ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEResearch ArticleNEXT

Collision-induced dissociation pathways of anabolic steroids by electrospray ionization tandem mass spectrometry

  • Fuyu Guan
    Fuyu Guan
    Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
    More by Fuyu Guan
  • Lawrence R. Soma
    Lawrence R. Soma
    Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
  • Yi Luo
    Yi Luo
    Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
    More by Yi Luo
  • Cornelius E. Uboh
    Cornelius E. Uboh
    Pennsylvania Equine Toxicology and Research Center, West Chester University, West Chester, Pennsylvania, USA
  • , and 
  • Scott Peterman
    Scott Peterman
    Thermo Electron Corporation, Somerset, New Jersey, USA
Cite this: The official journal of The American Society for Mass Spectrometry 2006, 17, 4, 477–489
Publication Date (Web):April 1, 2006
https://doi.org/10.1016/j.jasms.2005.11.021
Copyright © 2006 © American Society for Mass Spectrometry 2006

    Article Views

    59

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Anabolic steroids are structurally similar compounds, and their product-ion spectra obtained by tandem mass spectrometry under electrospray ionization conditions are quite difficult to interpret because of poly-ring structures and lack of a charge-retaining center in their chemical structures. In the present study, the fragmentation of nine anabolic steroids of interest to the racing industry was investigated by using triple quadrupole mass spectrometer, Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, and a linear ion trap instrument. With the aid of an expert system software (Mass Frontier version 3.0), accurate mass measurements, and multiple stage tandem mass spectrometric (MSn) experiments, fragmentation pathways were elucidated for boldenone, methandrostenolone, tetrahydrogestrinone (THG), trenbolone, normethandrolone and mibolerone. Small differences in the chemical structures of the steroids, such as an additional double-bond or a methyl group, result in significantly different fragmentation pathways. The fragmentation pathways proposed in this paper allow interpretation of major product ions of other anabolic steroids reported by other researchers in a recent publication [19]. The proposed fragmentation pathways are helpful for characterization of new steroids. The approach used in this study for elucidation of the fragmentation pathways is helpful in interpretation of complicated product-ion spectra of other compounds, drugs and their metabolites.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 68 publications.

    1. Haoqi Nina Zhao, Zhenyu Tian, Kelly E. Kim, Rui Wang, Kenji Lam, Edward P. Kolodziej. Biotransformation of Current-Use Progestin Dienogest and Drospirenone in Laboratory-Scale Activated Sludge Systems Forms High-Yield Products with Altered Endocrine Activity. Environmental Science & Technology 2021, 55 (20) , 13869-13880. https://doi.org/10.1021/acs.est.1c03805
    2. Natã C. L. Madeira, Polianna da S. Ferreira, João F. Allochio Filho, Luiz S. Chinelatto, Jr., Margareth C. C. Cravo, Adriana T. Martins, Valdemar Lacerda, Jr., Wanderson Romão. Study of Thermal Aging of Model Compounds Present in Asphalt Cement by GC/MS, ESI-MS, NMR, and FTIR. Energy & Fuels 2021, 35 (18) , 14553-14568. https://doi.org/10.1021/acs.energyfuels.1c01815
    3. Upul Nishshanka, Pak-Sin Chu, Eric Evans, Renate Reimschuessel, Nicholas Hasbrouck, Kande Amarasinghe, and Hiranthi Jayasuriya . Tentative Structural Assignment of a Glucuronide Metabolite of Methyltestosterone in Tilapia Bile by Liquid Chromatography–Quadrupole-Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry 2015, 63 (24) , 5753-5760. https://doi.org/10.1021/jf506151g
    4. Paulo J. Amorim Madeira, Ana Raquel Fernandes Sitoe, Daniel Gonçalves, Tiago Rodrigues, Rita C. Guedes, Francisca Lopes, Rui Moreira, M. Rosário Bronze. Antiplasmodial Drugs in the Gas Phase: A CID and DFT Study of Quinolon-4(1H)-Imine Derivatives. Journal of the American Society for Mass Spectrometry 2014, 25 (9) , 1650-1661. https://doi.org/10.1007/s13361-014-0940-x
    5. Andreu Fabregat, Oscar J. Pozo, Josep Marcos, Jordi Segura, and Rosa Ventura . Use of LC-MS/MS for the Open Detection of Steroid Metabolites Conjugated with Glucuronic Acid. Analytical Chemistry 2013, 85 (10) , 5005-5014. https://doi.org/10.1021/ac4001749
    6. Hui Wang, Xiuqing Zhou, Yiqun Zhang, Haiyan Chen, Guijie Li, Yang Xu, Qi Zhao, Weitao Song, Haiyan Jin, and Lan Ding . Dynamic Microwave-Assisted Extraction Coupled with Salting-Out Liquid–Liquid Extraction for Determination of Steroid Hormones in Fish Tissues. Journal of Agricultural and Food Chemistry 2012, 60 (41) , 10343-10351. https://doi.org/10.1021/jf303124c
    7. Nalaka S. Rannulu, Richard B. Cole. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion–Dipole Complex Intermediates. Journal of the American Society for Mass Spectrometry 2012, 23 (9) , 1558-1568. https://doi.org/10.1007/s13361-012-0422-y
    8. Will J. Backe, Christoph Ort, Alex J. Brewer, and Jennifer A. Field . Analysis of Androgenic Steroids in Environmental Waters by Large-Volume Injection Liquid Chromatography Tandem Mass Spectrometry. Analytical Chemistry 2011, 83 (7) , 2622-2630. https://doi.org/10.1021/ac103013h
    9. Oscar J. Pozo,, Koen Deventer,, Peter Van Eenoo, and, Frans T. Delbeke. Efficient Approach for the Comprehensive Detection of Unknown Anabolic Steroids and Metabolites in Human Urine by Liquid Chromatography−Electrospray-Tandem Mass Spectrometry. Analytical Chemistry 2008, 80 (5) , 1709-1720. https://doi.org/10.1021/ac7020757
    10. George Kaklamanos, Georgios Theodoridis, Ioannis N. Papadoyannis and Themistoklis Dabalis . Determination of Anabolic Steroids in Muscle Tissue by Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry 2007, 55 (21) , 8325-8330. https://doi.org/10.1021/jf0713455
    11. Yasuo Konishi,, Taira Kiyota,, Cristina Draghici,, Jin-Ming Gao,, Faustinus Yeboah,, Stephane Acoca,, Suwatchai Jarussophon, and, Enrico Purisima. Molecular Formula Analysis by an MS/MS/MS Technique To Expedite Dereplication of Natural Products. Analytical Chemistry 2007, 79 (3) , 1187-1197. https://doi.org/10.1021/ac061391o
    12. Norbert Stoll, Enrico Schmidt, Kerstin Thurow. Isotope pattern evaluation for the reduction of elemental compositions assigned to high-resolution mass spectral data from electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry 2006, 17 (12) , 1692-1699. https://doi.org/10.1016/j.jasms.2006.07.022
    13. Rafael Reis, Rebecca Dhawle, David Du Pasquier, Andrew J. Tindall, Zacharias Frontistis, Dionissios Mantzavinos, Peter de Witte, Deirdre Cabooter. Electrochemical degradation of 17α-ethinylestradiol: Transformation products, degradation pathways and in vivo assessment of estrogenic activity. Environment International 2023, 176 , 107992. https://doi.org/10.1016/j.envint.2023.107992
    14. Caitlin Harding, Marjaana Viljanto, Jocelyn Habershon‐Butcher, Polly Taylor, James Scarth. Equine metabolism of the selective androgen receptor modulator YK‐11 in urine and plasma following oral administration. Drug Testing and Analysis 2023, 15 (4) , 388-407. https://doi.org/10.1002/dta.3425
    15. William Feeney, Arun S. Moorthy, Edward Sisco. Spectral trends in GC-EI-MS data obtained from the SWGDRUG mass spectral library and literature: A resource for the identification of unknown compounds. Forensic Chemistry 2022, 31 , 100459. https://doi.org/10.1016/j.forc.2022.100459
    16. Marjaana Viljanto, Zied Kaabia, Polly Taylor, Tessa Muir, Jocelyn Habershon‐Butcher, Ludovic Bailly‐Chouriberry, James Scarth. Differentiation of boldenone administration from ex vivo transformation in the urine of castrated male horses. Drug Testing and Analysis 2022, 14 (5) , 887-901. https://doi.org/10.1002/dta.3240
    17. Stéphane Trevisiol, Yves Moulard, Zied Kaabia, Vivian Delcourt, Benoit Loup, Patrice Garcia, Sophie Boyer, Karine Dauriac, Guillaume Groseille, Sébastien Rouger, Ruediger Narbe, Marie‐Agnès Popot, Ludovic Bailly‐Chouriberry. LC‐HRMS/MS study of the prodrug ciclesonide and its active metabolite desisobutyryl‐ciclesonide in plasma after an inhalative administration to horses for doping control purposes. Drug Testing and Analysis 2022, 14 (2) , 252-261. https://doi.org/10.1002/dta.3174
    18. Marcela Valko-Rokytovská, Peter Očenáš, Aneta Salayová, Zuzana Kostecká. Breast Cancer: Targeting of Steroid Hormones in Cancerogenesis and Diagnostics. International Journal of Molecular Sciences 2021, 22 (11) , 5878. https://doi.org/10.3390/ijms22115878
    19. Brett R. Blackwell, Gerald T. Ankley. Simultaneous determination of a suite of endogenous steroids by LC-APPI-MS: Application to the identification of endocrine disruptors in aquatic toxicology. Journal of Chromatography B 2021, 1163 , 122513. https://doi.org/10.1016/j.jchromb.2020.122513
    20. Panagiotis Sakellariou, Polyxeni Kiousi, Argyro G. Fragkaki, Emmanouil Lyris, Michael Petrou, Costas Georgakopoulos, Yiannis S. Angelis. Alternative markers for Methylnortestosterone misuse in human urine. Drug Testing and Analysis 2020, 12 (11-12) , 1544-1553. https://doi.org/10.1002/dta.2887
    21. Marjaana Viljanto, Andrew T. Kicman, Christopher J. Walker, Kim Wolff, Tessa Muir, Pamela Hincks, Simon Biddle, James Scarth. Bioformation of boldenone and related precursors/metabolites in equine feces and urine, with relevance to doping control. Drug Testing and Analysis 2020, 12 (2) , 215-229. https://doi.org/10.1002/dta.2706
    22. Yuanyuan Zheng, Hongzhi Zhao, Lin Zhu, Zongwei Cai. Comprehensive identification of steroid hormones in human urine based on liquid chromatography-high resolution mass spectrometry. Analytica Chimica Acta 2019, 1089 , 100-107. https://doi.org/10.1016/j.aca.2019.09.058
    23. Marjaana J. Viljanto, Andrew T. Kicman, Christopher J. Walker, Mark C. Parkin, Kim Wolff, Clive M. Pearce, James Scarth. Elucidation of the biosynthetic pathways of boldenone in the equine testis. Steroids 2019, 146 , 79-91. https://doi.org/10.1016/j.steroids.2019.03.011
    24. Li Ma, Scott R. Yates. A review on structural elucidation of metabolites of environmental steroid hormones via liquid chromatography–mass spectrometry. TrAC Trends in Analytical Chemistry 2018, 109 , 142-153. https://doi.org/10.1016/j.trac.2018.10.007
    25. Hajer Dahmani, Kaouthar Louati, Adel Hajri, Senda Bahri, Fathi Safta. Development of an extraction method for anabolic androgenic steroids in dietary supplements and analysis by gas chromatography-mass spectrometry: Application for doping-control. Steroids 2018, 138 , 134-160. https://doi.org/10.1016/j.steroids.2018.08.001
    26. Arthur T. Kopylov, Alexander A. Novikov, Anna L. Kaysheva, Igor T. Vykhodets, Dmitry E. Karateev, Victor G. Zgoda, Andrey V. Lisitsa. Quantitative assessment of betamethasone dual-acting formulation in urine of patients with rheumatoid arthritis and ankylosing spondylitis after single-dose intramuscular administration and its application to long-term pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis 2018, 149 , 278-289. https://doi.org/10.1016/j.jpba.2017.11.021
    27. . Fragmentation of Drugs and Pesticides. 2017, 129-349. https://doi.org/10.1002/9781119294269.ch4
    28. Jasper O. Ojoghoro, Abdul J. Chaudhary, Pablo Campo, John P. Sumpter, Mark D. Scrimshaw. Progesterone potentially degrades to potent androgens in surface waters. Science of The Total Environment 2017, 579 , 1876-1884. https://doi.org/10.1016/j.scitotenv.2016.11.176
    29. Giae Lee, Eunkyung Park, Heesun Chung, Yannick Jeanvoine, Kihyung Song, Riccardo Spezia. Gas phase fragmentation mechanisms of protonated testosterone as revealed by chemical dynamics simulations. International Journal of Mass Spectrometry 2016, 407 , 40-50. https://doi.org/10.1016/j.ijms.2016.07.001
    30. Michael Polet, Wim Van Gansbeke, Peter Van Eenoo, Koen Deventer. Efficient approach for the detection and identification of new androgenic metabolites by applying SRM GC-CI-MS/MS: a methandienone case study. Journal of Mass Spectrometry 2016, 51 (7) , 524-534. https://doi.org/10.1002/jms.3781
    31. Michael Polet, Wim Van Gansbeke, Peter Van Eenoo, Koen Deventer. Gas chromatography/chemical ionization triple quadrupole mass spectrometry analysis of anabolic steroids: ionization and collision-induced dissociation behavior. Rapid Communications in Mass Spectrometry 2016, 30 (4) , 511-522. https://doi.org/10.1002/rcm.7472
    32. Wai Him Kwok, Gary N.W. Leung, Terence S.M. Wan, Peter Curl, Peter J. Schiff. Metabolic study of androsta-1,4,6-triene-3,17-dione in horses using liquid chromatography/high resolution mass spectrometry. The Journal of Steroid Biochemistry and Molecular Biology 2015, 152 , 142-154. https://doi.org/10.1016/j.jsbmb.2015.05.011
    33. Hanne Roberg-Larsen, Caroline Vesterdal, Steven Ray Wilson, Elsa Lundanes. Underivatized oxysterols and nanoLC–ESI-MS: A mismatch. Steroids 2015, 99 , 125-130. https://doi.org/10.1016/j.steroids.2015.01.023
    34. Laura Tretzel, Andreas Thomas, Hans Geyer, Günter Gmeiner, Guro Forsdahl, Valentin Pop, Wilhelm Schänzer, Mario Thevis. Use of dried blood spots in doping control analysis of anabolic steroid esters. Journal of Pharmaceutical and Biomedical Analysis 2014, 96 , 21-30. https://doi.org/10.1016/j.jpba.2014.03.013
    35. LinZhou Zhang, YaHe Zhang, SuoQi Zhao, ChunMing Xu, Keng H. Chung, Quan Shi. Characterization of heavy petroleum fraction by positive-ion electrospray ionization FT-ICR mass spectrometry and collision induced dissociation: Bond dissociation behavior and aromatic ring architecture of basic nitrogen compounds. Science China Chemistry 2013, 56 (7) , 874-882. https://doi.org/10.1007/s11426-013-4899-4
    36. Zheng Chen, Jifeng Li, Jing Zhang, Xue Xing, Wei Gao, Zuhong Lu, Huihua Deng. Simultaneous determination of hair cortisol, cortisone and DHEAS with liquid chromatography–electrospray ionization-tandem mass spectrometry in negative mode. Journal of Chromatography B 2013, 929 , 187-194. https://doi.org/10.1016/j.jchromb.2013.04.026
    37. Syed Ghulam Musharraf, Arslan Ali, Naik Tameem Khan, Maria Yousuf, Muhammad Iqbal Choudhary, Atta-ur-Rahman. Tandem mass spectrometry approach for the investigation of the steroidal metabolism: Structure–fragmentation relationship (SFR) in anabolic steroids and their metabolites by ESI-MS/MS analysis. Steroids 2013, 78 (2) , 171-181. https://doi.org/10.1016/j.steroids.2012.10.017
    38. C. Gómez, O.J. Pozo, H. Geyer, J. Marcos, M. Thevis, W. Schänzer, J. Segura, R. Ventura. New potential markers for the detection of boldenone misuse. The Journal of Steroid Biochemistry and Molecular Biology 2012, 132 (3-5) , 239-246. https://doi.org/10.1016/j.jsbmb.2012.05.010
    39. Benjamin C. Moeller, Scott D. Stanley. The development and validation of a turbulent flow chromatography–tandem mass spectrometry method for the endogenous steroid profiling of equine serum. Journal of Chromatography B 2012, 905 , 1-9. https://doi.org/10.1016/j.jchromb.2012.06.021
    40. Jianghai Lu, Genye He, Xiaobing Wang, Youxuan Xu, Yun Wu, Ying Dong, Xin Liu, Zhenwen He, Jian Zhao, Hong Yuan. Mass spectrometric identification and characterization of new fluoxymesterone metabolites in human urine by liquid chromatography time-of-flight tandem mass spectrometry. Steroids 2012, 77 (8-9) , 871-877. https://doi.org/10.1016/j.steroids.2012.04.003
    41. L. R. SOMA, C. E. UBOH, Y. YOU, F. GUAN, S. McDONNELL. Plasma concentrations of testosterone and nandrolone in racing and nonracing intact male horses. Journal of Veterinary Pharmacology and Therapeutics 2012, 35 (2) , 132-138. https://doi.org/10.1111/j.1365-2885.2011.01295.x
    42. Xue Qiao, Min Ye, Chun-fang Liu, Wen-zhi Yang, Wen-juan Miao, Jing Dong, De-an Guo. A tandem mass spectrometric study of bile acids: Interpretation of fragmentation pathways and differentiation of steroid isomers. Steroids 2012, 77 (3) , 204-211. https://doi.org/10.1016/j.steroids.2011.11.008
    43. P Teale, J Scarth, S Hudson. Impact of the emergence of designer drugs upon sports doping testing. Bioanalysis 2012, 4 (1) , 71-88. https://doi.org/10.4155/bio.11.291
    44. Yassin A. Jeilani, Beatriz H. Cardelino, Victor M. Ibeanusi. Hydrogen rearrangement and ring cleavage reactions study of progesterone by triple quadrupole mass spectrometry and density functional theory. Journal of Mass Spectrometry 2011, 46 (7) , 625-634. https://doi.org/10.1002/jms.1931
    45. Youwen You, Cornelius E. Uboh, Lawrence R. Soma, Fuyu Guan, Xiaoqing Li, Ying Liu, Jeffrey A. Rudy, Jinwen Chen, Deborah Tsang. Simultaneous separation and determination of 16 testosterone and nandrolone esters in equine plasma using ultra high performance liquid chromatography–tandem mass spectrometry for doping control. Journal of Chromatography A 2011, 1218 (26) , 3982-3993. https://doi.org/10.1016/j.chroma.2011.04.087
    46. Richard B. Cole, Nalaka S. Rannulu. Regioselective anion attachment leading to regiospecific decompositions of bifunctional steroids in negative ion electrospray tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2011, 25 (4) , 558-562. https://doi.org/10.1002/rcm.4884
    47. Laura Hintikka, Markus Haapala, Sami Franssila, Tiia Kuuranne, Antti Leinonen, Risto Kostiainen. Feasibility of gas chromatography–microchip atmospheric pressure photoionization-mass spectrometry in analysis of anabolic steroids. Journal of Chromatography A 2010, 1217 (52) , 8290-8297. https://doi.org/10.1016/j.chroma.2010.10.074
    48. Fuyu Guan, Cornelius E. Uboh, Lawrence R. Soma, Youwen You, Ying Liu, Xiaoqing Li. Correlation of product ion profiles with molecular structures of androgenic and anabolic steroids in ESI MS/MS. Journal of Mass Spectrometry 2010, 45 (11) , 1261-1269. https://doi.org/10.1002/jms.1803
    49. Pavel A. Baranov, Svetlana A. Appolonova, Grigory M. Rodchenkov. The potential use of complex derivatization procedures in comprehensive HPLC-MS/MS detection of anabolic steroids. Drug Testing and Analysis 2010, 2 (10) , 475-488. https://doi.org/10.1002/dta.163
    50. Oscar J. Pozo, Josep Marcos, Rosa Ventura, Andreu Fabregat, Jordi Segura. Testosterone metabolism revisited: discovery of new metabolites. Analytical and Bioanalytical Chemistry 2010, 398 (4) , 1759-1770. https://doi.org/10.1007/s00216-010-4082-0
    51. Philip Teale, Edward Houghton. Metabolism of anabolic steroids and their relevance to drug detection in horseracing. Bioanalysis 2010, 2 (6) , 1085-1107. https://doi.org/10.4155/bio.10.57
    52. Jeffrey Comparin. Drugs. 2010, 153-279. https://doi.org/10.1201/EBK1439826584-c6
    53. S Leung, W Tam, W Cheng, Florence Chan, C Hung, T Wong, Billy Leung, W Hui, W Lee, W Mak. Toxicology. 2010, 281-350. https://doi.org/10.1201/EBK1439826584-c7
    54. George Kaklamanos, Georgios Theodoridis, Themistoklis Dabalis. Determination of anabolic steroids in muscle tissue by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 2009, 1216 (46) , 8072-8079. https://doi.org/10.1016/j.chroma.2009.04.051
    55. Óscar J. Pozo, Peter Van Eenoo, Koen Deventer, Leen Lootens, Wim Van Thuyne, Maria K. Parr, Wilhelm Schänzer, Juan V. Sancho, Felix Hernández, Philip Meuleman, Geert Leroux-Roels, Frans T. Delbeke. Detection and Characterization of a New Metabolite of 17α-Methyltestosterone. Drug Metabolism and Disposition 2009, 37 (11) , 2153-2162. https://doi.org/10.1124/dmd.109.028373
    56. George Kaklamanos, Georgios Theodoridis, Themistoklis Dabalis. Determination of anabolic steroids in bovine urine by liquid chromatography–tandem mass spectrometry. Journal of Chromatography B 2009, 877 (23) , 2330-2336. https://doi.org/10.1016/j.jchromb.2009.03.033
    57. Andrew R McKinney. Modern techniques for the determination of anabolic–androgenic steroid doping in the horse. Bioanalysis 2009, 1 (4) , 785-803. https://doi.org/10.4155/bio.09.52
    58. Ed Houghton, Steve Maynard. Some Aspects of Doping and Medication Control in Equine Sports. 2009, 369-409. https://doi.org/10.1007/978-3-540-79088-4_17
    59. Oscar J. Pozo, Peter Van Eenoo, Koen Deventer, Susana Grimalt, Juan V. Sancho, Félix Hernández, Frans T. Delbeke. Collision-induced dissociation of 3-keto anabolic steroids and related compounds after electrospray ionization. Considerations for structural elucidation. Rapid Communications in Mass Spectrometry 2008, 22 (24) , 4009-4024. https://doi.org/10.1002/rcm.3823
    60. L. R. SOMA, C. E. UBOH, F. GUAN, S. McDONNELL. Plasma concentrations of testosterone and 19-nortestosterone (nandrolone) in the nonracing intact male horse by liquid chromatography-mass spectrometry. Journal of Veterinary Pharmacology and Therapeutics 2008, 31 (6) , 587-590. https://doi.org/10.1111/j.1365-2885.2008.00997.x
    61. Yufeng Zhang, Zunyuan Wang, Zhen Ma, Yiyu Cheng. Characterization of Progesterone Derivatives by LC-DAD-ESI/MSn and Its Application to the Identification of Impurities in Flurogestone Acetate. Chromatographia 2008, 68 (11-12) , 903-909. https://doi.org/10.1365/s10337-008-0838-5
    62. Oscar J. Pozo, Peter Van Eenoo, Koen Deventer, Frans T. Delbeke. Detection and characterization of anabolic steroids in doping analysis by LC-MS. TrAC Trends in Analytical Chemistry 2008, 27 (8) , 657-671. https://doi.org/10.1016/j.trac.2008.06.003
    63. E. D. Virus, T. G. Sobolevsky, G. M. Rodchenkov. Introduction of HPLC/orbitrap mass spectrometry as screening method for doping control. Journal of Mass Spectrometry 2008, 43 (7) , 949-957. https://doi.org/10.1002/jms.1447
    64. Oscar J. Pozo, Koen Deventer, Peter Van Eenoo, Frans T. Delbeke. Presence of endogenous interferences in the urinary detection of selected anabolic steroids by liquid chromatography/electrospray tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2007, 21 (17) , 2785-2796. https://doi.org/10.1002/rcm.3140
    65. Qing Yang, Bo-lin Fan, Rui-ren Tang. Synthesis and characterization of mibolerone. Journal of Central South University of Technology 2007, 14 (4) , 524-527. https://doi.org/10.1007/s11771-007-0102-4
    66. L. R. SOMA, C. E. UBOH, F. GUAN, S. MCDONNELL, J. PACK. Pharmacokinetics of boldenone and stanozolol and the results of quantification of anabolic and androgenic steroids in race horses and nonrace horses. Journal of Veterinary Pharmacology and Therapeutics 2007, 30 (2) , 101-108. https://doi.org/10.1111/j.1365-2885.2007.00824.x
    67. Xuntian Jiang, Daniel S. Ory, Xianlin Han. Characterization of oxysterols by electrospray ionization tandem mass spectrometry after one-step derivatization with dimethylglycine. Rapid Communications in Mass Spectrometry 2007, 21 (2) , 141-152. https://doi.org/10.1002/rcm.2820
    68. . Current literature in mass spectrometry. Journal of Mass Spectrometry 2007, 127-138. https://doi.org/10.1002/jms.1070

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect