ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex

  • Joseph A. Loo
    Joseph A. Loo
    Department of Chemistry and Biochemistry, University of California-Los Angeles, 402 Paul D. Boyer Hall/MBI, 90095-1570, Los Angeles, CA, USA
  • Beniam Berhane
    Beniam Berhane
    Department of Chemistry and Biochemistry, University of California-Los Angeles, 402 Paul D. Boyer Hall/MBI, 90095-1570, Los Angeles, CA, USA
  • Catherine S. Kaddis
    Catherine S. Kaddis
    Department of Chemistry and Biochemistry, University of California-Los Angeles, 402 Paul D. Boyer Hall/MBI, 90095-1570, Los Angeles, CA, USA
  • Kerry M. Wooding
    Kerry M. Wooding
    Department of Chemistry and Biochemistry, University of California-Los Angeles, 402 Paul D. Boyer Hall/MBI, 90095-1570, Los Angeles, CA, USA
  • Yongming Xie
    Yongming Xie
    Department of Chemistry and Biochemistry, University of California-Los Angeles, 402 Paul D. Boyer Hall/MBI, 90095-1570, Los Angeles, CA, USA
    More by Yongming Xie
  • Stanley L. Kaufman
    Stanley L. Kaufman
    TSI, Inc., St. Paul, Minnesota, USA
  • , and 
  • Igor V. Chernushevich
    Igor V. Chernushevich
    MDS Sciex, Concord, Ontario, Canada
Cite this: J Am Soc Mass Spectrom 2005, 16, 7, 998–1008
Publication Date (Web):July 1, 2005
https://doi.org/10.1016/j.jasms.2005.02.017
Copyright © 2005 © American Society for Mass Spectrometry 2005

    Article Views

    76

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Mass spectrometry and gas phase ion mobility [gas phase electrophoretic macromolecule analyzer (GEMMA)] with electrospray ionization were used to characterize the structure of the noncovalent 28-subunit 20S proteasome from Methanosarcina thermophila and rabbit. ESI-MS measurements with a quadrupole time-of-flight analyzer of the 192 kDa α7-ring and the intact 690 kDa α7β7β7α7 are consistent with their expected stoichiometries. Collisionally activated dissociation of the 20S gas phase complex yields loss of individual α-subunits only, and it is generally consistent with the known α7β7β7α7 architecture. The analysis of the binding of a reversible inhibitor to the 20S proteasome shows the expected stoichiometry of one inhibitor for each β-subunit. Ion mobility measurements of the α7-ring and the α7β7β7α7 complex yield electrophoretic diameters of 10.9 and 15.1 nm, respectively; these dimensions are similar to those measured by crystallographic methods. Sequestration of multiple apo-myoglobin substrates by a lactacystin-inhibited 20S proteasome is demonstrated by GEMMA experiments. This study suggests that many elements of the gas phase structure of large protein complexes are preserved upon desolvation, and that methods such as mass spectrometry and ion mobility analysis can reveal structural details of the solution protein complex.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 175 publications.

    1. Emilia Christofi, Perdita Barran. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chemical Reviews 2023, 123 (6) , 2902-2949. https://doi.org/10.1021/acs.chemrev.2c00600
    2. Daud Sharif, Samira Hajian Foroushani, Kushani Attanayake, Vikum K. Dewasurendra, Anthony DeBastiani, Amanda DeVor, Matthew B. Johnson, Peng Li, Stephen J. Valentine. Capillary Vibrating Sharp-Edge Spray Ionization Augments Field-Free Ionization Techniques to Promote Conformer Preservation in the Gas-Phase for Intractable Biomolecular Ions. The Journal of Physical Chemistry B 2022, 126 (44) , 8970-8984. https://doi.org/10.1021/acs.jpcb.2c04960
    3. Smriti Kumar, Yun Zhu, Lauren Stover, Arthur Laganowsky. Step toward Probing the Nonannular Belt of Membrane Proteins. Analytical Chemistry 2022, 94 (40) , 13906-13912. https://doi.org/10.1021/acs.analchem.2c02811
    4. Sem Tamara, Maurits A. den Boer, Albert J. R. Heck. High-Resolution Native Mass Spectrometry. Chemical Reviews 2022, 122 (8) , 7269-7326. https://doi.org/10.1021/acs.chemrev.1c00212
    5. Dalton T. Snyder, Sophie R. Harvey, Vicki H. Wysocki. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chemical Reviews 2022, 122 (8) , 7442-7487. https://doi.org/10.1021/acs.chemrev.1c00309
    6. Amber D. Rolland, James S. Prell. Approaches to Heterogeneity in Native Mass Spectrometry. Chemical Reviews 2022, 122 (8) , 7909-7951. https://doi.org/10.1021/acs.chemrev.1c00696
    7. Guanbo Wang, Lingxiao Chaihu, Meng Tian, Xinyang Shao, Rongrong Dai, Rob N. de Jong, Deniz Ugurlar, Piet Gros, Albert J. R. Heck. Releasing Nonperipheral Subunits from Protein Complexes in the Gas Phase. Analytical Chemistry 2020, 92 (24) , 15799-15805. https://doi.org/10.1021/acs.analchem.0c02845
    8. Mehmet Atakay, Fatma Aksakal, Uğur Bozkaya, Bekir Salih, Chrys Wesdemiotis. Conformational Characterization of Polyelectrolyte Oligomers and Their Noncovalent Complexes Using Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2020, 31 (2) , 441-449. https://doi.org/10.1021/jasms.9b00135
    9. Chenxi Li, Amani L. Lee, Xiaoshuang Chen, William C. K. Pomerantz, Christy L. Haynes, Christopher J. Hogan, Jr.. Multidimensional Nanoparticle Characterization through Ion Mobility-Mass Spectrometry. Analytical Chemistry 2020, 92 (3) , 2503-2510. https://doi.org/10.1021/acs.analchem.9b04012
    10. Meagan M. Gadzuk-Shea, Matthew F. Bush. Effects of Charge State on the Structures of Serum Albumin Ions in the Gas Phase: Insights from Cation-to-Anion Proton-Transfer Reactions, Ion Mobility, and Mass Spectrometry. The Journal of Physical Chemistry B 2018, 122 (43) , 9947-9955. https://doi.org/10.1021/acs.jpcb.8b08427
    11. Karen C. B. De Freitas. Resolving the Discrepancies Between Empirical and Rayleigh Charge Limiting Models for Globular Proteins. Journal of the American Society for Mass Spectrometry 2018, 29 (10) , 2059-2066. https://doi.org/10.1007/s13361-018-2025-8
    12. Jiang Zhang, Rachel R. Ogorzalek Loo, Joseph A. Loo. Structural Characterization of a Thrombin-Aptamer Complex by High Resolution Native Top-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2017, 28 (9) , 1815-1822. https://doi.org/10.1007/s13361-017-1751-7
    13. Daniel N. Mortensen, Anna C. Susa, Evan R. Williams. Collisional Cross-Sections with T-Wave Ion Mobility Spectrometry without Experimental Calibration. Journal of the American Society for Mass Spectrometry 2017, 28 (7) , 1282-1292. https://doi.org/10.1007/s13361-017-1669-0
    14. Nicole Y. Engel, Victor U. Weiss, Martina Marchetti-Deschmann, Günter Allmaier. nES GEMMA Analysis of Lectins and Their Interactions with Glycoproteins – Separation, Detection, and Sampling of Noncovalent Biospecific Complexes. Journal of the American Society for Mass Spectrometry 2017, 28 (1) , 77-86. https://doi.org/10.1007/s13361-016-1483-0
    15. Rachel R. Ogorzalek Loo, Joseph A. Loo. Salt Bridge Rearrangement (SaBRe) Explains the Dissociation Behavior of Noncovalent Complexes. Journal of the American Society for Mass Spectrometry 2016, 27 (6) , 975-990. https://doi.org/10.1007/s13361-016-1375-3
    16. Brian T. Chait, Martine Cadene, Paul Dominic Olinares, Michael P. Rout, Yi Shi. Revealing Higher Order Protein Structure Using Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2016, 27 (6) , 952-965. https://doi.org/10.1007/s13361-016-1385-1
    17. Yelena Yefremova, Mahmoud Al-Majdoub, Kwabena F.M. Opuni, Cornelia Koy, Yuetian Yan, Michael L. Gross, and Michael O. Glocker . A Dynamic Model of pH-Induced Protein G′e Higher Order Structure Changes derived from Mass Spectrometric Analyses. Analytical Chemistry 2016, 88 (1) , 890-897. https://doi.org/10.1021/acs.analchem.5b03536
    18. Tawnya G. Flick, Iain D. G. Campuzano, and Michael D. Bartberger . Structural Resolution of 4-Substituted Proline Diastereomers with Ion Mobility Spectrometry via Alkali Metal Ion Cationization. Analytical Chemistry 2015, 87 (6) , 3300-3307. https://doi.org/10.1021/ac5043285
    19. Ian K. Webb, Sandilya V. B. Garimella, Aleksey V. Tolmachev, Tsung-Chi Chen, Xinyu Zhang, Randolph V. Norheim, Spencer A. Prost, Brian LaMarche, Gordon A. Anderson, Yehia M. Ibrahim, and Richard D. Smith . Experimental Evaluation and Optimization of Structures for Lossless Ion Manipulations for Ion Mobility Spectrometry with Time-of-Flight Mass Spectrometry. Analytical Chemistry 2014, 86 (18) , 9169-9176. https://doi.org/10.1021/ac502055e
    20. Zhe Zhang, Shaynah J. Browne, Richard W. Vachet. Exploring Salt Bridge Structures of Gas-Phase Protein Ions using Multiple Stages of Electron Transfer and Collision Induced Dissociation. Journal of the American Society for Mass Spectrometry 2014, 25 (4) , 604-613. https://doi.org/10.1007/s13361-013-0821-8
    21. Rebecca S. Glaskin, Michael A. Ewing, and David E. Clemmer . Ion Trapping for Ion Mobility Spectrometry Measurements in a Cyclical Drift Tube. Analytical Chemistry 2013, 85 (15) , 7003-7008. https://doi.org/10.1021/ac4015066
    22. Kleitos Sokratous, Lucy V. Roach, Debora Channing, Joanna Strachan, Jed Long, Mark S. Searle, Robert Layfield, and Neil J. Oldham . Probing Affinity and Ubiquitin Linkage Selectivity of Ubiquitin-Binding Domains Using Mass Spectrometry. Journal of the American Chemical Society 2012, 134 (14) , 6416-6424. https://doi.org/10.1021/ja300749d
    23. Samuel I. Merenbloom, Tawnya G. Flick, Evan R. Williams. How Hot are Your Ions in TWAVE Ion Mobility Spectrometry?. Journal of the American Society for Mass Spectrometry 2012, 23 (3) , 553-562. https://doi.org/10.1007/s13361-011-0313-7
    24. Russell E. Bornschein, Suk-Joon Hyung, Brandon T. Ruotolo. Ion Mobility-Mass Spectrometry Reveals Conformational Changes in Charge Reduced Multiprotein Complexes. Journal of the American Society for Mass Spectrometry 2011, 22 (10) https://doi.org/10.1007/s13361-011-0204-y
    25. Linjie Han, Suk-Joon Hyung, Jonathan J. S. Mayers, and Brandon T. Ruotolo . Bound Anions Differentially Stabilize Multiprotein Complexes in the Absence of Bulk Solvent. Journal of the American Chemical Society 2011, 133 (29) , 11358-11367. https://doi.org/10.1021/ja203527a
    26. Ann-Cathrin J. H. Johnsson, M. Caterina Camerani, and Zareen Abbas . Combined Electrospray-SMPS and SR-SAXS Investigation of Colloidal Silica Aggregation. Part I. Influence of Starting Material on Gel Morphology. The Journal of Physical Chemistry B 2011, 115 (5) , 765-775. https://doi.org/10.1021/jp1057995
    27. Samuel H. Yang, Aruna B. Wijeratne, Li Li, Brian L. Edwards, and Kevin A. Schug . Manipulation of Protein Charge States through Continuous Flow-Extractive Desorption Electrospray Ionization: A New Ambient Ionization Technique. Analytical Chemistry 2011, 83 (3) , 643-647. https://doi.org/10.1021/ac102327f
    28. Elisabetta Boeri Erba, Brandon T. Ruotolo, Daniel Barsky, and Carol V. Robinson . Ion Mobility-Mass Spectrometry Reveals the Influence of Subunit Packing and Charge on the Dissociation of Multiprotein Complexes. Analytical Chemistry 2010, 82 (23) , 9702-9710. https://doi.org/10.1021/ac101778e
    29. Ayman El-Faramawy, Yuzhu Guo, Udo H. Verkerk, Bruce A. Thomson, and K.W. Michael Siu . Infrared Irradiation in the Collision Cell of a Hybrid Tandem Quadrupole/Time-of-Flight Mass Spectrometer for Declustering and Cleaning of Nanoelectrosprayed Protein Complex Ions. Analytical Chemistry 2010, 82 (23) , 9878-9884. https://doi.org/10.1021/ac102351m
    30. Matthew F. Bush, Zoe Hall, Kevin Giles, John Hoyes, Carol V. Robinson, and Brandon T. Ruotolo . Collision Cross Sections of Proteins and Their Complexes: A Calibration Framework and Database for Gas-Phase Structural Biology. Analytical Chemistry 2010, 82 (22) , 9557-9565. https://doi.org/10.1021/ac1022953
    31. Rebecca S. Glaskin, Stephen J. Valentine, and David E. Clemmer. A Scanning Frequency Mode for Ion Cyclotron Mobility Spectrometry. Analytical Chemistry 2010, 82 (19) , 8266-8271. https://doi.org/10.1021/ac1017474
    32. Sunyoung Lee, Michael A. Ewing, Fabiane M. Nachtigall, Ruwan T. Kurulugama, Stephen J. Valentine, and David E. Clemmer. Determination of Cross Sections by Overtone Mobility Spectrometry: Evidence for Loss of Unstable Structures at Higher Overtones. The Journal of Physical Chemistry B 2010, 114 (38) , 12406-12415. https://doi.org/10.1021/jp1060123
    33. Surajith N. Wanasundara and Mark Thachuk. Toward an Improved Understanding of the Dissociation Mechanism of Gas Phase Protein Complexes. The Journal of Physical Chemistry B 2010, 114 (35) , 11646-11653. https://doi.org/10.1021/jp103576b
    34. Kevin Pagel, Suk-Joon Hyung, Brandon T. Ruotolo and Carol V. Robinson. Alternate Dissociation Pathways Identified in Charge-Reduced Protein Complex Ions. Analytical Chemistry 2010, 82 (12) , 5363-5372. https://doi.org/10.1021/ac101121r
    35. Esther van Duijn. Current limitations in native mass spectrometry based structural biology. Journal of the American Society for Mass Spectrometry 2010, 21 (6) , 971-978. https://doi.org/10.1016/j.jasms.2009.12.010
    36. Michal Sharon. How far can we go with structural mass spectrometry of protein complexes?. Journal of the American Society for Mass Spectrometry 2010, 21 (4) , 487-500. https://doi.org/10.1016/j.jasms.2009.12.017
    37. Lu Deng, Nian Sun, Elena N. Kitova and John S. Klassen. Direct Quantification of Protein−Metal Ion Affinities by Electrospray Ionization Mass Spectrometry. Analytical Chemistry 2010, 82 (6) , 2170-2174. https://doi.org/10.1021/ac902633d
    38. Qin Zhao, Matthew W. Soyk, Gregg M. Schieffer, Katrin Fuhrer, Marc M. Gonin, R. S. Houk, Ethan R. Badman. An ion trap-ion mobility-time of flight mass spectrometer with three ion sources for ion/ion reactions. Journal of the American Society for Mass Spectrometry 2009, 20 (8) , 1549-1561. https://doi.org/10.1016/j.jasms.2009.04.014
    39. Nian Sun, Jiangxiao Sun, Elena N. Kitova, John S. Klassen. Identifying nonspecific ligand binding in electrospray ionization mass spectrometry using the reporter molecule method. Journal of the American Society for Mass Spectrometry 2009, 20 (7) , 1242-1250. https://doi.org/10.1016/j.jasms.2009.02.024
    40. Shirley H. Lomeli, Sheng Yin, Rachel R. Ogorzalek Loo, Joseph A. Loo. Increasing charge while preserving noncovalent protein complexes for ESI-MS. Journal of the American Society for Mass Spectrometry 2009, 20 (4) , 593-596. https://doi.org/10.1016/j.jasms.2008.11.013
    41. Satoko Akashi, Masahiro Watanabe, Jonathan G. Heddle, Satoru Unzai, Sam-Yong Park and Jeremy R. H. Tame. RNA and Protein Complexes of trp RNA-Binding Attenuation Protein Characterized by Mass Spectrometry. Analytical Chemistry 2009, 81 (6) , 2218-2226. https://doi.org/10.1021/ac802354j
    42. P. John Wright, D. J. Douglas. Gas-phase H/D exchange and collision cross sections of hemoglobin monomers, dimers, and tetramers. Journal of the American Society for Mass Spectrometry 2009, 20 (3) , 484-495. https://doi.org/10.1016/j.jasms.2008.11.006
    43. Esther van Duijn, Arjan Barendregt, Silvia Synowsky, Cees Versluis and Albert J. R. Heck . Chaperonin Complexes Monitored by Ion Mobility Mass Spectrometry. Journal of the American Chemical Society 2009, 131 (4) , 1452-1459. https://doi.org/10.1021/ja8055134
    44. Ann-Catrin J. H. Johnson, Peter Greenwood, Magnus Hagström, Zareen Abbas and Staffan Wall . Aggregation of Nanosized Colloidal Silica in the Presence of Various Alkali Cations Investigated by the Electrospray Technique. Langmuir 2008, 24 (22) , 12798-12806. https://doi.org/10.1021/la8026122
    45. Jie Liu, Xiaoru Wang, Zongwei Cai, Frank S. C. Lee. Effect of tanshinone IIA on the noncovalent interaction between warfarin and human serum albumin studied by electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry 2008, 19 (10) , 1568-1575. https://doi.org/10.1016/j.jasms.2008.06.005
    46. Sheng Yin, Yongming Xie, Joseph A. Loo. Mass spectrometry of protein-ligand complexes: Enhanced gas-phase stability of ribonuclease-nucleotide complexes. Journal of the American Society for Mass Spectrometry 2008, 19 (8) , 1199-1208. https://doi.org/10.1016/j.jasms.2008.05.012
    47. Günter Allmaier, Christian Laschober, Wladyslaw W. Szymanski. Nano ES GEMMA and PDMA, new tools for the analysis of nanobioparticles—Protein complexes, lipoparticles, and viruses. Journal of the American Society for Mass Spectrometry 2008, 19 (8) , 1062-1068. https://doi.org/10.1016/j.jasms.2008.05.017
    48. Chiara Carazzone, Reingard Raml and Spiros A. Pergantis. Nanoelectrospray Ion Mobility Spectrometry Online with Inductively Coupled Plasma-Mass Spectrometry for Sizing Large Proteins, DNA, and Nanoparticles. Analytical Chemistry 2008, 80 (15) , 5812-5818. https://doi.org/10.1021/ac7025578
    49. Leonard F. Pease III,, De-Hao Tsai,, Rebecca A. Zangmeister,, Michael R. Zachariah, and, Michael J. Tarlov. Quantifying the Surface Coverage of Conjugate Molecules on Functionalized Nanoparticles. The Journal of Physical Chemistry C 2007, 111 (46) , 17155-17157. https://doi.org/10.1021/jp075571t
    50. Justin L. P. Benesch,, Brandon T. Ruotolo,, Douglas A. Simmons, and, Carol V. Robinson. Protein Complexes in the Gas Phase:  Technology for Structural Genomics and Proteomics. Chemical Reviews 2007, 107 (8) , 3544-3567. https://doi.org/10.1021/cr068289b
    51. Catherine S. Kaddis, Shirley H. Lomeli, Sheng Yin, Beniam Berhane, Marcin I. Apostol, Valerie A. Kickhoefer, Leonard H. Rome, Joseph A. Loo. Sizing large proteins and protein complexes by electrospray ionization mass spectrometry and ion mobility. Journal of the American Society for Mass Spectrometry 2007, 18 (7) , 1206-1216. https://doi.org/10.1016/j.jasms.2007.02.015
    52. Igor Sinelnikov, Elena N. Kitova, John S. Klassen. Influence of coulombic repulsion on the dissociation pathways and energetics of multiprotein complexes in the gas phase. Journal of the American Society for Mass Spectrometry 2007, 18 (4) , 617-631. https://doi.org/10.1016/j.jasms.2006.11.006
    53. Alexandre A. Shvartsburg,, Tadeusz Bryskiewicz,, Randy W. Purves,, Keqi Tang,, Roger Guevremont, and, Richard D. Smith. Field Asymmetric Waveform Ion Mobility Spectrometry Studies of Proteins:  Dipole Alignment in Ion Mobility Spectrometry?. The Journal of Physical Chemistry B 2006, 110 (43) , 21966-21980. https://doi.org/10.1021/jp062573p
    54. Victor V. Laiko. Orthogonal extraction ion mobility spectrometry. Journal of the American Society for Mass Spectrometry 2006, 17 (4) , 500-507. https://doi.org/10.1016/j.jasms.2005.12.009
    55. Agni F. M. Gavriilidou, Kleitos Sokratous, Hsin-Yung Yen, Luigi De Colibus. High-Throughput Native Mass Spectrometry Screening in Drug Discovery. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.837901
    56. Adam L. Hollerbach, Christopher R. Conant, Gabe Nagy, Yehia M. Ibrahim. Implementation of Ion Mobility Spectrometry-Based Separations in Structures for Lossless Ion Manipulations (SLIM). 2022, 453-469. https://doi.org/10.1007/978-1-0716-1811-0_23
    57. Kirsty Skeene, Kshitij Khatri, Zoja Soloviev, Cris Lapthorn. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2021, 1869 (12) , 140697. https://doi.org/10.1016/j.bbapap.2021.140697
    58. Kleitos Sokratous, José P. Afonso. Protein-Protein Interactions Studied by Mass Spectrometry. 2021, 1-8. https://doi.org/10.1007/978-3-642-35943-9_212-1
    59. Aleksandra Milewska, Joanna Ner‐Kluza, Agnieszka Dabrowska, Anna Bodzon‐Kulakowska, Krzysztof Pyrc, Piotr Suder. MASS SPECTROMETRY IN VIROLOGICAL SCIENCES. Mass Spectrometry Reviews 2020, 39 (5-6) , 499-522. https://doi.org/10.1002/mas.21617
    60. Ian K. Webb, Lindsay J. Morrison, Jeffery Brown. Dueling electrospray implemented on a traveling-wave ion mobility/time-of-flight mass spectrometer: Towards a gas-phase workbench for structural biology. International Journal of Mass Spectrometry 2019, 444 , 116177. https://doi.org/10.1016/j.ijms.2019.116177
    61. Kerene A. Brown, Shanthi Rajendran, Jason Dowd, Derek J. Wilson. Rapid characterization of structural and functional similarity for a candidate bevacizumab (Avastin) biosimilar using a multipronged mass‐spectrometry‐based approach. Drug Testing and Analysis 2019, 11 (8) , 1207-1217. https://doi.org/10.1002/dta.2609
    62. Tara Pukala. Importance of collision cross section measurements by ion mobility mass spectrometry in structural biology. Rapid Communications in Mass Spectrometry 2019, 33 (S3) , 72-82. https://doi.org/10.1002/rcm.8294
    63. Wentao Jiang, Nadjali A. Chung, Jody C. May, John A. McLean, Renã A.S. Robinson. Ion Mobility–Mass Spectrometry. 2019, 1-34. https://doi.org/10.1002/9780470027318.a9292.pub2
    64. Jonathan T.S. Hopper, Carol V. Robinson. Mass Spectrometry of Intact Protein Complexes. 2019, 145-173. https://doi.org/10.1002/9781119081661.ch6
    65. Timothy M. Allison, Michael Landreh. Ion Mobility in Structural Biology. 2019, 161-195. https://doi.org/10.1016/bs.coac.2018.10.001
    66. Rajeswari Lakshmanan, Joseph A. Loo. Top-down protein identification using a time-of-flight mass spectrometer and data independent acquisition. International Journal of Mass Spectrometry 2019, 435 , 136-144. https://doi.org/10.1016/j.ijms.2018.10.023
    67. Jean-Pascal Borra. Review on water electro-sprays and applications of charged drops with focus on the corona-assisted cone-jet mode for High Efficiency Air Filtration by wet electro-scrubbing of aerosols. Journal of Aerosol Science 2018, 125 , 208-236. https://doi.org/10.1016/j.jaerosci.2018.04.005
    68. Luca Fornelli, Timothy K. Toby, Luis F. Schachner, Peter F. Doubleday, Kristina Srzentić, Caroline J. DeHart, Neil L. Kelleher. Top-down proteomics: Where we are, where we are going?. Journal of Proteomics 2018, 175 , 3-4. https://doi.org/10.1016/j.jprot.2017.02.002
    69. Christian Klein, Stephanie M. Cologna, Ruwan T. Kurulugama, Paul S. Blank, Ed Darland, Alex Mordehai, Peter S. Backlund, Alfred L. Yergey. Cyclodextrin and malto-dextrose collision cross sections determined in a drift tube ion mobility mass spectrometer using nitrogen bath gas. The Analyst 2018, 143 (17) , 4147-4154. https://doi.org/10.1039/C8AN00646F
    70. Razieh Parchami, Mahmoud Tabrizchdi, Naader Alizadeh. Effect of intramolecular hydrogen bonding of α, ω–diamines on the structure and exchange affinity of 18–crown–6-amine host-guest complexes in gas phase: A collision cross section measurements by ion mobility spectrometry. International Journal of Mass Spectrometry 2017, 421 , 150-155. https://doi.org/10.1016/j.ijms.2017.06.013
    71. Zhe Zhang, Richard W. Vachet. Gas-phase protein salt bridge stabilities from collisional activation and electron transfer dissociation. International Journal of Mass Spectrometry 2017, 420 , 51-56. https://doi.org/10.1016/j.ijms.2016.09.010
    72. Marko Jovanović, Jasna Peter-Katalinić. Preliminary mass spectrometry characterization studies of galectin-3 samples, prior to carbohydrate-binding studies using Affinity mass spectrometry. Rapid Communications in Mass Spectrometry 2017, 31 (1) , 129-136. https://doi.org/10.1002/rcm.7775
    73. Andrew G. Elliott, Conner C. Harper, Haw-Wei Lin, Evan R. Williams. Mass, mobility and MS n measurements of single ions using charge detection mass spectrometry. The Analyst 2017, 142 (15) , 2760-2769. https://doi.org/10.1039/C7AN00618G
    74. Paolo Benigni, Rebecca Marin, Juan Camilo Molano-Arevalo, Alyssa Garabedian, Jeremy J. Wolff, Mark E. Ridgeway, Melvin A. Park, Francisco Fernandez-Lima. Towards the analysis of high molecular weight proteins and protein complexes using TIMS-MS. International Journal for Ion Mobility Spectrometry 2016, 19 (2-3) , 95-104. https://doi.org/10.1007/s12127-016-0201-8
    75. Danilo Donnarumma, Agnese Faleri, Paolo Costantino, Rino Rappuoli, Nathalie Norais. The role of structural proteomics in vaccine development: recent advances and future prospects. Expert Review of Proteomics 2016, 13 (1) , 55-68. https://doi.org/10.1586/14789450.2016.1121113
    76. Fan Chen, Basri Gülbakan, Simon Weidmann, Stephan R. Fagerer, Alfredo J. Ibáñez, Renato Zenobi. Applying mass spectrometry to study non-covalent biomolecule complexes. Mass Spectrometry Reviews 2016, 35 (1) , 48-70. https://doi.org/10.1002/mas.21462
    77. Alexander Leitner. Cross-linking and other structural proteomics techniques: how chemistry is enabling mass spectrometry applications in structural biology. Chemical Science 2016, 7 (8) , 4792-4803. https://doi.org/10.1039/C5SC04196A
    78. Ying Fung. Protein Characterization and Quantitation: Integrating MC-CE Device with Gas-Phase Electrophoretic Mobility Molecular Analyzer. 2015, 305-344. https://doi.org/10.1201/b18846-21
    79. Daniel Scott, Robert Layfield, Neil J. Oldham. Ion mobility-mass spectrometry reveals conformational flexibility in the deubiquitinating enzyme USP5. PROTEOMICS 2015, 15 (16) , 2835-2841. https://doi.org/10.1002/pmic.201400457
    80. Shahid Mehmood, Timothy M. Allison, Carol V. Robinson. Mass Spectrometry of Protein Complexes: From Origins to Applications. Annual Review of Physical Chemistry 2015, 66 (1) , 453-474. https://doi.org/10.1146/annurev-physchem-040214-121732
    81. Malte Gersch, Mathias W. Hackl, Christian Dubiella, Alexander Dobrinevski, Michael Groll, Stephan A. Sieber. A Mass Spectrometry Platform for a Streamlined Investigation of Proteasome Integrity, Posttranslational Modifications, and Inhibitor Binding. Chemistry & Biology 2015, 22 (3) , 404-411. https://doi.org/10.1016/j.chembiol.2015.01.004
    82. Ruth Birner-Gruenberger, Rolf Breinbauer. Weighing the Proteasome for Covalent Modifications. Chemistry & Biology 2015, 22 (3) , 315-316. https://doi.org/10.1016/j.chembiol.2015.03.003
    83. Xin Ma, Joseph A. Loo, Vicki H. Wysocki. Surface induced dissociation yields substructure of Methanosarcina thermophila 20S proteasome complexes. International Journal of Mass Spectrometry 2015, 377 , 201-204. https://doi.org/10.1016/j.ijms.2014.09.011
    84. Herbert Budzikiewicz. Mass Spectrometry in Natural Product Structure Elucidation. 2015, 77-221. https://doi.org/10.1007/978-3-319-05275-5_2
    85. Yana Berezovskaya, Massimiliano Porrini, Chris Nortcliffe, Perdita E. Barran. The use of ion mobility mass spectrometry to assist protein design: a case study on zinc finger fold versus coiled coil interactions. The Analyst 2015, 140 (8) , 2847-2856. https://doi.org/10.1039/C4AN00427B
    86. Victor U. Weiss, Lukas Kerul, Peter Kallinger, Wladyslaw W. Szymanski, Martina Marchetti-Deschmann, Günter Allmaier. Liquid phase separation of proteins based on electrophoretic effects in an electrospray setup during sample introduction into a gas-phase electrophoretic mobility molecular analyzer (CE–GEMMA/CE–ES–DMA). Analytica Chimica Acta 2014, 841 , 91-98. https://doi.org/10.1016/j.aca.2014.05.043
    87. Joost Snijder, Albert J.R. Heck. Analytical Approaches for Size and Mass Analysis of Large Protein Assemblies. Annual Review of Analytical Chemistry 2014, 7 (1) , 43-64. https://doi.org/10.1146/annurev-anchem-071213-020015
    88. Rajeswari Lakshmanan, Jeremy J. Wolff, Rudy Alvarado, Joseph A. Loo. Top-down protein identification of proteasome proteins with nanoLC-FT-ICR-MS employing data-independent fragmentation methods. PROTEOMICS 2014, 14 (10) , 1271-1282. https://doi.org/10.1002/pmic.201300339
    89. Francesco Lanucara, Stephen W. Holman, Christopher J. Gray, Claire E. Eyers. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nature Chemistry 2014, 6 (4) , 281-294. https://doi.org/10.1038/nchem.1889
    90. Jessica Z. Bereszczak, Marlene Havlik, Victor U. Weiss, Martina Marchetti-Deschmann, Esther van Duijn, Norman R. Watts, Paul T. Wingfield, Guenter Allmaier, Alasdair C. Steven, Albert J. R. Heck. Sizing up large protein complexes by electrospray ionisation-based electrophoretic mobility and native mass spectrometry: morphology selective binding of Fabs to hepatitis B virus capsids. Analytical and Bioanalytical Chemistry 2014, 406 (5) , 1437-1446. https://doi.org/10.1007/s00216-013-7548-z
    91. Guenter Allmaier, Victor U. Weiss, Marlene Havlik, Peter Kallinger, Martina Marchetti-Deschmann, Wladyslaw W. Szymanski. Analysis of Bio-nanoparticles by Means of Nano ES in Combination with DMA and PDMA: Intact Viruses, Virus-Like-Particles and Vaccine Particles. 2014, 133-147. https://doi.org/10.1007/978-94-017-9238-7_9
    92. Argyris Politis, Ah Young Park, Zoe Hall, Brandon T. Ruotolo, Carol V. Robinson. Integrative Modelling Coupled with Ion Mobility Mass Spectrometry Reveals Structural Features of the Clamp Loader in Complex with Single-Stranded DNA Binding Protein. Journal of Molecular Biology 2013, 425 (23) , 4790-4801. https://doi.org/10.1016/j.jmb.2013.04.006
    93. Jaewoo Pi, Lee Sael. Mass Spectrometry Coupled Experiments and Protein Structure Modeling Methods. International Journal of Molecular Sciences 2013, 14 (10) , 20635-20657. https://doi.org/10.3390/ijms141020635
    94. Royston S. Quintyn, Mowei Zhou, Shai Dagan, John Finke, Vicki H. Wysocki. Ligand binding and unfolding of tryptophan synthase revealed by ion mobility-tandem mass spectrometry employing collision and surface induced dissociation. International Journal for Ion Mobility Spectrometry 2013, 16 (2) , 133-143. https://doi.org/10.1007/s12127-013-0126-4
    95. L.A. Woods, S.E. Radford, A.E. Ashcroft. Advances in ion mobility spectrometry–mass spectrometry reveal key insights into amyloid assembly. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2013, 1834 (6) , 1257-1268. https://doi.org/10.1016/j.bbapap.2012.10.002
    96. Danielle M. Williams, Tara L. Pukala. Novel insights into protein misfolding diseases revealed by ion mobility-mass spectrometry. Mass Spectrometry Reviews 2013, 32 (3) , 169-187. https://doi.org/10.1002/mas.21358
    97. Wentao Jiang, Renã A.S. Robinson. Ion Mobility‐Mass Spectrometry. 2013https://doi.org/10.1002/9780470027318.a9292
    98. Kleitos Sokratous, Robert Layfield, Neil J. Oldham. The effects of cation adduction upon the conformation of three-helix bundle protein domains. International Journal for Ion Mobility Spectrometry 2013, 16 (1) , 19-27. https://doi.org/10.1007/s12127-012-0114-0
    99. Thi H. Nguyen, Sung-Hye Kim, Caitlin G. Decker, Darice Y. Wong, Joseph A. Loo, Heather D. Maynard. A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor. Nature Chemistry 2013, 5 (3) , 221-227. https://doi.org/10.1038/nchem.1573
    100. Kazumi Saikusa, Naoyuki Kuwabara, Yuichi Kokabu, Yu Inoue, Mamoru Sato, Hiroshi Iwasaki, Toshiyuki Shimizu, Mitsunori Ikeguchi, Satoko Akashi. Characterisation of an intrinsically disordered protein complex of Swi5–Sfr1 by ion mobility mass spectrometry and small-angle X-ray scattering. The Analyst 2013, 138 (5) , 1441-1449. https://doi.org/10.1039/C2AN35878F
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect