In Vivo Determination of the Molecular Composition of Artery Wall by Intravascular Raman SpectroscopyClick to copy article linkArticle link copied!
- Hendrik P. Buschman
- Eric T. Marple
- Michael L. Wach
- Bob Bennett
- Tom C. Bakker Schut
- Hajo A. Bruining
- Albert V. Bruschke
- Arnoud van der Laarse
- Gerwin J. Puppels
Abstract
Atherosclerotic plaque vulnerability is suggested to be determined by its chemical composition. However, at present there are no in vivo techniques available that can adequately type atherosclerotic plaques in terms of chemical composition. Previous in vitro experiments have shown that Raman spectroscopy can provide such information in great detail. Here we present the results of in vitro and in vivo intravascular Raman spectroscopic experiments, in which dedicated, miniaturized fiber-optic probes were used to illuminate the blood vessel wall and to collect Raman scattered light. The results make clear that an important hurdle to clinical application of Raman spectroscopy in atherosclerosis has been overcome, namely, the ability to obtain in vivo intravascular Raman spectra of high quality. Of equal importance is the finding that the in vivo intravascular Raman signal obtained from a blood vessel is a simple summation of signal contributions of the blood vessel wall and of blood. It means that detailed information about the chemical composition of a blood vessel wall can be obtained by adapting a multiple least-squares fitting method, which was developed previously for the analysis of in vitro spectra, to account for signal contributions of blood.
†
Leiden University Medical Center.
‡
Present address: Twente Institute for Neuromodulation (TWIN), Medisch Spectrum Twente, P.O. Box 50000, 7500 KA Enschede, The Netherlands.
§
Erasmus University Rotterdam.
‖
Visionex Inc..
⊥
Renishaw plc.
*
Corresponding author: (mail) Department of Cardiology, C5-P, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (tel) (31)-71 526 2020; (fax) (31)-71 526 6809; (e-mail) [email protected].
Cited By
This article is cited by 143 publications.
- Hao Jia, Xun Chen, Jianghao Shen, Rujia Liu, Peipei Hou, Shuhua Yue. Label-Free Fiber-Optic Raman Spectroscopy for Intravascular Coronary Atherosclerosis and Plaque Detection. ACS Omega 2024, 9
(26)
, 27789-27797. https://doi.org/10.1021/acsomega.4c01611
- Toshiro Yamanaka, Hiroe Nakagawa, Manabu Ochida, Shigetaka Tsubouchi, Yasuhiro Domi, Takayuki Doi, Takeshi Abe, and Zempachi Ogumi . Ultrafine Fiber Raman Probe with High Spatial Resolution and Fluorescence Noise Reduction. The Journal of Physical Chemistry C 2016, 120
(5)
, 2585-2591. https://doi.org/10.1021/acs.jpcc.5b11894
- Yi-Cyun Yang, Wei-Tien Chang, Shao-Kang Huang, and Ian Liau . Characterization of the Pharmaceutical Effect of Drugs on Atherosclerotic Lesions in Vivo Using Integrated Fluorescence Imaging and Raman Spectral Measurements. Analytical Chemistry 2014, 86
(8)
, 3863-3868. https://doi.org/10.1021/ac404051f
- Christian Matthäus, Sebastian Dochow, Gero Bergner, Annika Lattermann, Bernd F. M. Romeike, Eric T. Marple, Christoph Krafft, Benjamin Dietzek, Bernhard R. Brehm, and Jürgen Popp . In Vivo Characterization of Atherosclerotic Plaque Depositions by Raman-Probe Spectroscopy and in Vitro Coherent Anti-Stokes Raman Scattering Microscopic Imaging on a Rabbit Model. Analytical Chemistry 2012, 84
(18)
, 7845-7851. https://doi.org/10.1021/ac301522d
- W. R. Premasiri, J. C. Lee, and L. D. Ziegler . Surface-Enhanced Raman Scattering of Whole Human Blood, Blood Plasma, and Red Blood Cells: Cellular Processes and Bioanalytical Sensing. The Journal of Physical Chemistry B 2012, 116
(31)
, 9376-9386. https://doi.org/10.1021/jp304932g
- S. Koljenović,, T. C. Bakker Schut,, R. Wolthuis,, A. J. P. E. Vincent,, G. Hendriks-Hagevi,, L. Santos,, J. M. Kros, and, G. J. Puppels. Raman Spectroscopic Characterization of Porcine Brain Tissue Using a Single Fiber-Optic Probe. Analytical Chemistry 2007, 79
(2)
, 557-564. https://doi.org/10.1021/ac0616512
- Senada Koljenović,, Tom Bakker Schut,, Arnaud Vincent,, Johan M. Kros, and, Gerwin J. Puppels. Detection of Meningioma in Dura Mater by Raman Spectroscopy. Analytical Chemistry 2005, 77
(24)
, 7958-7965. https://doi.org/10.1021/ac0512599
- Rolf Wolthuis,, Mathijs van Aken,, Kostas Fountas,, Joe S. Robinson, Jr.,, Hajo A. Bruining, and, Gerwin J. Puppels. Determination of Water Concentration in Brain Tissue by Raman Spectroscopy. Analytical Chemistry 2001, 73
(16)
, 3915-3920. https://doi.org/10.1021/ac0101306
- T. C. Bakker Schut,, M. J. H. Witjes,, H. J. C. M. Sterenborg,, O. C Speelman,, J. L. N. Roodenburg,, E. T. Marple,, H. A. Bruining, and, G. J. Puppels. In Vivo Detection of Dysplastic Tissue by Raman Spectroscopy. Analytical Chemistry 2000, 72
(24)
, 6010-6018. https://doi.org/10.1021/ac000780u
- Mengzhou Li, Mingye Wu, Jed Pack, Pengwei Wu, Pingkun Yan, Bruno De Man, Adam Wang, Koen Nieman, Ge Wang. Coronary atherosclerotic plaque characterization with silicon‐based photon‐counting computed tomography (CT): A simulation‐based feasibility study. Medical Physics 2024, 133 https://doi.org/10.1002/mp.17422
- Esmat Zamani, Nassim Ksantini, Guillaume Sheehy, Katherine J. I. Ember, Bill Baloukas, Oleg Zabeida, Tran Trang, Myriam Mahfoud, Jolanta‐Ewa Sapieha, Ludvik Martinu, Frédéric Leblond. Spectral effects and enhancement quantification in healthy human saliva with surface‐enhanced Raman spectroscopy using silver nanopillar substrates. Lasers in Surgery and Medicine 2024, 56
(2)
, 206-217. https://doi.org/10.1002/lsm.23746
- Alex Mathews Muruppel, Daniel Fried. Laser Assisted Diagnostics. 2023, 127-171. https://doi.org/10.1007/978-3-031-43338-2_6
- Ajaya Kumar Barik, Sanoop Pavithran M, Jijo Lukose, Rekha Upadhya, Muralidhar V Pai, V.B. Kartha, Santhosh Chidangil. In vivo
spectroscopy: optical fiber probes for clinical applications. Expert Review of Medical Devices 2022, 19
(9)
, 657-675. https://doi.org/10.1080/17434440.2022.2130046
- Noureen Siraj, David K. Bwambok, Pamela Nicole Brady, Megan Taylor, Gary A. Baker, Mujeebat Bashiru, Samantha Macchi, Amanda Jalihal, Iris Denmark, Thuy Le, Brianda Elzey, David A. Pollard, Sayo O. Fakayode. Raman spectroscopy and multivariate regression analysis in biomedical research, medical diagnosis, and clinical analysis. Applied Spectroscopy Reviews 2021, 56
(8-10)
, 615-672. https://doi.org/10.1080/05704928.2021.1913744
- Lucas Becker, Nicole Janssen, Shannon L. Layland, Thomas E. Mürdter, Anne T. Nies, Katja Schenke-Layland, Julia Marzi. Raman Imaging and Fluorescence Lifetime Imaging Microscopy for Diagnosis of Cancer State and Metabolic Monitoring. Cancers 2021, 13
(22)
, 5682. https://doi.org/10.3390/cancers13225682
- Ji Leng, Jinke Zhang, Chenguang Li, Chengyou Shu, Boquan Wang, Riqiang Lin, Yanmei Liang, Keqiang Wang, Li Shen, Kwok-ho Lam, Zhihua Xie, Xiaojing Gong, Junbo Ge, Liang Song. Multi-spectral intravascular photoacoustic/ultrasound/optical coherence tomography tri-modality system with a fully-integrated 0.9-mm full field-of-view catheter for plaque vulnerability imaging. Biomedical Optics Express 2021, 12
(4)
, 1934. https://doi.org/10.1364/BOE.420724
- Howard Peng Sin Heng, Chi Shu, Wei Zheng, Kan Lin, Zhiwei Huang. Advances in real‐time fiber‐optic Raman spectroscopy for early cancer diagnosis: Pushing the frontier into clinical endoscopic applications. Translational Biophotonics 2021, 3
(1)
https://doi.org/10.1002/tbio.202000018
- Tina Sehm, Ortrud Uckermann, Roberta Galli, Matthias Meinhardt, Elke Rickelt, Dietmar Krex, Gabriele Schackert, Matthias Kirsch. Label-free multiphoton microscopy as a tool to investigate alterations of cerebral aneurysms. Scientific Reports 2020, 10
(1)
https://doi.org/10.1038/s41598-020-69222-5
- Takeo Minamikawa, Mayuko Ichimura-Shimizu, Hiroki Takanari, Yuki Morimoto, Ryosuke Shiomi, Hiroki Tanioka, Eiji Hase, Takeshi Yasui, Koichi Tsuneyama. Molecular imaging analysis of microvesicular and macrovesicular lipid droplets in non-alcoholic fatty liver disease by Raman microscopy. Scientific Reports 2020, 10
(1)
https://doi.org/10.1038/s41598-020-75604-6
- Jang Ah Kim, Dominic J Wales, Guang-Zhong Yang. Optical spectroscopy for
in vivo
medical diagnosis—a review of the state of the art and future perspectives. Progress in Biomedical Engineering 2020, 2
(4)
, 042001. https://doi.org/10.1088/2516-1091/abaaa3
- Teng Ma, Qifa Zhou. Advances in Multi-frequency Intravascular Ultrasound (IVUS). 2020, 11-55. https://doi.org/10.1007/978-981-10-6307-7_2
- Krzysztof Czamara, Ewelina Szafraniec, Ewelina Wiercigroch, Szymon Tott, Grzegorz Zając, Ewa Machalska, Monika Dudek, Dominika Augustynska, Kamilla Malek, Agnieszka Kaczor, Malgorzata Baranska. Small and Large Molecules Investigated by Raman Spectroscopy. 2019, 161-198. https://doi.org/10.1007/978-3-030-01355-4_6
- Chen-min Jiang, Xin Liu, Chun-xue Li, Hao-cheng Qian, Di Chen, Chao-qiang Lai, Li-rong Shen. Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line. Journal of Zhejiang University-SCIENCE B 2018, 19
(12)
, 960-972. https://doi.org/10.1631/jzus.B1800257
- Marcel Braune, Martin Maiwald, Maxim E Darvin, Bernd Eppich, Bernd Sumpf, Jürgen Lademann, Günther Tränkle. Shifted excitation resonance Raman difference spectroscopy system suitable for the quantitative
in vivo
detection of carotenoids in human skin. Laser Physics Letters 2018, 15
(11)
, 115601. https://doi.org/10.1088/1612-202X/aadab1
- Eliana Cordero. In-vivo Raman spectroscopy: from basics to applications. Journal of Biomedical Optics 2018, 23
(07)
, 1. https://doi.org/10.1117/1.JBO.23.7.071210
- Neil MacRitchie, Gianluca Grassia, Jonathan Noonan, Paul Garside, Duncan Graham, Pasquale Maffia. Molecular imaging of atherosclerosis: spotlight on Raman spectroscopy and surface-enhanced Raman scattering. Heart 2018, 104
(6)
, 460-467. https://doi.org/10.1136/heartjnl-2017-311447
- Md Abdullah Al Mamun, Anita Mahadevan-Jansen, Saulius Juodkazis, Paul R. Stoddart, . Development of an optical fiber SERS microprobe for minimally invasive sensing applications. 2018, 1. https://doi.org/10.1117/12.2289227
- Marta Z. Pacia, Krzysztof Czamara, Magdalena Zebala, Edyta Kus, Stefan Chlopicki, Agnieszka Kaczor. Rapid diagnostics of liver steatosis by Raman spectroscopy
via
fiber optic probe: a pilot study. The Analyst 2018, 143
(19)
, 4723-4731. https://doi.org/10.1039/C8AN00289D
- Christian Matthäus, Sebastian Dochow, Kokila D. Egodage, Bernd F. Romeike, Bernhard R. Brehm, Jürgen Popp. Detection and characterization of early plaque formations by Raman probe spectroscopy and optical coherence tomography: an in vivo study on a rabbit model. Journal of Biomedical Optics 2018, 23
(01)
, 1. https://doi.org/10.1117/1.JBO.23.1.015004
- H. Abramczyk, B. Brozek-Pluska. Apical-basal polarity of epithelial cells imaged by Raman microscopy and Raman imaging: Capabilities and challenges for cancer research. Journal of Molecular Liquids 2017, 245 , 52-61. https://doi.org/10.1016/j.molliq.2017.05.142
- Jingwei Li, Fuhong Cai, Yongjiang Dong, Zhenfeng Zhu, Xianhe Sun, Hequn Zhang, Sailing He. A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging. Optics Communications 2017, 392 , 1-6. https://doi.org/10.1016/j.optcom.2017.01.031
- Alex Mathews Muruppel. Laser-Assisted Diagnostics. 2017, 107-130. https://doi.org/10.1007/978-3-319-51944-9_6
- Lambros S. Athanasiou, Dimitrios I. Fotiadis, Lampros K. Michalis. Introduction. 2017, 1-21. https://doi.org/10.1016/B978-0-12-804734-7.00001-4
- Marta Z. Pacia, Lukasz Mateuszuk, Elzbieta Buczek, Stefan Chlopicki, Agnieszka Blazejczyk, Joanna Wietrzyk, Malgorzata Baranska, Agnieszka Kaczor. Rapid biochemical profiling of endothelial dysfunction in diabetes, hypertension and cancer metastasis by hierarchical cluster analysis of Raman spectra. Journal of Raman Spectroscopy 2016, 47
(11)
, 1310-1317. https://doi.org/10.1002/jrs.4965
- Teng Ma, Bill Zhou, Tzung K. Hsiai, K. Kirk Shung. A Review of Intravascular Ultrasound-based Multimodal Intravascular Imaging. Ultrasonic Imaging 2016, 38
(5)
, 314-331. https://doi.org/10.1177/0161734615604829
- Xuejun Qiu, Ke Xiong, Xiangping Ye, Zhitong Huang, Ying Chen, Chengkang Su, Zhengfei Zhuang, Zhouyi Guo, Songhao Liu. Study of molecule variations in human xanthelasma skin based on confocal micro‐raman spectroscopy. Scanning 2015, 37
(5)
, 307-312. https://doi.org/10.1002/sca.21214
- Katarzyna M. Marzec, Anna Rygula, Marlena Gasior-Glogowska, Kamila Kochan, Krzysztof Czamara, Katarzyna Bulat, Kamilla Malek, Agnieszka Kaczor, Malgorzata Baranska. Vascular diseases investigated ex vivo by using Raman, FT-IR and complementary methods. Pharmacological Reports 2015, 67
(4)
, 744-750. https://doi.org/10.1016/j.pharep.2015.05.001
- Katharina Eberhardt, Clara Stiebing, Christian Matthäus, Michael Schmitt, Jürgen Popp. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Review of Molecular Diagnostics 2015, 15
(6)
, 773-787. https://doi.org/10.1586/14737159.2015.1036744
- Georgios Theophilou, Maria Paraskevaidi, Kássio MG Lima, Maria Kyrgiou, Pierre L Martin-Hirsch, Francis L Martin. Extracting biomarkers of commitment to cancer development: potential role of vibrational spectroscopy in systems biology. Expert Review of Molecular Diagnostics 2015, 15
(5)
, 693-713. https://doi.org/10.1586/14737159.2015.1028372
- Saumya Tiwari, Vijaya B. Reddy, Rohit Bhargava, Jaishankar Raman, . Computational Chemical Imaging for Cardiovascular Pathology: Chemical Microscopic Imaging Accurately Determines Cardiac Transplant Rejection. PLOS ONE 2015, 10
(5)
, e0125183. https://doi.org/10.1371/journal.pone.0125183
- Ravikumar Ramakrishnaiah, Ghufran ur Rehman, Santhosh Basavarajappa, Abdulaziz Abdullah Al Khuraif, B. H. Durgesh, Abdul Samad Khan, Ihtesham ur Rehman. Applications of Raman Spectroscopy in Dentistry: Analysis of Tooth Structure. Applied Spectroscopy Reviews 2015, 50
(4)
, 332-350. https://doi.org/10.1080/05704928.2014.986734
- Zhongping Chen. Development of Integrated Multimodality Intravascular Imaging System for Assessing and Characterizing Atherosclerosis. 2015, 2173-2188. https://doi.org/10.1007/978-3-319-06419-2_73
- Christoph Krafft, Jürgen Popp. Vibrational Spectroscopic Imaging of Soft Tissue. 2014, 111-152. https://doi.org/10.1002/9783527678136.ch3
- W. Ranjith Premasiri, Paul Lemler, Ying Chen, Yoseph Gebregziabher, Lawrence D. Ziegler. SERS Analysis of Bacteria, Human Blood, and Cancer Cells: a Metabolomic and Diagnostic Tool. 2014, 257-283. https://doi.org/10.1002/9781118703601.ch12
- Mingzi Lu, Lian Zhao, Ying Wang, Guoxing You, Xuemei Kan, Yuhua Zhang, Ning Zhang, Bo Wang, Yan-Jun Guo, Hong Zhou. Measurement of the methemoglobin concentration using Raman spectroscopy. Artificial Cells, Nanomedicine, and Biotechnology 2014, 42
(1)
, 63-69. https://doi.org/10.3109/21691401.2013.775577
- K.M. Marzec, T.P. Wróbel, A. Fedorowicz, Ł. Mateuszuk, E. Maślak, A. Jasztal, S. Chlopicki. Vibrational Microspectroscopy for Analysis of Atherosclerotic Arteries. 2014, 505-535. https://doi.org/10.1007/978-94-007-7832-0_17
- C. Krafft, J. Popp. Raman-Based Technologies for Biomedical Diagnostics. 2014, 189-208. https://doi.org/10.1016/B978-0-444-53632-7.00415-9
- Aliz Kunstar, Anne M. Leferink, Paul I. Okagbare, Michael D. Morris, Blake J. Roessler, Cees Otto, Marcel Karperien, Clemens A. van Blitterswijk, Lorenzo Moroni, Aart A. van Apeldoorn. Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds. Journal of The Royal Society Interface 2013, 10
(86)
, 20130464. https://doi.org/10.1098/rsif.2013.0464
- Ines Latka, Sebastian Dochow, Christoph Krafft, Benjamin Dietzek, Jürgen Popp. Fiber optic probes for linear and nonlinear Raman applications – Current trends and future development. Laser & Photonics Reviews 2013, 7
(5)
, 698-731. https://doi.org/10.1002/lpor.201200049
- Bing-Hong Liu, Yi-Wei Shi. Flexible silver-coated hollow fibers for remote Raman spectroscopic measurements. Applied Optics 2013, 52
(21)
, 5165. https://doi.org/10.1364/AO.52.005165
- Annika Lattermann, Christian Matthäus, Norbert Bergner, Claudia Beleites, Bernd F. Romeike, Christoph Krafft, Bernhard R. Brehm, Jürgen Popp. Characterization of atherosclerotic plaque depositions by Raman and FTIR imaging. Journal of Biophotonics 2013, 6
(1)
, 110-121. https://doi.org/10.1002/jbio.201200146
- Jianhua Zhao, Haishan Zeng. Advanced Spectroscopy Technique for Biomedicine. 2013, 1-54. https://doi.org/10.1007/978-3-642-28391-8_1
- Takeo Minamikawa, Yoshinori Harada, Noriaki Koizumi, Koji Okihara, Kazumi Kamoi, Akio Yanagisawa, Tetsuro Takamatsu. Label-free detection of peripheral nerve tissues against adjacent tissues by spontaneous Raman microspectroscopy. Histochemistry and Cell Biology 2013, 139
(1)
, 181-193. https://doi.org/10.1007/s00418-012-1015-3
- Shin-ichi Morita, Sota Takanezawa, Akira Date, Shin Watanabe, Yasushi Sako. Raman Spectroscopic Analysis of H
2
O
2
-Stimulated Three-Dimensional Human Skin Models Containing Asian, Black, and Caucasian Melanocytes. Journal of Spectroscopy 2013, 2013 , 1-6. https://doi.org/10.1155/2013/903450
- Bavishna B. Praveen, Praveen C. Ashok, Michael Mazilu, Andrew Riches, Simon Herrington, Kishan Dholakia. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis. Journal of Biomedical Optics 2012, 17
(7)
, 0770061. https://doi.org/10.1117/1.JBO.17.7.077006
- Paul I. Okagbare, Michael D. Morris. Fluorocarbon Fiber-Optic Raman Probe for Non-Invasive Raman Spectroscopy. Applied Spectroscopy 2012, 66
(6)
, 728-730. https://doi.org/10.1366/12-06592
- Sara Seitun, Erica Maffei, Chiara Martini, Margherita Castiglione Morelli, Anselmo A. Palumbo, Filippo Cademartiri. Calcium Score and Coronary Plaque. 2012, 115-137. https://doi.org/10.1007/978-88-470-2522-6_11
- Paul I. Okagbare, Michael D. Morris. Polymer-capped fiber-optic Raman probe for non-invasive Raman spectroscopy. The Analyst 2012, 137
(1)
, 77-81. https://doi.org/10.1039/C1AN15847C
- SP Singh, Atul Deshmukh, Pankaj Chaturvedi, CMurali Krishna. Raman spectroscopy in head and neck cancers: Toward oncological applications. Journal of Cancer Research and Therapeutics 2012, 8
(6)
, 126. https://doi.org/10.4103/0973-1482.92227
- Omer Tzang, Kobi Kfir, Eli Flaxer, Ori Cheshnovsky, Shmuel Einav. Detection of Microcalcification in Tissue by Raman Spectroscopy. Cardiovascular Engineering and Technology 2011, 2
(3)
, 228-233. https://doi.org/10.1007/s13239-011-0051-9
- Melissa J. Suter, Seemantini K. Nadkarni, Giora Weisz, Atsushi Tanaka, Farouc A. Jaffer, Brett E. Bouma, Guillermo J. Tearney. Intravascular Optical Imaging Technology for Investigating the Coronary Artery. JACC: Cardiovascular Imaging 2011, 4
(9)
, 1022-1039. https://doi.org/10.1016/j.jcmg.2011.03.020
- Michele Casella, Andrea Lucotti, Matteo Tommasini, Marzia Bedoni, Elena Forvi, Furio Gramatica, Giuseppe Zerbi. Raman and SERS recognition of β-carotene and haemoglobin fingerprints in human whole blood. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2011, 79
(5)
, 915-919. https://doi.org/10.1016/j.saa.2011.03.048
- Aliz Kunstar, Cees Otto, Marcel Karperien, Clemens van Blitterswijk, Aart van Apeldoorn. Raman Microspectroscopy: A Noninvasive Analysis Tool for Monitoring of Collagen-Containing Extracellular Matrix Formation in a Medium-Throughput Culture System. Tissue Engineering Part C: Methods 2011, 17
(7)
, 737-744. https://doi.org/10.1089/ten.tec.2010.0574
- Pu Chen, Aiguo Shen, Xiaodong Zhou, Jiming Hu. Bio-Raman spectroscopy: a potential clinical analytical method assisting in disease diagnosis. Analytical Methods 2011, 3
(6)
, 1257. https://doi.org/10.1039/c1ay05039g
- Andrew T Harris, Andrew Rennie, Haroon Waqar-Uddin, Sarah R Wheatley, Samit K Ghosh, Dominic P Martin-Hirsch, Sheila E Fisher, Alec S High, Jennifer Kirkham, Tahwinder Upile. Raman spectroscopy in head and neck cancer. Head & Neck Oncology 2010, 2
(1)
https://doi.org/10.1186/1758-3284-2-26
- Matthias Kirsch, Gabriele Schackert, Reiner Salzer, Christoph Krafft. Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Analytical and Bioanalytical Chemistry 2010, 398
(4)
, 1707-1713. https://doi.org/10.1007/s00216-010-4116-7
- P. C. Ashok, G. P. Singh, K. M. Tan, K. Dholakia. Fiber probe based microfluidic raman spectroscopy. Optics Express 2010, 18
(8)
, 7642. https://doi.org/10.1364/OE.18.007642
- Andrew Downes, Alistair Elfick. Raman Spectroscopy and Related Techniques in Biomedicine. Sensors 2010, 10
(3)
, 1871-1889. https://doi.org/10.3390/s100301871
- Hidetoshi Sato, Hideyuki Shinzawa, Yuichi Komachi. Fiber-Optic Raman Probes for Biomedical and Pharmaceutical Applications. 2010, 25-45. https://doi.org/10.1007/978-3-642-02649-2_2
- Janneke L. M. Bruggink, Robbert Meerwaldt, Gooitzen M. van Dam, Joop D. Lefrandt, Riemer H. J. A. Slart, René A. Tio, Andries J. Smit, Clark J. Zeebregts. Spectroscopy to improve identification of vulnerable plaques in cardiovascular disease. The International Journal of Cardiovascular Imaging 2010, 26
(1)
, 111-119. https://doi.org/10.1007/s10554-009-9500-z
- A. Beljebbar, O. Bouché, M.D. Diébold, P.J. Guillou, J.P. Palot, D. Eudes, M. Manfait. Identification of Raman spectroscopic markers for the characterization of normal and adenocarcinomatous colonic tissues. Critical Reviews in Oncology/Hematology 2009, 72
(3)
, 255-264. https://doi.org/10.1016/j.critrevonc.2009.09.004
- Christoph Krafft, Petra Rösch, Jürgen Popp. R
aman Spectroscopy in Medicine. 2009https://doi.org/10.1002/3527600434.eap680
- P. R. Stoddart, D. J. White. Optical fibre SERS sensors. Analytical and Bioanalytical Chemistry 2009, 394
(7)
, 1761-1774. https://doi.org/10.1007/s00216-009-2797-6
- Zhengmao Ye, Habib Mohamadian. Nonlinear multi-scale statistical identification approach for data processing enhancing and quantitative study. 2009, 1027-1032. https://doi.org/10.1109/CCA.2009.5281040
- Jonathan H. Nazemi. Lipid concentrations in human coronary artery determined with high wavenumber Raman shifted light. Journal of Biomedical Optics 2009, 14
(3)
, 034009. https://doi.org/10.1117/1.3130302
- Ricardo S. Santos, Hassan A. Sidaoui, Landulfo Silveira, Carlos Augusto G. Pasqualucci, Marcos Tadeu T. Pacheco. Classification System of Raman Spectra using Cluster Analysis to Diagnose Coronary Artery Lesions. Instrumentation Science & Technology 2009, 37
(3)
, 327-344. https://doi.org/10.1080/10739140902831990
- Yuichi Komachi, Takashi Katagiri, Hidetoshi Sato, Hideo Tashiro. Improvement and analysis of a micro Raman probe. Applied Optics 2009, 48
(9)
, 1683. https://doi.org/10.1364/AO.48.001683
- Kim Douma, Lenneke Prinzen, Dick W. Slaaf, Chris P. M. Reutelingsperger, Erik A. L. Biessen, Tilman M. Hackeng, Mark J. Post, Marc A. M. J. van Zandvoort. Nanoparticles for Optical Molecular Imaging of Atherosclerosis. Small 2009, 5
(5)
, 544-557. https://doi.org/10.1002/smll.200801079
- Christoph Krafft, Gerald Steiner, Claudia Beleites, Reiner Salzer. Disease recognition by infrared and Raman spectroscopy. Journal of Biophotonics 2009, 2
(1-2)
, 13-28. https://doi.org/10.1002/jbio.200810024
- Annieke Nijssen, Senada Koljenović, Tom C. Bakker Schut, Peter J. Caspers, Gerwin J. Puppels. Towards oncological application of Raman spectroscopy. Journal of Biophotonics 2009, 2
(1-2)
, 29-36. https://doi.org/10.1002/jbio.200810055
- Hiroki Mitsuoka, Shin-ichi Morita, Toshiaki Suzuki, Yuji Matsuura, Yukiteru Katsumoto, Hidetoshi Sato. Optical Characterization of a Hollow Fiber Raman Probe toward Non-Invasive Measurements of Living Tissues. Applied Physics Express 2009, 2 , 027001. https://doi.org/10.1143/APEX.2.027001
- Christoph Krafft, Benjamin Dietzek, Jürgen Popp. Raman and CARS microspectroscopy of cells and tissues. The Analyst 2009, 134
(6)
, 1046. https://doi.org/10.1039/b822354h
- Jianhua Zhao, Harvey Lui, David I. McLean, Haishan Zeng. Integrated real‐time Raman system for clinical
in vivo
skin analysis. Skin Research and Technology 2008, 14
(4)
, 484-492. https://doi.org/10.1111/j.1600-0846.2008.00321.x
- Yasuhiro Honda, Peter J. Fitzgerald. Frontiers in Intravascular Imaging Technologies. Circulation 2008, 117
(15)
, 2024-2037. https://doi.org/10.1161/CIRCULATIONAHA.105.551804
- James Brennan, Jon Nazemi, Jason Motz, Steve Ramcharitar. The vPredict™ Optical Catheter System: Intravascular Raman Spectroscopy. EuroIntervention 2008, 3
(5)
, 635-638. https://doi.org/10.4244/EIJV3I5A113
- Alexandra H. Chau, Jason T. Motz, Joseph A. Gardecki, Sergio Waxman, Brett E. Bouma, Guillermo J. Tearney. Fingerprint and high-wavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo. Journal of Biomedical Optics 2008, 13
(4)
, 040501. https://doi.org/10.1117/1.2960015
- Jianhua Zhao, Harvey Lui, David I. McLean, Haishan Zeng. Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy. Applied Spectroscopy 2007, 61
(11)
, 1225-1232. https://doi.org/10.1366/000370207782597003
- David I Ellis, Warwick B Dunn, Julian L Griffin, J William Allwood, Royston Goodacre. Metabolic Fingerprinting As A Diagnostic Tool. Pharmacogenomics 2007, 8
(9)
, 1243-1266. https://doi.org/10.2217/14622416.8.9.1243
- F. Cademartiri, L. La Grutta, A. Palumbo, E. Maffei, A. Aldrovandi, R. Malagò, F. Alberghina, F. Pugliese, G. Runza, M. Belgrano, M. Midiri, M. A. Cova, G. P. Krestin. Imaging techniques for the vulnerable coronary plaque. La radiologia medica 2007, 112
(5)
, 637-659. https://doi.org/10.1007/s11547-007-0170-4
- Rick Rocha, Antonio Balbin Villaverde, Carlos Augusto Pasqualucci, Landulfo Silveira, Jr., Aldo Brugnera, Jr., Maricilia S. Costa, Marcos Tadeu T. Pacheco. Identification of Calcifications in Cardiac Valves by Near Infrared Raman Spectroscopy. Photomedicine and Laser Surgery 2007, 25
(4)
, 287-290. https://doi.org/10.1089/pho.2007.2100
- FIONA GILCHRIST, ARIO SANTINI, KATHRYN HARLEY, CHRISTOPHER DEERY. The use of micro‐Raman spectroscopy to differentiate between sound and eroded primary enamel. International Journal of Paediatric Dentistry 2007, 17
(4)
, 274-280. https://doi.org/10.1111/j.1365-263X.2007.00824.x
- Yusuke Hattori, Y. Komachi, G. Kanai, T. Katagiri, T. Asakura, H. Tashiro, H. Sato. Development of in vivo fiber-optic Raman spectroscopy system with a miniaturized endoscope: demonstrations at the rat gastroesophageal epithelia. 2007, 1300-1303. https://doi.org/10.1007/978-3-540-36841-0_316
- Liqun Wang, Jessica Chapman, Richard A. Palmer, Olaf van Ramm, Boris Mizaikoff. Classification of atherosclerotic rabbit aorta samples by mid-infrared spectroscopy using multivariate data analysis. Journal of Biomedical Optics 2007, 12
(2)
, 024006. https://doi.org/10.1117/1.2714030
- Yuichi Komachi, Hidetoshi Sato, Hideo Tashiro. Intravascular Raman spectroscopic catheter for molecular diagnosis of atherosclerotic coronary disease. Applied Optics 2006, 45
(30)
, 7938. https://doi.org/10.1364/AO.45.007938
- Stanislav O. Konorov, Christopher J. Addison, H. Georg Schulze, Robin F. B. Turner, Michael W. Blades. Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy. Optics Letters 2006, 31
(12)
, 1911. https://doi.org/10.1364/OL.31.001911
- Abigail S. Haka, Zoya Volynskaya, Joseph A. Gardecki, Jon Nazemi, Joanne Lyons, David Hicks, Maryann Fitzmaurice, Ramachandra R. Dasari, Joseph P. Crowe, Michael S. Feld. In vivo
Margin Assessment during Partial Mastectomy Breast Surgery Using Raman Spectroscopy. Cancer Research 2006, 66
(6)
, 3317-3322. https://doi.org/10.1158/0008-5472.CAN-05-2815
- David I. Ellis, Royston Goodacre. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. The Analyst 2006, 131
(8)
, 875. https://doi.org/10.1039/b602376m
- Jason T. Motz, Maryann Fitzmaurice, Arnold Miller, Saumil J. Gandhi, Abigail S. Haka, Luis H. Galindo, Ramachandra R. Dasari, John R. Kramer, Michael S. Feld. In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. Journal of Biomedical Optics 2006, 11
(2)
, 021003. https://doi.org/10.1117/1.2190967
- D.N. Batchelder, K.P.J. Williams, S. Webster, K.J. Baldwin, I.P. Hayward, R. Bennett, Y.Y. Yang, G.D. Pitt, B.J.E. Smith, R.W. Bormett. Engineering aspects and applications of the new Raman instrumentation. IEE Proceedings - Science, Measurement and Technology 2005, 152
(6)
, 241-318. https://doi.org/10.1049/ip-smt:20050015
- Yuichi Komachi, Hidetoshi Sato, Yuji Matsuura, Mitsuno Miyagi, Hideo Tashiro. Raman probe using a single hollow waveguide. Optics Letters 2005, 30
(21)
, 2942. https://doi.org/10.1364/OL.30.002942
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.