Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
In Vivo Determination of the Molecular Composition of Artery Wall by Intravascular Raman Spectroscopy
My Activity
    Article

    In Vivo Determination of the Molecular Composition of Artery Wall by Intravascular Raman Spectroscopy
    Click to copy article linkArticle link copied!

    View Author Information
    Leiden University Medical Center, Leiden, The Netherlands, Erasmus University Rotterdam, Rotterdam, The Netherlands, Visionex Inc., Atlanta, Georgia 30318, and Spectroscopy Division, Renishaw plc, Wotton-under-Edge, U.K.
    Other Access Options

    Analytical Chemistry

    Cite this: Anal. Chem. 2000, 72, 16, 3771–3775
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac000298b
    Published July 14, 2000
    Copyright © 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Atherosclerotic plaque vulnerability is suggested to be determined by its chemical composition. However, at present there are no in vivo techniques available that can adequately type atherosclerotic plaques in terms of chemical composition. Previous in vitro experiments have shown that Raman spectroscopy can provide such information in great detail. Here we present the results of in vitro and in vivo intravascular Raman spectroscopic experiments, in which dedicated, miniaturized fiber-optic probes were used to illuminate the blood vessel wall and to collect Raman scattered light. The results make clear that an important hurdle to clinical application of Raman spectroscopy in atherosclerosis has been overcome, namely, the ability to obtain in vivo intravascular Raman spectra of high quality. Of equal importance is the finding that the in vivo intravascular Raman signal obtained from a blood vessel is a simple summation of signal contributions of the blood vessel wall and of blood. It means that detailed information about the chemical composition of a blood vessel wall can be obtained by adapting a multiple least-squares fitting method, which was developed previously for the analysis of in vitro spectra, to account for signal contributions of blood.

    Copyright © 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Leiden University Medical Center.

     Present address:  Twente Institute for Neuromodulation (TWIN), Medisch Spectrum Twente, P.O. Box 50000, 7500 KA Enschede, The Netherlands.

    §

     Erasmus University Rotterdam.

     Visionex Inc..

     Renishaw plc.

    *

     Corresponding author:  (mail) Department of Cardiology, C5-P, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (tel) (31)-71 526 2020; (fax) (31)-71 526 6809; (e-mail) [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 143 publications.

    1. Hao Jia, Xun Chen, Jianghao Shen, Rujia Liu, Peipei Hou, Shuhua Yue. Label-Free Fiber-Optic Raman Spectroscopy for Intravascular Coronary Atherosclerosis and Plaque Detection. ACS Omega 2024, 9 (26) , 27789-27797. https://doi.org/10.1021/acsomega.4c01611
    2. Toshiro Yamanaka, Hiroe Nakagawa, Manabu Ochida, Shigetaka Tsubouchi, Yasuhiro Domi, Takayuki Doi, Takeshi Abe, and Zempachi Ogumi . Ultrafine Fiber Raman Probe with High Spatial Resolution and Fluorescence Noise Reduction. The Journal of Physical Chemistry C 2016, 120 (5) , 2585-2591. https://doi.org/10.1021/acs.jpcc.5b11894
    3. Yi-Cyun Yang, Wei-Tien Chang, Shao-Kang Huang, and Ian Liau . Characterization of the Pharmaceutical Effect of Drugs on Atherosclerotic Lesions in Vivo Using Integrated Fluorescence Imaging and Raman Spectral Measurements. Analytical Chemistry 2014, 86 (8) , 3863-3868. https://doi.org/10.1021/ac404051f
    4. Christian Matthäus, Sebastian Dochow, Gero Bergner, Annika Lattermann, Bernd F. M. Romeike, Eric T. Marple, Christoph Krafft, Benjamin Dietzek, Bernhard R. Brehm, and Jürgen Popp . In Vivo Characterization of Atherosclerotic Plaque Depositions by Raman-Probe Spectroscopy and in Vitro Coherent Anti-Stokes Raman Scattering Microscopic Imaging on a Rabbit Model. Analytical Chemistry 2012, 84 (18) , 7845-7851. https://doi.org/10.1021/ac301522d
    5. W. R. Premasiri, J. C. Lee, and L. D. Ziegler . Surface-Enhanced Raman Scattering of Whole Human Blood, Blood Plasma, and Red Blood Cells: Cellular Processes and Bioanalytical Sensing. The Journal of Physical Chemistry B 2012, 116 (31) , 9376-9386. https://doi.org/10.1021/jp304932g
    6. S. Koljenović,, T. C. Bakker Schut,, R. Wolthuis,, A. J. P. E. Vincent,, G. Hendriks-Hagevi,, L. Santos,, J. M. Kros, and, G. J. Puppels. Raman Spectroscopic Characterization of Porcine Brain Tissue Using a Single Fiber-Optic Probe. Analytical Chemistry 2007, 79 (2) , 557-564. https://doi.org/10.1021/ac0616512
    7. Senada Koljenović,, Tom Bakker Schut,, Arnaud Vincent,, Johan M. Kros, and, Gerwin J. Puppels. Detection of Meningioma in Dura Mater by Raman Spectroscopy. Analytical Chemistry 2005, 77 (24) , 7958-7965. https://doi.org/10.1021/ac0512599
    8. Rolf Wolthuis,, Mathijs van Aken,, Kostas Fountas,, Joe S. Robinson, Jr.,, Hajo A. Bruining, and, Gerwin J. Puppels. Determination of Water Concentration in Brain Tissue by Raman Spectroscopy. Analytical Chemistry 2001, 73 (16) , 3915-3920. https://doi.org/10.1021/ac0101306
    9. T. C. Bakker Schut,, M. J. H. Witjes,, H. J. C. M. Sterenborg,, O. C Speelman,, J. L. N. Roodenburg,, E. T. Marple,, H. A. Bruining, and, G. J. Puppels. In Vivo Detection of Dysplastic Tissue by Raman Spectroscopy. Analytical Chemistry 2000, 72 (24) , 6010-6018. https://doi.org/10.1021/ac000780u
    10. Mengzhou Li, Mingye Wu, Jed Pack, Pengwei Wu, Pingkun Yan, Bruno De Man, Adam Wang, Koen Nieman, Ge Wang. Coronary atherosclerotic plaque characterization with silicon‐based photon‐counting computed tomography (CT): A simulation‐based feasibility study. Medical Physics 2024, 133 https://doi.org/10.1002/mp.17422
    11. Esmat Zamani, Nassim Ksantini, Guillaume Sheehy, Katherine J. I. Ember, Bill Baloukas, Oleg Zabeida, Tran Trang, Myriam Mahfoud, Jolanta‐Ewa Sapieha, Ludvik Martinu, Frédéric Leblond. Spectral effects and enhancement quantification in healthy human saliva with surface‐enhanced Raman spectroscopy using silver nanopillar substrates. Lasers in Surgery and Medicine 2024, 56 (2) , 206-217. https://doi.org/10.1002/lsm.23746
    12. Alex Mathews Muruppel, Daniel Fried. Laser Assisted Diagnostics. 2023, 127-171. https://doi.org/10.1007/978-3-031-43338-2_6
    13. Ajaya Kumar Barik, Sanoop Pavithran M, Jijo Lukose, Rekha Upadhya, Muralidhar V Pai, V.B. Kartha, Santhosh Chidangil. In vivo spectroscopy: optical fiber probes for clinical applications. Expert Review of Medical Devices 2022, 19 (9) , 657-675. https://doi.org/10.1080/17434440.2022.2130046
    14. Noureen Siraj, David K. Bwambok, Pamela Nicole Brady, Megan Taylor, Gary A. Baker, Mujeebat Bashiru, Samantha Macchi, Amanda Jalihal, Iris Denmark, Thuy Le, Brianda Elzey, David A. Pollard, Sayo O. Fakayode. Raman spectroscopy and multivariate regression analysis in biomedical research, medical diagnosis, and clinical analysis. Applied Spectroscopy Reviews 2021, 56 (8-10) , 615-672. https://doi.org/10.1080/05704928.2021.1913744
    15. Lucas Becker, Nicole Janssen, Shannon L. Layland, Thomas E. Mürdter, Anne T. Nies, Katja Schenke-Layland, Julia Marzi. Raman Imaging and Fluorescence Lifetime Imaging Microscopy for Diagnosis of Cancer State and Metabolic Monitoring. Cancers 2021, 13 (22) , 5682. https://doi.org/10.3390/cancers13225682
    16. Ji Leng, Jinke Zhang, Chenguang Li, Chengyou Shu, Boquan Wang, Riqiang Lin, Yanmei Liang, Keqiang Wang, Li Shen, Kwok-ho Lam, Zhihua Xie, Xiaojing Gong, Junbo Ge, Liang Song. Multi-spectral intravascular photoacoustic/ultrasound/optical coherence tomography tri-modality system with a fully-integrated 0.9-mm full field-of-view catheter for plaque vulnerability imaging. Biomedical Optics Express 2021, 12 (4) , 1934. https://doi.org/10.1364/BOE.420724
    17. Howard Peng Sin Heng, Chi Shu, Wei Zheng, Kan Lin, Zhiwei Huang. Advances in real‐time fiber‐optic Raman spectroscopy for early cancer diagnosis: Pushing the frontier into clinical endoscopic applications. Translational Biophotonics 2021, 3 (1) https://doi.org/10.1002/tbio.202000018
    18. Tina Sehm, Ortrud Uckermann, Roberta Galli, Matthias Meinhardt, Elke Rickelt, Dietmar Krex, Gabriele Schackert, Matthias Kirsch. Label-free multiphoton microscopy as a tool to investigate alterations of cerebral aneurysms. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-69222-5
    19. Takeo Minamikawa, Mayuko Ichimura-Shimizu, Hiroki Takanari, Yuki Morimoto, Ryosuke Shiomi, Hiroki Tanioka, Eiji Hase, Takeshi Yasui, Koichi Tsuneyama. Molecular imaging analysis of microvesicular and macrovesicular lipid droplets in non-alcoholic fatty liver disease by Raman microscopy. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-75604-6
    20. Jang Ah Kim, Dominic J Wales, Guang-Zhong Yang. Optical spectroscopy for in vivo medical diagnosis—a review of the state of the art and future perspectives. Progress in Biomedical Engineering 2020, 2 (4) , 042001. https://doi.org/10.1088/2516-1091/abaaa3
    21. Teng Ma, Qifa Zhou. Advances in Multi-frequency Intravascular Ultrasound (IVUS). 2020, 11-55. https://doi.org/10.1007/978-981-10-6307-7_2
    22. Krzysztof Czamara, Ewelina Szafraniec, Ewelina Wiercigroch, Szymon Tott, Grzegorz Zając, Ewa Machalska, Monika Dudek, Dominika Augustynska, Kamilla Malek, Agnieszka Kaczor, Malgorzata Baranska. Small and Large Molecules Investigated by Raman Spectroscopy. 2019, 161-198. https://doi.org/10.1007/978-3-030-01355-4_6
    23. Chen-min Jiang, Xin Liu, Chun-xue Li, Hao-cheng Qian, Di Chen, Chao-qiang Lai, Li-rong Shen. Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line. Journal of Zhejiang University-SCIENCE B 2018, 19 (12) , 960-972. https://doi.org/10.1631/jzus.B1800257
    24. Marcel Braune, Martin Maiwald, Maxim E Darvin, Bernd Eppich, Bernd Sumpf, Jürgen Lademann, Günther Tränkle. Shifted excitation resonance Raman difference spectroscopy system suitable for the quantitative in vivo detection of carotenoids in human skin. Laser Physics Letters 2018, 15 (11) , 115601. https://doi.org/10.1088/1612-202X/aadab1
    25. Eliana Cordero. In-vivo Raman spectroscopy: from basics to applications. Journal of Biomedical Optics 2018, 23 (07) , 1. https://doi.org/10.1117/1.JBO.23.7.071210
    26. Neil MacRitchie, Gianluca Grassia, Jonathan Noonan, Paul Garside, Duncan Graham, Pasquale Maffia. Molecular imaging of atherosclerosis: spotlight on Raman spectroscopy and surface-enhanced Raman scattering. Heart 2018, 104 (6) , 460-467. https://doi.org/10.1136/heartjnl-2017-311447
    27. Md Abdullah Al Mamun, Anita Mahadevan-Jansen, Saulius Juodkazis, Paul R. Stoddart, . Development of an optical fiber SERS microprobe for minimally invasive sensing applications. 2018, 1. https://doi.org/10.1117/12.2289227
    28. Marta Z. Pacia, Krzysztof Czamara, Magdalena Zebala, Edyta Kus, Stefan Chlopicki, Agnieszka Kaczor. Rapid diagnostics of liver steatosis by Raman spectroscopy via fiber optic probe: a pilot study. The Analyst 2018, 143 (19) , 4723-4731. https://doi.org/10.1039/C8AN00289D
    29. Christian Matthäus, Sebastian Dochow, Kokila D. Egodage, Bernd F. Romeike, Bernhard R. Brehm, Jürgen Popp. Detection and characterization of early plaque formations by Raman probe spectroscopy and optical coherence tomography: an in vivo study on a rabbit model. Journal of Biomedical Optics 2018, 23 (01) , 1. https://doi.org/10.1117/1.JBO.23.1.015004
    30. H. Abramczyk, B. Brozek-Pluska. Apical-basal polarity of epithelial cells imaged by Raman microscopy and Raman imaging: Capabilities and challenges for cancer research. Journal of Molecular Liquids 2017, 245 , 52-61. https://doi.org/10.1016/j.molliq.2017.05.142
    31. Jingwei Li, Fuhong Cai, Yongjiang Dong, Zhenfeng Zhu, Xianhe Sun, Hequn Zhang, Sailing He. A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging. Optics Communications 2017, 392 , 1-6. https://doi.org/10.1016/j.optcom.2017.01.031
    32. Alex Mathews Muruppel. Laser-Assisted Diagnostics. 2017, 107-130. https://doi.org/10.1007/978-3-319-51944-9_6
    33. Lambros S. Athanasiou, Dimitrios I. Fotiadis, Lampros K. Michalis. Introduction. 2017, 1-21. https://doi.org/10.1016/B978-0-12-804734-7.00001-4
    34. Marta Z. Pacia, Lukasz Mateuszuk, Elzbieta Buczek, Stefan Chlopicki, Agnieszka Blazejczyk, Joanna Wietrzyk, Malgorzata Baranska, Agnieszka Kaczor. Rapid biochemical profiling of endothelial dysfunction in diabetes, hypertension and cancer metastasis by hierarchical cluster analysis of Raman spectra. Journal of Raman Spectroscopy 2016, 47 (11) , 1310-1317. https://doi.org/10.1002/jrs.4965
    35. Teng Ma, Bill Zhou, Tzung K. Hsiai, K. Kirk Shung. A Review of Intravascular Ultrasound-based Multimodal Intravascular Imaging. Ultrasonic Imaging 2016, 38 (5) , 314-331. https://doi.org/10.1177/0161734615604829
    36. Xuejun Qiu, Ke Xiong, Xiangping Ye, Zhitong Huang, Ying Chen, Chengkang Su, Zhengfei Zhuang, Zhouyi Guo, Songhao Liu. Study of molecule variations in human xanthelasma skin based on confocal micro‐raman spectroscopy. Scanning 2015, 37 (5) , 307-312. https://doi.org/10.1002/sca.21214
    37. Katarzyna M. Marzec, Anna Rygula, Marlena Gasior-Glogowska, Kamila Kochan, Krzysztof Czamara, Katarzyna Bulat, Kamilla Malek, Agnieszka Kaczor, Malgorzata Baranska. Vascular diseases investigated ex vivo by using Raman, FT-IR and complementary methods. Pharmacological Reports 2015, 67 (4) , 744-750. https://doi.org/10.1016/j.pharep.2015.05.001
    38. Katharina Eberhardt, Clara Stiebing, Christian Matthäus, Michael Schmitt, Jürgen Popp. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Review of Molecular Diagnostics 2015, 15 (6) , 773-787. https://doi.org/10.1586/14737159.2015.1036744
    39. Georgios Theophilou, Maria Paraskevaidi, Kássio MG Lima, Maria Kyrgiou, Pierre L Martin-Hirsch, Francis L Martin. Extracting biomarkers of commitment to cancer development: potential role of vibrational spectroscopy in systems biology. Expert Review of Molecular Diagnostics 2015, 15 (5) , 693-713. https://doi.org/10.1586/14737159.2015.1028372
    40. Saumya Tiwari, Vijaya B. Reddy, Rohit Bhargava, Jaishankar Raman, . Computational Chemical Imaging for Cardiovascular Pathology: Chemical Microscopic Imaging Accurately Determines Cardiac Transplant Rejection. PLOS ONE 2015, 10 (5) , e0125183. https://doi.org/10.1371/journal.pone.0125183
    41. Ravikumar Ramakrishnaiah, Ghufran ur Rehman, Santhosh Basavarajappa, Abdulaziz Abdullah Al Khuraif, B. H. Durgesh, Abdul Samad Khan, Ihtesham ur Rehman. Applications of Raman Spectroscopy in Dentistry: Analysis of Tooth Structure. Applied Spectroscopy Reviews 2015, 50 (4) , 332-350. https://doi.org/10.1080/05704928.2014.986734
    42. Zhongping Chen. Development of Integrated Multimodality Intravascular Imaging System for Assessing and Characterizing Atherosclerosis. 2015, 2173-2188. https://doi.org/10.1007/978-3-319-06419-2_73
    43. Christoph Krafft, Jürgen Popp. Vibrational Spectroscopic Imaging of Soft Tissue. 2014, 111-152. https://doi.org/10.1002/9783527678136.ch3
    44. W. Ranjith Premasiri, Paul Lemler, Ying Chen, Yoseph Gebregziabher, Lawrence D. Ziegler. SERS Analysis of Bacteria, Human Blood, and Cancer Cells: a Metabolomic and Diagnostic Tool. 2014, 257-283. https://doi.org/10.1002/9781118703601.ch12
    45. Mingzi Lu, Lian Zhao, Ying Wang, Guoxing You, Xuemei Kan, Yuhua Zhang, Ning Zhang, Bo Wang, Yan-Jun Guo, Hong Zhou. Measurement of the methemoglobin concentration using Raman spectroscopy. Artificial Cells, Nanomedicine, and Biotechnology 2014, 42 (1) , 63-69. https://doi.org/10.3109/21691401.2013.775577
    46. K.M. Marzec, T.P. Wróbel, A. Fedorowicz, Ł. Mateuszuk, E. Maślak, A. Jasztal, S. Chlopicki. Vibrational Microspectroscopy for Analysis of Atherosclerotic Arteries. 2014, 505-535. https://doi.org/10.1007/978-94-007-7832-0_17
    47. C. Krafft, J. Popp. Raman-Based Technologies for Biomedical Diagnostics. 2014, 189-208. https://doi.org/10.1016/B978-0-444-53632-7.00415-9
    48. Aliz Kunstar, Anne M. Leferink, Paul I. Okagbare, Michael D. Morris, Blake J. Roessler, Cees Otto, Marcel Karperien, Clemens A. van Blitterswijk, Lorenzo Moroni, Aart A. van Apeldoorn. Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds. Journal of The Royal Society Interface 2013, 10 (86) , 20130464. https://doi.org/10.1098/rsif.2013.0464
    49. Ines Latka, Sebastian Dochow, Christoph Krafft, Benjamin Dietzek, Jürgen Popp. Fiber optic probes for linear and nonlinear Raman applications – Current trends and future development. Laser & Photonics Reviews 2013, 7 (5) , 698-731. https://doi.org/10.1002/lpor.201200049
    50. Bing-Hong Liu, Yi-Wei Shi. Flexible silver-coated hollow fibers for remote Raman spectroscopic measurements. Applied Optics 2013, 52 (21) , 5165. https://doi.org/10.1364/AO.52.005165
    51. Annika Lattermann, Christian Matthäus, Norbert Bergner, Claudia Beleites, Bernd F. Romeike, Christoph Krafft, Bernhard R. Brehm, Jürgen Popp. Characterization of atherosclerotic plaque depositions by Raman and FTIR imaging. Journal of Biophotonics 2013, 6 (1) , 110-121. https://doi.org/10.1002/jbio.201200146
    52. Jianhua Zhao, Haishan Zeng. Advanced Spectroscopy Technique for Biomedicine. 2013, 1-54. https://doi.org/10.1007/978-3-642-28391-8_1
    53. Takeo Minamikawa, Yoshinori Harada, Noriaki Koizumi, Koji Okihara, Kazumi Kamoi, Akio Yanagisawa, Tetsuro Takamatsu. Label-free detection of peripheral nerve tissues against adjacent tissues by spontaneous Raman microspectroscopy. Histochemistry and Cell Biology 2013, 139 (1) , 181-193. https://doi.org/10.1007/s00418-012-1015-3
    54. Shin-ichi Morita, Sota Takanezawa, Akira Date, Shin Watanabe, Yasushi Sako. Raman Spectroscopic Analysis of H 2 O 2 -Stimulated Three-Dimensional Human Skin Models Containing Asian, Black, and Caucasian Melanocytes. Journal of Spectroscopy 2013, 2013 , 1-6. https://doi.org/10.1155/2013/903450
    55. Bavishna B. Praveen, Praveen C. Ashok, Michael Mazilu, Andrew Riches, Simon Herrington, Kishan Dholakia. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis. Journal of Biomedical Optics 2012, 17 (7) , 0770061. https://doi.org/10.1117/1.JBO.17.7.077006
    56. Paul I. Okagbare, Michael D. Morris. Fluorocarbon Fiber-Optic Raman Probe for Non-Invasive Raman Spectroscopy. Applied Spectroscopy 2012, 66 (6) , 728-730. https://doi.org/10.1366/12-06592
    57. Sara Seitun, Erica Maffei, Chiara Martini, Margherita Castiglione Morelli, Anselmo A. Palumbo, Filippo Cademartiri. Calcium Score and Coronary Plaque. 2012, 115-137. https://doi.org/10.1007/978-88-470-2522-6_11
    58. Paul I. Okagbare, Michael D. Morris. Polymer-capped fiber-optic Raman probe for non-invasive Raman spectroscopy. The Analyst 2012, 137 (1) , 77-81. https://doi.org/10.1039/C1AN15847C
    59. SP Singh, Atul Deshmukh, Pankaj Chaturvedi, CMurali Krishna. Raman spectroscopy in head and neck cancers: Toward oncological applications. Journal of Cancer Research and Therapeutics 2012, 8 (6) , 126. https://doi.org/10.4103/0973-1482.92227
    60. Omer Tzang, Kobi Kfir, Eli Flaxer, Ori Cheshnovsky, Shmuel Einav. Detection of Microcalcification in Tissue by Raman Spectroscopy. Cardiovascular Engineering and Technology 2011, 2 (3) , 228-233. https://doi.org/10.1007/s13239-011-0051-9
    61. Melissa J. Suter, Seemantini K. Nadkarni, Giora Weisz, Atsushi Tanaka, Farouc A. Jaffer, Brett E. Bouma, Guillermo J. Tearney. Intravascular Optical Imaging Technology for Investigating the Coronary Artery. JACC: Cardiovascular Imaging 2011, 4 (9) , 1022-1039. https://doi.org/10.1016/j.jcmg.2011.03.020
    62. Michele Casella, Andrea Lucotti, Matteo Tommasini, Marzia Bedoni, Elena Forvi, Furio Gramatica, Giuseppe Zerbi. Raman and SERS recognition of β-carotene and haemoglobin fingerprints in human whole blood. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2011, 79 (5) , 915-919. https://doi.org/10.1016/j.saa.2011.03.048
    63. Aliz Kunstar, Cees Otto, Marcel Karperien, Clemens van Blitterswijk, Aart van Apeldoorn. Raman Microspectroscopy: A Noninvasive Analysis Tool for Monitoring of Collagen-Containing Extracellular Matrix Formation in a Medium-Throughput Culture System. Tissue Engineering Part C: Methods 2011, 17 (7) , 737-744. https://doi.org/10.1089/ten.tec.2010.0574
    64. Pu Chen, Aiguo Shen, Xiaodong Zhou, Jiming Hu. Bio-Raman spectroscopy: a potential clinical analytical method assisting in disease diagnosis. Analytical Methods 2011, 3 (6) , 1257. https://doi.org/10.1039/c1ay05039g
    65. Andrew T Harris, Andrew Rennie, Haroon Waqar-Uddin, Sarah R Wheatley, Samit K Ghosh, Dominic P Martin-Hirsch, Sheila E Fisher, Alec S High, Jennifer Kirkham, Tahwinder Upile. Raman spectroscopy in head and neck cancer. Head & Neck Oncology 2010, 2 (1) https://doi.org/10.1186/1758-3284-2-26
    66. Matthias Kirsch, Gabriele Schackert, Reiner Salzer, Christoph Krafft. Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Analytical and Bioanalytical Chemistry 2010, 398 (4) , 1707-1713. https://doi.org/10.1007/s00216-010-4116-7
    67. P. C. Ashok, G. P. Singh, K. M. Tan, K. Dholakia. Fiber probe based microfluidic raman spectroscopy. Optics Express 2010, 18 (8) , 7642. https://doi.org/10.1364/OE.18.007642
    68. Andrew Downes, Alistair Elfick. Raman Spectroscopy and Related Techniques in Biomedicine. Sensors 2010, 10 (3) , 1871-1889. https://doi.org/10.3390/s100301871
    69. Hidetoshi Sato, Hideyuki Shinzawa, Yuichi Komachi. Fiber-Optic Raman Probes for Biomedical and Pharmaceutical Applications. 2010, 25-45. https://doi.org/10.1007/978-3-642-02649-2_2
    70. Janneke L. M. Bruggink, Robbert Meerwaldt, Gooitzen M. van Dam, Joop D. Lefrandt, Riemer H. J. A. Slart, René A. Tio, Andries J. Smit, Clark J. Zeebregts. Spectroscopy to improve identification of vulnerable plaques in cardiovascular disease. The International Journal of Cardiovascular Imaging 2010, 26 (1) , 111-119. https://doi.org/10.1007/s10554-009-9500-z
    71. A. Beljebbar, O. Bouché, M.D. Diébold, P.J. Guillou, J.P. Palot, D. Eudes, M. Manfait. Identification of Raman spectroscopic markers for the characterization of normal and adenocarcinomatous colonic tissues. Critical Reviews in Oncology/Hematology 2009, 72 (3) , 255-264. https://doi.org/10.1016/j.critrevonc.2009.09.004
    72. Christoph Krafft, Petra Rösch, Jürgen Popp. R aman Spectroscopy in Medicine. 2009https://doi.org/10.1002/3527600434.eap680
    73. P. R. Stoddart, D. J. White. Optical fibre SERS sensors. Analytical and Bioanalytical Chemistry 2009, 394 (7) , 1761-1774. https://doi.org/10.1007/s00216-009-2797-6
    74. Zhengmao Ye, Habib Mohamadian. Nonlinear multi-scale statistical identification approach for data processing enhancing and quantitative study. 2009, 1027-1032. https://doi.org/10.1109/CCA.2009.5281040
    75. Jonathan H. Nazemi. Lipid concentrations in human coronary artery determined with high wavenumber Raman shifted light. Journal of Biomedical Optics 2009, 14 (3) , 034009. https://doi.org/10.1117/1.3130302
    76. Ricardo S. Santos, Hassan A. Sidaoui, Landulfo Silveira, Carlos Augusto G. Pasqualucci, Marcos Tadeu T. Pacheco. Classification System of Raman Spectra using Cluster Analysis to Diagnose Coronary Artery Lesions. Instrumentation Science & Technology 2009, 37 (3) , 327-344. https://doi.org/10.1080/10739140902831990
    77. Yuichi Komachi, Takashi Katagiri, Hidetoshi Sato, Hideo Tashiro. Improvement and analysis of a micro Raman probe. Applied Optics 2009, 48 (9) , 1683. https://doi.org/10.1364/AO.48.001683
    78. Kim Douma, Lenneke Prinzen, Dick W. Slaaf, Chris P. M. Reutelingsperger, Erik A. L. Biessen, Tilman M. Hackeng, Mark J. Post, Marc A. M. J. van Zandvoort. Nanoparticles for Optical Molecular Imaging of Atherosclerosis. Small 2009, 5 (5) , 544-557. https://doi.org/10.1002/smll.200801079
    79. Christoph Krafft, Gerald Steiner, Claudia Beleites, Reiner Salzer. Disease recognition by infrared and Raman spectroscopy. Journal of Biophotonics 2009, 2 (1-2) , 13-28. https://doi.org/10.1002/jbio.200810024
    80. Annieke Nijssen, Senada Koljenović, Tom C. Bakker Schut, Peter J. Caspers, Gerwin J. Puppels. Towards oncological application of Raman spectroscopy. Journal of Biophotonics 2009, 2 (1-2) , 29-36. https://doi.org/10.1002/jbio.200810055
    81. Hiroki Mitsuoka, Shin-ichi Morita, Toshiaki Suzuki, Yuji Matsuura, Yukiteru Katsumoto, Hidetoshi Sato. Optical Characterization of a Hollow Fiber Raman Probe toward Non-Invasive Measurements of Living Tissues. Applied Physics Express 2009, 2 , 027001. https://doi.org/10.1143/APEX.2.027001
    82. Christoph Krafft, Benjamin Dietzek, Jürgen Popp. Raman and CARS microspectroscopy of cells and tissues. The Analyst 2009, 134 (6) , 1046. https://doi.org/10.1039/b822354h
    83. Jianhua Zhao, Harvey Lui, David I. McLean, Haishan Zeng. Integrated real‐time Raman system for clinical in vivo skin analysis. Skin Research and Technology 2008, 14 (4) , 484-492. https://doi.org/10.1111/j.1600-0846.2008.00321.x
    84. Yasuhiro Honda, Peter J. Fitzgerald. Frontiers in Intravascular Imaging Technologies. Circulation 2008, 117 (15) , 2024-2037. https://doi.org/10.1161/CIRCULATIONAHA.105.551804
    85. James Brennan, Jon Nazemi, Jason Motz, Steve Ramcharitar. The vPredict™ Optical Catheter System: Intravascular Raman Spectroscopy. EuroIntervention 2008, 3 (5) , 635-638. https://doi.org/10.4244/EIJV3I5A113
    86. Alexandra H. Chau, Jason T. Motz, Joseph A. Gardecki, Sergio Waxman, Brett E. Bouma, Guillermo J. Tearney. Fingerprint and high-wavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo. Journal of Biomedical Optics 2008, 13 (4) , 040501. https://doi.org/10.1117/1.2960015
    87. Jianhua Zhao, Harvey Lui, David I. McLean, Haishan Zeng. Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy. Applied Spectroscopy 2007, 61 (11) , 1225-1232. https://doi.org/10.1366/000370207782597003
    88. David I Ellis, Warwick B Dunn, Julian L Griffin, J William Allwood, Royston Goodacre. Metabolic Fingerprinting As A Diagnostic Tool. Pharmacogenomics 2007, 8 (9) , 1243-1266. https://doi.org/10.2217/14622416.8.9.1243
    89. F. Cademartiri, L. La Grutta, A. Palumbo, E. Maffei, A. Aldrovandi, R. Malagò, F. Alberghina, F. Pugliese, G. Runza, M. Belgrano, M. Midiri, M. A. Cova, G. P. Krestin. Imaging techniques for the vulnerable coronary plaque. La radiologia medica 2007, 112 (5) , 637-659. https://doi.org/10.1007/s11547-007-0170-4
    90. Rick Rocha, Antonio Balbin Villaverde, Carlos Augusto Pasqualucci, Landulfo Silveira, Jr., Aldo Brugnera, Jr., Maricilia S. Costa, Marcos Tadeu T. Pacheco. Identification of Calcifications in Cardiac Valves by Near Infrared Raman Spectroscopy. Photomedicine and Laser Surgery 2007, 25 (4) , 287-290. https://doi.org/10.1089/pho.2007.2100
    91. FIONA GILCHRIST, ARIO SANTINI, KATHRYN HARLEY, CHRISTOPHER DEERY. The use of micro‐Raman spectroscopy to differentiate between sound and eroded primary enamel. International Journal of Paediatric Dentistry 2007, 17 (4) , 274-280. https://doi.org/10.1111/j.1365-263X.2007.00824.x
    92. Yusuke Hattori, Y. Komachi, G. Kanai, T. Katagiri, T. Asakura, H. Tashiro, H. Sato. Development of in vivo fiber-optic Raman spectroscopy system with a miniaturized endoscope: demonstrations at the rat gastroesophageal epithelia. 2007, 1300-1303. https://doi.org/10.1007/978-3-540-36841-0_316
    93. Liqun Wang, Jessica Chapman, Richard A. Palmer, Olaf van Ramm, Boris Mizaikoff. Classification of atherosclerotic rabbit aorta samples by mid-infrared spectroscopy using multivariate data analysis. Journal of Biomedical Optics 2007, 12 (2) , 024006. https://doi.org/10.1117/1.2714030
    94. Yuichi Komachi, Hidetoshi Sato, Hideo Tashiro. Intravascular Raman spectroscopic catheter for molecular diagnosis of atherosclerotic coronary disease. Applied Optics 2006, 45 (30) , 7938. https://doi.org/10.1364/AO.45.007938
    95. Stanislav O. Konorov, Christopher J. Addison, H. Georg Schulze, Robin F. B. Turner, Michael W. Blades. Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy. Optics Letters 2006, 31 (12) , 1911. https://doi.org/10.1364/OL.31.001911
    96. Abigail S. Haka, Zoya Volynskaya, Joseph A. Gardecki, Jon Nazemi, Joanne Lyons, David Hicks, Maryann Fitzmaurice, Ramachandra R. Dasari, Joseph P. Crowe, Michael S. Feld. In vivo Margin Assessment during Partial Mastectomy Breast Surgery Using Raman Spectroscopy. Cancer Research 2006, 66 (6) , 3317-3322. https://doi.org/10.1158/0008-5472.CAN-05-2815
    97. David I. Ellis, Royston Goodacre. Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. The Analyst 2006, 131 (8) , 875. https://doi.org/10.1039/b602376m
    98. Jason T. Motz, Maryann Fitzmaurice, Arnold Miller, Saumil J. Gandhi, Abigail S. Haka, Luis H. Galindo, Ramachandra R. Dasari, John R. Kramer, Michael S. Feld. In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque. Journal of Biomedical Optics 2006, 11 (2) , 021003. https://doi.org/10.1117/1.2190967
    99. D.N. Batchelder, K.P.J. Williams, S. Webster, K.J. Baldwin, I.P. Hayward, R. Bennett, Y.Y. Yang, G.D. Pitt, B.J.E. Smith, R.W. Bormett. Engineering aspects and applications of the new Raman instrumentation. IEE Proceedings - Science, Measurement and Technology 2005, 152 (6) , 241-318. https://doi.org/10.1049/ip-smt:20050015
    100. Yuichi Komachi, Hidetoshi Sato, Yuji Matsuura, Mitsuno Miyagi, Hideo Tashiro. Raman probe using a single hollow waveguide. Optics Letters 2005, 30 (21) , 2942. https://doi.org/10.1364/OL.30.002942
    Load all citations

    Analytical Chemistry

    Cite this: Anal. Chem. 2000, 72, 16, 3771–3775
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac000298b
    Published July 14, 2000
    Copyright © 2000 American Chemical Society

    Article Views

    1077

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.