j.jchromb.2017.04.019
    78. Alexander Triebl, Martin Trötzmüller, Jürgen Hartler, Tatjana Stojakovic, Harald C. Köfeler. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples. Journal of Chromatography B 2017, 1053 , 72-80. https://doi.org/10.1016/j.jchromb.2017.03.027
    79. Michael Witting, Christoph Ruttkies, Steffen Neumann, Philippe Schmitt-Kopplin, . LipidFrag: Improving reliability of in silico fragmentation of lipids and application to the Caenorhabditis elegans lipidome. PLOS ONE 2017, 12 (3) , e0172311. https://doi.org/10.1371/journal.pone.0172311
    80. Sandra F. Gallego, Richard R. Sprenger, Ditte Neess, Josch K. Pauling, Nils J. Færgeman, Christer S. Ejsing. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2017, 1862 (2) , 145-155. https://doi.org/10.1016/j.bbalip.2016.10.012
    81. Takashi Tatsuta. Quantitative Analysis of Glycerophospholipids in Mitochondria by Mass Spectrometry. 2017, 79-103. https://doi.org/10.1007/978-1-4939-6824-4_7
    82. Mark R. Emmett, Cheryl F. Lichti. Ultrahigh-Resolution Lipid Analysis with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. 2017, 21-43. https://doi.org/10.1007/978-1-4939-6946-3_3
    83. Inger Ødum Nielsen, Kenji Maeda, Mesut Bilgin. Global Monitoring of the Mammalian Lipidome by Quantitative Shotgun Lipidomics. 2017, 123-139. https://doi.org/10.1007/978-1-4939-6996-8_12
    84. Maria del Carmen Piqueras. Utility of Moderate and High-Resolution Mass Spectrometry for Class-Specific Lipid Identification and Quantification. 2017, 83-90. https://doi.org/10.1007/978-1-4939-6996-8_9
    85. Kui Yang, Xianlin Han. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends in Biochemical Sciences 2016, 41 (11) , 954-969. https://doi.org/10.1016/j.tibs.2016.08.010
    86. Daniel Markgraf, Hadi Al-Hasani, Stefan Lehr. Lipidomics—Reshaping the Analysis and Perception of Type 2 Diabetes. International Journal of Molecular Sciences 2016, 17 (11) , 1841. https://doi.org/10.3390/ijms17111841
    87. Mary Joy Rovillos, Josch Konstantin Pauling, Hans Kristian Hannibal-Bach, Christine Vionnet, Andreas Conzelmann, Christer S. Ejsing. Structural characterization of suppressor lipids by high-resolution mass spectrometry. Rapid Communications in Mass Spectrometry 2016, 30 (20) , 2215-2227. https://doi.org/10.1002/rcm.7704
    88. Zhi-Xin Jia, Jin-Lan Zhang, Chun-Ping Shen, Lin Ma. Profile and quantification of human stratum corneum ceramides by normal-phase liquid chromatography coupled with dynamic multiple reaction monitoring of mass spectrometry: development of targeted lipidomic method and application to human stratum corneum of different age groups. Analytical and Bioanalytical Chemistry 2016, 408 (24) , 6623-6636. https://doi.org/10.1007/s00216-016-9775-6
    89. Karin Ortmayr, Tim J. Causon, Stephan Hann, Gunda Koellensperger. Increasing selectivity and coverage in LC-MS based metabolome analysis. TrAC Trends in Analytical Chemistry 2016, 82 , 358-366. https://doi.org/10.1016/j.trac.2016.06.011
    90. Huajin Wang, Michel Becuwe, Benjamin E Housden, Chandramohan Chitraju, Ashley J Porras, Morven M Graham, Xinran N Liu, Abdou Rachid Thiam, David B Savage, Anil K Agarwal, Abhimanyu Garg, Maria-Jesus Olarte, Qingqing Lin, Florian Fröhlich, Hans Kristian Hannibal-Bach, Srigokul Upadhyayula, Norbert Perrimon, Tomas Kirchhausen, Christer S Ejsing, Tobias C Walther, Robert V Farese. Seipin is required for converting nascent to mature lipid droplets. eLife 2016, 5 https://doi.org/10.7554/eLife.16582
    91. Alexander Triebl, Sabrina Weissengruber, Martin Trötzmüller, Ernst Lankmayr, Harald Köfeler. Quantitative analysis of N ‐acylphosphatidylethanolamine molecular species in rat brain using solid‐phase extraction combined with reversed‐phase chromatography and tandem mass spectrometry. Journal of Separation Science 2016, 39 (13) , 2474-2480. https://doi.org/10.1002/jssc.201600172
    92. Manoj Ghaste, Robert Mistrik, Vladimir Shulaev. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics. International Journal of Molecular Sciences 2016, 17 (6) , 816. https://doi.org/10.3390/ijms17060816
    93. . Mass Spectrometry for Lipidomics. 2016, 21-52. https://doi.org/10.1002/9781119085263.ch2
    94. Lorelei D. Shoemaker, Harley I. Kornblum. Neural Stem Cells (NSCs) and Proteomics. Molecular & Cellular Proteomics 2016, 15 (2) , 344-354. https://doi.org/10.1074/mcp.O115.052704
    95. Núria Canela, Pol Herrero, Sílvia Mariné, Pedro Nadal, Maria Rosa Ras, Miguel Ángel Rodríguez, Lluís Arola. Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis. Journal of Chromatography A 2016, 1428 , 16-38. https://doi.org/10.1016/j.chroma.2015.07.110
    96. Miao Wang, Chunyan Wang, Rowland H. Han, Xianlin Han. Novel advances in shotgun lipidomics for biology and medicine. Progress in Lipid Research 2016, 61 , 83-108. https://doi.org/10.1016/j.plipres.2015.12.002
    97. Christer S. Ejsing, Mesut Bilgin, Andreu Fabregat, . Quantitative Profiling of Long-Chain Bases by Mass Tagging and Parallel Reaction Monitoring. PLOS ONE 2015, 10 (12) , e0144817. https://doi.org/10.1371/journal.pone.0144817
    98. Shuai Nie, Cassie J. Fhaner, Sichang Liu, David Peake, Reiko Kiyonami, Yingying Huang, Gavin E. Reid. Characterization and multiplexed quantification of derivatized aminophospholipids. International Journal of Mass Spectrometry 2015, 391 , 71-81. https://doi.org/10.1016/j.ijms.2015.07.002
    99. Marie-Louise R.W. Hansen, Anders Clausen, Christer S. Ejsing, Jens Risbo. Modulation of the Lactobacillus acidophilus La-5 lipidome by different growth conditions. Microbiology 2015, 161 (10) , 1990-1998. https://doi.org/10.1099/mic.0.000145
    100. Sara Jensen, Vinnie Neesgaard, Sandra Skjoldbjerg, Martin Brandl, Christer Ejsing, Alexander Treusch. The Effects of Temperature and Growth Phase on the Lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii. Life 2015, 5 (3) , 1539-1566. https://doi.org/10.3390/life5031539
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect