ACS Publications. Most Trusted. Most Cited. Most Read
Programmable Delivery of DNA through a Nanopipet
My Activity
    Article

    Programmable Delivery of DNA through a Nanopipet
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K., and MRC Clinical Science Centre, Division of Medicine, Imperial College School of Medicine, London, W12 0NN, U.K.
    Other Access Options

    Analytical Chemistry

    Cite this: Anal. Chem. 2002, 74, 6, 1380–1385
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac015674m
    Published February 8, 2002
    Copyright © 2002 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We report the pulsed delivery of single-stranded DNA molecules through a nanopipet. The conical geometry of the pipet leads to a localized electric field, since all of the potential drop occurs in the tip region. Pulsatile delivery of DNA molecules can be achieved in an experimentally simple way with high precision by controlling the applied voltage. Single-molecule detection and fluorescence correlation spectroscopy in the nanopipet enable us to determine the number of molecules delivered. Anomalous slow diffusion of the DNA molecules in the pipet has also been observed. This nanopumping technique may have potential applications in local drug delivery and nanofabrication of biomolecules on surfaces in aqueous environments.

    Copyright © 2002 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     University of Cambridge.

     Imperial College School of Medicine.

    *

     To whom correspondence should be addressed. Tel:  +44 1223 336481. Fax:  +44 1223 336362. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 80 publications.

    1. Kazuki Shigyou, Linhao Sun, Riku Yajima, Shohei Takigaura, Masashi Tajima, Hirotoshi Furusho, Yousuke Kikuchi, Keisuke Miyazawa, Takeshi Fukuma, Azuma Taoka, Toshio Ando, Shinji Watanabe. Geometrical Characterization of Glass Nanopipettes with Sub-10 nm Pore Diameter by Transmission Electron Microscopy. Analytical Chemistry 2020, 92 (23) , 15388-15393. https://doi.org/10.1021/acs.analchem.0c02884
    2. David Perry, Ashley Page, Baoping Chen, Bruno G. Frenguelli, and Patrick R. Unwin . Differential-Concentration Scanning Ion Conductance Microscopy. Analytical Chemistry 2017, 89 (22) , 12458-12465. https://doi.org/10.1021/acs.analchem.7b03543
    3. Johannes Rheinlaender and Tilman E. Schäffer . An Accurate Model for the Ion Current–Distance Behavior in Scanning Ion Conductance Microscopy Allows for Calibration of Pipet Tip Geometry and Tip–Sample Distance. Analytical Chemistry 2017, 89 (21) , 11875-11880. https://doi.org/10.1021/acs.analchem.7b03871
    4. Hai-Ling Liu, Jiao Cao, Sumaira Hanif, Chunge Yuan, Jie Pang, Rastislav Levicky, Xing-Hua Xia, and Kang Wang . Size-Controllable Gold Nanopores with High SERS Activity. Analytical Chemistry 2017, 89 (19) , 10407-10413. https://doi.org/10.1021/acs.analchem.7b02410
    5. Yasufumi Takahashi, Akichika Kumatani, Hitoshi Shiku, and Tomokazu Matsue . Scanning Probe Microscopy for Nanoscale Electrochemical Imaging. Analytical Chemistry 2017, 89 (1) , 342-357. https://doi.org/10.1021/acs.analchem.6b04355
    6. Georg Rempfer, Sascha Ehrhardt, Nadanai Laohakunakorn, Gary B. Davies, Ulrich F. Keyser, Christian Holm, and Joost de Graaf . Selective Trapping of DNA Using Glass Microcapillaries. Langmuir 2016, 32 (33) , 8525-8532. https://doi.org/10.1021/acs.langmuir.6b02071
    7. Minkyung Kang, Dmitry Momotenko, Ashley Page, David Perry, and Patrick R. Unwin . Frontiers in Nanoscale Electrochemical Imaging: Faster, Multifunctional, and Ultrasensitive. Langmuir 2016, 32 (32) , 7993-8008. https://doi.org/10.1021/acs.langmuir.6b01932
    8. Aleksandar P. Ivanov, Paolo Actis, Peter Jönsson, David Klenerman, Yuri Korchev, and Joshua B. Edel . On-Demand Delivery of Single DNA Molecules Using Nanopipets. ACS Nano 2015, 9 (4) , 3587-3595. https://doi.org/10.1021/acsnano.5b00911
    9. Richard W. Clarke, Alexander Zhukov, Owen Richards, Nicholas Johnson, Victor Ostanin, and David Klenerman . Pipette–Surface Interaction: Current Enhancement and Intrinsic Force. Journal of the American Chemical Society 2013, 135 (1) , 322-329. https://doi.org/10.1021/ja3094586
    10. Matthew Caldwell, Samantha J. L. Del Linz, Trevor G. Smart, and Guy W. J. Moss . Method for Estimating the Tip Geometry of Scanning Ion Conductance Microscope Pipets. Analytical Chemistry 2012, 84 (21) , 8980-8984. https://doi.org/10.1021/ac301851n
    11. Shu Ding, Changlu Gao and Li-Qun Gu . Capturing Single Molecules of Immunoglobulin and Ricin with an Aptamer-Encoded Glass Nanopore. Analytical Chemistry 2009, 81 (16) , 6649-6655. https://doi.org/10.1021/ac9006705
    12. Changlu Gao, Shu Ding, Qiulin Tan and Li-Qun Gu . Method of Creating a Nanopore-Terminated Probe for Single-Molecule Enantiomer Discrimination. Analytical Chemistry 2009, 81 (1) , 80-86. https://doi.org/10.1021/ac802348r
    13. Jan Vogelsang,, Sören Doose,, Markus Sauer, and, Philip Tinnefeld. Single-Molecule Fluorescence Resonance Energy Transfer in Nanopipets:  Improving Distance Resolution and Concentration Range. Analytical Chemistry 2007, 79 (19) , 7367-7375. https://doi.org/10.1021/ac071176n
    14. Mordechai Sokuler and, Levi A. Gheber. Nano Fountain Pen Manufacture of Polymer Lenses for Nano-biochip Applications. Nano Letters 2006, 6 (4) , 848-853. https://doi.org/10.1021/nl060323e
    15. Kit T. Rodolfa,, Andreas Bruckbauer,, Dejian Zhou,, Andrew I. Schevchuk,, Yuri E. Korchev, and, David Klenerman. Nanoscale Pipetting for Controlled Chemistry in Small Arrayed Water Droplets Using a Double-Barrel Pipet. Nano Letters 2006, 6 (2) , 252-257. https://doi.org/10.1021/nl052215i
    16. Andreas Bruckbauer,, Dejian Zhou,, Liming Ying,, Chris Abell, and, David Klenerman. A Simple Voltage Controlled Enzymatic Nanoreactor Produced in the Tip of a Nanopipet. Nano Letters 2004, 4 (10) , 1859-1862. https://doi.org/10.1021/nl049029h
    17. Shuqing Sun and, Graham J. Leggett. Matching the Resolution of Electron Beam Lithography by Scanning Near-Field Photolithography. Nano Letters 2004, 4 (8) , 1381-1384. https://doi.org/10.1021/nl049540a
    18. Andreas Bruckbauer,, Dejian Zhou,, Dae-Joon Kang,, Yuri E. Korchev,, Chris Abell, and, David Klenerman. An Addressable Antibody Nanoarray Produced on a Nanostructured Surface. Journal of the American Chemical Society 2004, 126 (21) , 6508-6509. https://doi.org/10.1021/ja0317426
    19. Andreas Bruckbauer,, Dejian Zhou,, Liming Ying,, Yuri E. Korchev,, Chris Abell, and, David Klenerman. Multicomponent Submicron Features of Biomolecules Created by Voltage Controlled Deposition from a Nanopipet. Journal of the American Chemical Society 2003, 125 (32) , 9834-9839. https://doi.org/10.1021/ja035755v
    20. Andreas Bruckbauer,, Liming Ying,, Alison M. Rothery,, Dejian Zhou,, Andrew I. Shevchuk,, Chris Abell,, Yuri E. Korchev, and, David Klenerman. Writing with DNA and Protein Using a Nanopipet for Controlled Delivery. Journal of the American Chemical Society 2002, 124 (30) , 8810-8811. https://doi.org/10.1021/ja026816c
    21. Fumiya Sato, Haruka Nakano, Toshio Kamijo, Kazuhiro Watanabe, Tsutomu Fujimura, Yasufumi Takahashi, Katsuhiko Sato. Vancomycin sensing using a phenylboronic acid‐modified nanopore pipette. Electroanalysis 2023, 35 (11) https://doi.org/10.1002/elan.202300173
    22. Patrick Happel, Annika Haak, Astrid Gesper. Correlating Scanning Ion Conductance and Super-Resolved Fluorescence Microscopy. 2022, 205-230. https://doi.org/10.1007/11663_2022_13
    23. Viktor János Oláh, Gergely Tarcsay, János Brunner. Small Size of Recorded Neuronal Structures Confines the Accuracy in Direct Axonal Voltage Measurements. eneuro 2021, 8 (4) , ENEURO.0059-21.2021. https://doi.org/10.1523/ENEURO.0059-21.2021
    24. Zhu Zhang, Joost de Graaf, Sanli Faez. Regulating the aggregation of colloidal particles in an electro-osmotic micropump. Soft Matter 2020, 16 (47) , 10707-10715. https://doi.org/10.1039/D0SM01084G
    25. Hitoshi Shiku. Electrochemical Biosensing System for Single Cells, Cellular Aggregates and Microenvironments. Analytical Sciences 2019, 35 (1) , 29-38. https://doi.org/10.2116/analsci.18SDR01
    26. Leilei Shi, Ankit Rana, Leyla Esfandiari. A low voltage nanopipette dielectrophoretic device for rapid entrapment of nanoparticles and exosomes extracted from plasma of healthy donors. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-25026-2
    27. Gonca Bulbul, Gepoliano Chaves, Joseph Olivier, Rifat Emrah Ozel, Nader Pourmand. Nanopipettes as Monitoring Probes for the Single Living Cell: State of the Art and Future Directions in Molecular Biology. Cells 2018, 7 (6) , 55. https://doi.org/10.3390/cells7060055
    28. Yang Liu, Cong Xu, Xuwei Chen, Jianhua Wang, Ping Yu, Lanqun Mao. Voltage-driven counting of phospholipid vesicles with nanopipettes by resistive-pulse principle. Electrochemistry Communications 2018, 89 , 38-42. https://doi.org/10.1016/j.elecom.2018.02.015
    29. Paresa Modarres, Maryam Tabrizian. Alternating current dielectrophoresis of biomacromolecules: The interplay of electrokinetic effects. Sensors and Actuators B: Chemical 2017, 252 , 391-408. https://doi.org/10.1016/j.snb.2017.05.144
    30. Ali Oskooei, Govind V. Kaigala. Deep-Reaching Hydrodynamic Flow Confinement: Micrometer-Scale Liquid Localization for Open Substrates With Topographical Variations. IEEE Transactions on Biomedical Engineering 2017, 64 (6) , 1261-1269. https://doi.org/10.1109/TBME.2016.2597297
    31. Ashley Page, David Perry, Patrick R. Unwin. Multifunctional scanning ion conductance microscopy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2017, 473 (2200) , 20160889. https://doi.org/10.1098/rspa.2016.0889
    32. Anna Weber, Wenqing Shi, Lane Baker. Electrochemical Applications of Scanning Ion Conductance Microscopy. 2015, 73-114. https://doi.org/10.1201/b19196-3
    33. Jing Jie Sha, Wei Si, Yin Zhang, Yun Fei Chen. Concentration Gradient Effect on the Capturing Ratio of Nanopore for DNA. Key Engineering Materials 2015, 656-657 , 554-560. https://doi.org/10.4028/www.scientific.net/KEM.656-657.554
    34. Wenqing Shi, Niya Sa, Rahul Thakar, Lane A. Baker. Nanopipette delivery: influence of surface charge. The Analyst 2015, 140 (14) , 4835-4842. https://doi.org/10.1039/C4AN01073F
    35. Tomohide Takami, Bae Ho Park, Tomoji Kawai. Nanopipette exploring nanoworld. Nano Convergence 2014, 1 (1) https://doi.org/10.1186/s40580-014-0017-3
    36. Pavel Novak, Julia Gorelik, Umesh Vivekananda, Andrew I. Shevchuk, Yaroslav S. Ermolyuk, Russell J. Bailey, Andrew J. Bushby, Guy W.J. Moss, Dmitri A. Rusakov, David Klenerman, Dimitri M. Kullmann, Kirill E. Volynski, Yuri E. Korchev. Nanoscale-Targeted Patch-Clamp Recordings of Functional Presynaptic Ion Channels. Neuron 2013, 79 (6) , 1067-1077. https://doi.org/10.1016/j.neuron.2013.07.012
    37. A I Shevchuk, P Novak, M A Velazquez, T P Fleming, Y E Korchev. Combined ion conductance and fluorescence confocal microscopy for biological cell membrane transport studies. Journal of Optics 2013, 15 (9) , 094005. https://doi.org/10.1088/2040-8978/15/9/094005
    38. Peng Li, Changlin Zhang, Lianqing Liu, Yuechao Wang, Ning Xi, Uchechukwu C. Wejinya, Guangyong Li. Prior knowledge based fast imaging for scanning ion conductance microscopy. 2013, 89-93. https://doi.org/10.1109/AIM.2013.6584073
    39. Anamika Bhargava, Xianming Lin, Pavel Novak, Kinneri Mehta, Yuri Korchev, Mario Delmar, Julia Gorelik. Super-resolution Scanning Patch Clamp Reveals Clustering of Functional Ion Channels in Adult Ventricular Myocyte. Circulation Research 2013, 112 (8) , 1112-1120. https://doi.org/10.1161/CIRCRESAHA.111.300445
    40. David Klenerman, Andrew Shevchuk, Pavel Novak, Yuri E. Korchev, Simon J. Davis. Imaging the cell surface and its organization down to the level of single molecules. Philosophical Transactions of the Royal Society B: Biological Sciences 2013, 368 (1611) , 20120027. https://doi.org/10.1098/rstb.2012.0027
    41. Rahul Thakar, Anna E. Weber, Celeste A. Morris, Lane A. Baker. Multifunctional carbon nanoelectrodes fabricated by focused ion beam milling. The Analyst 2013, 138 (20) , 5973. https://doi.org/10.1039/c3an01216f
    42. Patrick Happel, Denis Thatenhorst, Irmgard D. Dietzel. Scanning Ion Conductance Microscopy for Studying Biological Samples. Sensors 2012, 12 (11) , 14983-15008. https://doi.org/10.3390/s121114983
    43. Cosmin Laslau, David E. Williams, Jadranka Travas-Sejdic. The application of nanopipettes to conducting polymer fabrication, imaging and electrochemical characterization. Progress in Polymer Science 2012, 37 (9) , 1177-1191. https://doi.org/10.1016/j.progpolymsci.2012.01.002
    44. Chiao-Chen Chen, Yi Zhou, Lane A. Baker. Scanning Ion Conductance Microscopy. Annual Review of Analytical Chemistry 2012, 5 (1) , 207-228. https://doi.org/10.1146/annurev-anchem-062011-143203
    45. FRANKLIN ANARIBA, JOON HYUNG ANH, GOO-EUN JUNG, NAM-JOON CHO, SANG-JOON CHO. BIOPHYSICAL APPLICATIONS OF SCANNING ION CONDUCTANCE MICROSCOPY (SICM). Modern Physics Letters B 2012, 26 (05) , 1130003. https://doi.org/10.1142/S0217984911300031
    46. Kuo-Kang Liu, Ren-Guei Wu, Yun-Ju Chuang, Hwa Seng Khoo, Shih-Hao Huang, Fan-Gang Tseng. Microfluidic Systems for Biosensing. Sensors 2010, 10 (7) , 6623-6661. https://doi.org/10.3390/s100706623
    47. Maged El-Kemary, Hiroshi Yao. Synthesis, characterization and optical properties of organic nanoparticles of piroxicam anti-inflammatory drug. Journal of Photochemistry and Photobiology A: Chemistry 2010, 212 (2-3) , 170-175. https://doi.org/10.1016/j.jphotochem.2010.04.012
    48. Deyan Kong, Yong Fan, Cuimiao Zhang, Jun Lin. Mesoporous silica-coated NaYF4:Yb3+, Er3+ particles for drug release. Journal of Nanoparticle Research 2010, 12 (2) , 663-673. https://doi.org/10.1007/s11051-009-9635-9
    49. Johannes Rheinlaender, Tilman E. Schäffer. Scanning Ion Conductance Microscopy. 2010, 433-460. https://doi.org/10.1007/978-1-4419-7167-8_15
    50. Tilman E. Schäffer, Boris Anczykowski, Harald Fuchs. Scanning Ion Conductance Microscopy. 2010, 295-323. https://doi.org/10.1007/978-3-642-02405-4_11
    51. Li-Qun Gu, Ji Wook Shim. Single molecule sensing by nanopores and nanopore devices. The Analyst 2010, 135 (3) , 441-451. https://doi.org/10.1039/B907735A
    52. Yasufumi Takahashi, Yumi Murakami, Kuniaki Nagamine, Hitoshi Shiku, Shigeo Aoyagi, Tomoyuki Yasukawa, Makoto Kanzaki, Tomokazu Matsue. Topographic imaging of convoluted surface of live cells by scanning ion conductance microscopy in a standing approach mode. Physical Chemistry Chemical Physics 2010, 12 (34) , 10012. https://doi.org/10.1039/c002607g
    53. Celeste A. Morris, Alicia K. Friedman, Lane A. Baker. Applications of nanopipettes in the analytical sciences. The Analyst 2010, 135 (9) , 2190. https://doi.org/10.1039/c0an00156b
    54. Robert D Lovchik, Ute Drechsler, Emmanuel Delamarche. Multilayered microfluidic probe heads. Journal of Micromechanics and Microengineering 2009, 19 (11) , 115006. https://doi.org/10.1088/0960-1317/19/11/115006
    55. Liming Ying. Applications of nanopipettes in bionanotechnology. Biochemical Society Transactions 2009, 37 (4) , 702-706. https://doi.org/10.1042/BST0370702
    56. Bengt Nölting. References. 2009, 231-261. https://doi.org/10.1007/978-3-642-03022-2_16
    57. Daniel Sánchez, Nick Johnson, Chao Li, Pavel Novak, Johannes Rheinlaender, Yanjun Zhang, Uma Anand, Praveen Anand, Julia Gorelik, Gregory I. Frolenkov, Christopher Benham, Max Lab, Victor P. Ostanin, Tilman E. Schäffer, David Klenerman, Yuri E. Korchev. Noncontact Measurement of the Local Mechanical Properties of Living Cells Using Pressure Applied via a Pipette. Biophysical Journal 2008, 95 (6) , 3017-3027. https://doi.org/10.1529/biophysj.108.129551
    58. Nicholas Douville, Dongeun Huh, Shuichi Takayama. DNA linearization through confinement in nanofluidic channels. Analytical and Bioanalytical Chemistry 2008, 391 (7) , 2395-2409. https://doi.org/10.1007/s00216-008-1995-y
    59. Rangrong Yoksan, Suwabun Chirachanchai. Amphiphilic chitosan nanosphere: Studies on formation, toxicity, and guest molecule incorporation. Bioorganic & Medicinal Chemistry 2008, 16 (5) , 2687-2696. https://doi.org/10.1016/j.bmc.2007.11.037
    60. Deyan Kong, Piaoping Yang, Zhenling Wang, Ping Chai, Shanshan Huang, Hongzhou Lian, Jun Lin, . Mesoporous Silica Coated CeF 3 :Tb 3+ Particles for Drug Release. Journal of Nanomaterials 2008, 2008 (1) https://doi.org/10.1155/2008/312792
    61. Andreas Bruckbauer, Peter James, Dejian Zhou, Ji Won Yoon, David Excell, Yuri Korchev, Roy Jones, David Klenerman. Nanopipette Delivery of Individual Molecules to Cellular Compartments for Single-Molecule Fluorescence Tracking. Biophysical Journal 2007, 93 (9) , 3120-3131. https://doi.org/10.1529/biophysj.107.104737
    62. Samuel S. White, Shankar Balasubramanian, David Klenerman, Liming Ying. A Simple Nanomixer for Single‐Molecule Kinetics Measurements. Angewandte Chemie 2006, 118 (45) , 7702-7705. https://doi.org/10.1002/ange.200602289
    63. Samuel S. White, Shankar Balasubramanian, David Klenerman, Liming Ying. A Simple Nanomixer for Single‐Molecule Kinetics Measurements. Angewandte Chemie International Edition 2006, 45 (45) , 7540-7543. https://doi.org/10.1002/anie.200602289
    64. Andrea Cavicchioli, Dalva L.A. de Faria. Impedance analysis of varnish-modified crystal quartz resonators coupled with FT-IR and FT-Raman: Assessment of the environmental impact on artistic materials in conservation sites. Sensors and Actuators B: Chemical 2006, 115 (2) , 656-665. https://doi.org/10.1016/j.snb.2005.10.034
    65. David Klenerman, Yuri Korchev. Potential Biomedical Applications of The Scanned Nanopipette. Nanomedicine 2006, 1 (1) , 107-114. https://doi.org/10.2217/17435889.1.1.107
    66. Guolin Xu, M B Chan, Charles Yang, P Sukumar, M Choolani, Jackie Y Ying. Design and Fabrication a Microfluidic Device for Fetal Cells Dielectrophoretic Properties Characterization. Journal of Physics: Conference Series 2006, 34 , 1106-1111. https://doi.org/10.1088/1742-6596/34/1/182
    67. Tilman E. Schäffer, Boris Anczykowski, Harald Fuchs. Scanning Ion Conductance Microscopy. 2006, 91-119. https://doi.org/10.1007/3-540-27453-7_3
    68. E. Delamarche, D. Juncker, H. Schmid. Microfluidics for Processing Surfaces and Miniaturizing Biological Assays. Advanced Materials 2005, 17 (24) , 2911-2933. https://doi.org/10.1002/adma.200501129
    69. Kit T. Rodolfa, Andreas Bruckbauer, Dejian Zhou, Yuri E. Korchev, David Klenerman. Two‐Component Graded Deposition of Biomolecules with a Double‐Barreled Nanopipette. Angewandte Chemie 2005, 117 (42) , 7014-7019. https://doi.org/10.1002/ange.200502338
    70. Kit T. Rodolfa, Andreas Bruckbauer, Dejian Zhou, Yuri E. Korchev, David Klenerman. Two‐Component Graded Deposition of Biomolecules with a Double‐Barreled Nanopipette. Angewandte Chemie International Edition 2005, 44 (42) , 6854-6859. https://doi.org/10.1002/anie.200502338
    71. Lyle R. Middendorf, Patrick G. Humphrey, Narasimhachari Narayanan, Stephen C. Roemer. DNA Sequencing Technology. 2005, 129-180. https://doi.org/10.1002/9783527619733.ch6
    72. Liming Ying, Andreas Bruckbauer, Dejian Zhou, Julia Gorelik, Andrew Shevchuk, Max Lab, Yuri Korchev, David Klenerman. The scanned nanopipette: a new tool for high resolution bioimaging and controlled deposition of biomolecules. Physical Chemistry Chemical Physics 2005, 7 (15) , 2859. https://doi.org/10.1039/b506743j
    73. Samuel S. White, Liming Ying, Shankar Balasubramanian, David Klenerman. Individual Molecules of Dye‐Labeled DNA Act as a Reversible Two‐Color Switch upon Application of an Electric Field. Angewandte Chemie 2004, 116 (44) , 6052-6056. https://doi.org/10.1002/ange.200460323
    74. Samuel S. White, Liming Ying, Shankar Balasubramanian, David Klenerman. Individual Molecules of Dye‐Labeled DNA Act as a Reversible Two‐Color Switch upon Application of an Electric Field. Angewandte Chemie International Edition 2004, 43 (44) , 5926-5930. https://doi.org/10.1002/anie.200460323
    75. H. Li, L. Ying, X. Ren, S. Balasubramanian, D. Klenerman. Fluorescence studies of single biomolecules. Biochemical Society Transactions 2004, 32 (5) , 753-756. https://doi.org/10.1042/BST0320753
    76. A Biebricher, A Paul, P Tinnefeld, A Gölzhäuser, M Sauer. Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces. Journal of Biotechnology 2004, 112 (1-2) , 97-107. https://doi.org/10.1016/j.jbiotec.2004.03.019
    77. Dehong Hu, H. Peter Lu. Placing Single-Molecule T4 Lysozyme Enzymes on a Bacterial Cell Surface: Toward Probing Single-Molecule Enzymatic Reaction in Living Cells. Biophysical Journal 2004, 87 (1) , 656-661. https://doi.org/10.1529/biophysj.104.042101
    78. D J Laser, J G Santiago. A review of micropumps. Journal of Micromechanics and Microengineering 2004, 14 (6) , R35-R64. https://doi.org/10.1088/0960-1317/14/6/R01
    79. Chong-Woo Park, Jens-Peter Knemeyer, Nicole Marmé, Martin Möller, Joachim Spatz, Jürgen Wolfrum, Markus Sauer. Accurate delivery of single biomolecules by polyethylene glycol coated submicrometer pipettes. Chemical Physics 2004, 301 (1) , 105-110. https://doi.org/10.1016/j.chemphys.2004.03.006
    80. Liming Ying, Samuel S. White, Andreas Bruckbauer, Lisa Meadows, Yuri E. Korchev, David Klenerman. Frequency and Voltage Dependence of the Dielectrophoretic Trapping of Short Lengths of DNA and dCTP in a Nanopipette. Biophysical Journal 2004, 86 (2) , 1018-1027. https://doi.org/10.1016/S0006-3495(04)74177-6

    Analytical Chemistry

    Cite this: Anal. Chem. 2002, 74, 6, 1380–1385
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac015674m
    Published February 8, 2002
    Copyright © 2002 American Chemical Society

    Article Views

    1088

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.