Microfluidic Synthesis of Biodegradable Polyethylene-Glycol Microspheres for Controlled Delivery of Proteins and DNA Nanoparticles
- Lorenzo Deveza
- ,
- Jothikritika Ashoken
- ,
- Gloria Castaneda
- ,
- Xinming Tong
- ,
- Michael Keeney
- ,
- Li-Hsin Han
- , and
- Fan Yang
Abstract

Polymeric microspheres represent an injectable platform for controlling the release of a variety of biologics; microspheres may be combined in a modular fashion to achieve temporal release of two or more biomolecules. Microfluidics offers a versatile platform for synthesizing uniform polymeric microspheres harboring a variety of biologics under relatively mild conditions. Poly(ethylene glycol) (PEG) is a bioinert polymer that can be easily tailored to encapsulate and control the release of biologics. In this study, we report the microfluidic synthesis of biodegradable PEG-based microparticles for controlled release of growth factors or DNA nanoparticles. Simple changes in microfluidic design increased the rate of microparticle formation and controlled the size of the microspheres. Mesh size and degradation rate were controlled by varying the PEG polymer weight percent from 7.5 to 15% (w/v), thus tuning the release of growth factors and DNA nanoparticles, which retained their bioactivity in assays of cell proliferation and DNA transfection, respectively. This platform may provide a useful tool for synthesizing microspheres for use as injectable carriers to achieve coordinated growth-factor or DNA nanoparticle release in therapeutic applications.
Cited By
This article is cited by 30 publications.
- Bin Wang, Dong Liu, Yuting Liao, Yanjie Huang, Miao Ni, Mengchen Wang, Zhanpeng Ma, Zijian Wu, Yuan Lu. Spatiotemporally Actuated Hydrogel by Magnetic Swarm Nanorobotics. ACS Nano 2022, 16 (12) , 20985-21001. https://doi.org/10.1021/acsnano.2c08626
- Sébastien Sart, Gustave Ronteix, Shreyansh Jain, Gabriel Amselem, Charles N. Baroud. Cell Culture in Microfluidic Droplets. Chemical Reviews 2022, 122 (7) , 7061-7096. https://doi.org/10.1021/acs.chemrev.1c00666
- Bruna G. Carvalho, Franciele F. Vit, Hernandes F. Carvalho, Sang W. Han, Lucimara G. de la Torre. Layer-by-Layer Biomimetic Microgels for 3D Cell Culture and Nonviral Gene Delivery. Biomacromolecules 2022, 23 (4) , 1545-1556. https://doi.org/10.1021/acs.biomac.1c01130
- Weiling Song, Pan Song, Yujie Sun, Zhonghui Zhang, Hong Zhou, Xiaoru Zhang, Peng He. Self-Assembly of Multifunctional DNA Nanohydrogels with Tumor Microenvironment-Responsive Cascade Reactions for Cooperative Cancer Therapy. ACS Biomaterials Science & Engineering 2021, 7 (11) , 5165-5174. https://doi.org/10.1021/acsbiomaterials.1c00959
- Saahil Sheth, Samuel Stealey, Nicole Y. Morgan, Silviya P. Zustiak. Microfluidic Chip Device for In Situ Mixing and Fabrication of Hydrogel Microspheres via Michael-Type Addition. Langmuir 2021, 37 (40) , 11793-11803. https://doi.org/10.1021/acs.langmuir.1c01739
- Alex J. Anderson, Emerson Grey, Nicholas J. Bongiardina, Christopher N. Bowman, Stephanie J. Bryant. Synthesis and Characterization of Click Nucleic Acid Conjugated Polymeric Microparticles for DNA Delivery Applications. Biomacromolecules 2021, 22 (3) , 1127-1136. https://doi.org/10.1021/acs.biomac.0c01563
- Haijun Qu, Mengchao Yu, Wenbin Du, Lei Xu, Weiyuan Lyu, Feng Shen. Slip Molding for Precision Fabrication of Microparts. Langmuir 2020, 36 (2) , 585-590. https://doi.org/10.1021/acs.langmuir.9b03156
- Haoran Zhao, Xuexia Yuan, Jiantao Yu, Yishun Huang, Chen Shao, Fan Xiao, Li Lin, Yan Li, Leilei Tian. Magnesium-Stabilized Multifunctional DNA Nanoparticles for Tumor-Targeted and pH-Responsive Drug Delivery. ACS Applied Materials & Interfaces 2018, 10 (18) , 15418-15427. https://doi.org/10.1021/acsami.8b01932
- Nima Beheshtizadeh, Maliheh Gharibshahian, Mohammad Bayati, Reza Maleki, Hannah Strachan, Sarah Doughty, Lobat Tayebi. Vascular endothelial growth factor (VEGF) delivery approaches in regenerative medicine. Biomedicine & Pharmacotherapy 2023, 166 , 115301. https://doi.org/10.1016/j.biopha.2023.115301
- Jingyan Guan, Jingwei Feng, Feng Lu, . Recent Advances in the Hydrogel-Based Biomolecule Delivery System for Cartilage Tissue Engineering. Advances in Materials Science and Engineering 2022, 2022 , 1-16. https://doi.org/10.1155/2022/1899400
- Xiaoyu Ma, Mengjie Wang, Yuanyuan Ran, Yusi Wu, Jin Wang, Fuhai Gao, Zongjian Liu, Jianing Xi, Lin Ye, Zengguo Feng. Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers 2022, 14 (8) , 1549. https://doi.org/10.3390/polym14081549
- Bruna G. Carvalho, Bruno T. Ceccato, Mariano Michelon, Sang W. Han, Lucimara G. de la Torre. Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application. Pharmaceutics 2022, 14 (1) , 141. https://doi.org/10.3390/pharmaceutics14010141
- Reyhaneh Sadat Hayaei Tehrani, Mohammad Amin Hajari, Zeynab Ghorbaninejad, Fereshteh Esfandiari. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophysical Reviews 2021, 13 (6) , 1245-1271. https://doi.org/10.1007/s12551-021-00907-5
- Marie Hébert, Carolyn L. Ren. Droplet microfluidics for biomedical devices. 2021, 163-204. https://doi.org/10.1016/B978-0-12-819971-8.00001-9
- Nan Shi, Md Moniruzzaman, Christopher J. Easley. Tissue Engineering and Analysis in Droplet Microfluidics. 2020, 223-260. https://doi.org/10.1039/9781839162855-00223
- Jielai Yang, Yuan Zhu, Fei Wang, Liangfu Deng, Xiangyang Xu, Wenguo Cui. Microfluidic liposomes-anchored microgels as extended delivery platform for treatment of osteoarthritis. Chemical Engineering Journal 2020, 400 , 126004. https://doi.org/10.1016/j.cej.2020.126004
- Miran Hannah Choi, Alexandra Blanco, Samuel Stealey, Xin Duan, Natasha Case, Scott Allen Sell, Muhammad Farooq Rai, Silviya Petrova Zustiak. Micro-Clotting of Platelet-Rich Plasma Upon Loading in Hydrogel Microspheres Leads to Prolonged Protein Release and Slower Microsphere Degradation. Polymers 2020, 12 (8) , 1712. https://doi.org/10.3390/polym12081712
- Zhongliang Jiang, Rajib Shaha, Ralph McBride, Kun Jiang, Mingchen Tang, Bang Xu, Alexander K Goroncy, Carl Frick, John Oakey. Crosslinker length dictates step-growth hydrogel network formation dynamics and allows rapid on-chip photoencapsulation. Biofabrication 2020, 12 (3) , 035006. https://doi.org/10.1088/1758-5090/ab7ef4
- Chul Min Kim, Hye Jin Choi, Eun Ju Park, Gyu Man Kim. Repeated geometrical T-junction breakup microfluidic filter device by injection of premixed emulsion for microdroplet production. Journal of Industrial and Engineering Chemistry 2020, 81 , 81-87. https://doi.org/10.1016/j.jiec.2019.08.055
- Andrew C. Daly, Lindsay Riley, Tatiana Segura, Jason A. Burdick. Hydrogel microparticles for biomedical applications. Nature Reviews Materials 2020, 5 (1) , 20-43. https://doi.org/10.1038/s41578-019-0148-6
- Xuan Luo, Peng Su, Wei Zhang, Colin L. Raston. Microfluidic Devices in Fabricating Nano or Micromaterials for Biomedical Applications. Advanced Materials Technologies 2019, 4 (12) https://doi.org/10.1002/admt.201900488
- Zhongliang Jiang, Kun Jiang, Ralph McBride, John S Oakey. Comparative cytocompatibility of multiple candidate cell types to photoencapsulation in PEGNB/PEGDA macroscale or microscale hydrogels. Biomedical Materials 2018, 13 (6) , 065012. https://doi.org/10.1088/1748-605X/aadf9a
- L.P. Ferreira, V.M. Gaspar, J.F. Mano. Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomaterialia 2018, 75 , 11-34. https://doi.org/10.1016/j.actbio.2018.05.034
- Gabriel Jaime Colmenares Roldán, Liliana María Agudelo Gomez, Jesús Antonio Carlos Cornelio, Luis Fernando Rodriguez, Rodolfo Pinal, Lina Marcela Hoyos Palacio. Production of polycaprolactone nanoparticles with low polydispersity index in a tubular recirculating system by using a multifactorial design of experiments. Journal of Nanoparticle Research 2018, 20 (3) https://doi.org/10.1007/s11051-018-4168-8
- Wen Li, Liyuan Zhang, Xuehui Ge, Biyi Xu, Weixia Zhang, Liangliang Qu, Chang-Hyung Choi, Jianhong Xu, Afang Zhang, Hyomin Lee, David A. Weitz. Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews 2018, 47 (15) , 5646-5683. https://doi.org/10.1039/C7CS00263G
- Caroline C. Ahrens, Ziye Dong, Wei Li. Engineering cell aggregates through incorporated polymeric microparticles. Acta Biomaterialia 2017, 62 , 64-81. https://doi.org/10.1016/j.actbio.2017.08.003
- Torri E. Rinker, Brandon D. Philbrick, Johnna S. Temenoff. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core. Acta Biomaterialia 2017, 56 , 91-101. https://doi.org/10.1016/j.actbio.2016.12.042
- Jyoti Boken, Sarvesh K. Soni, Dinesh Kumar. Microfluidic Synthesis of Nanoparticles and their Biosensing Applications. Critical Reviews in Analytical Chemistry 2016, 46 (6) , 538-561. https://doi.org/10.1080/10408347.2016.1169912
- Amjed Javid, Manish Kumar, Long Wen, Seokyoung Yoon, Su B. Jin, Jung Heon Lee, Jeon Geon Han. Surface energy and wettability control in bio-inspired PEG like thin films. Materials & Design 2016, 92 , 405-413. https://doi.org/10.1016/j.matdes.2015.12.046
- Weiqian Jiang, Mingqiang Li, Zaozao Chen, Kam W. Leong. Cell-laden microfluidic microgels for tissue regeneration. Lab on a Chip 2016, 16 (23) , 4482-4506. https://doi.org/10.1039/C6LC01193D