ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
ADDITION / CORRECTIONThis article has been corrected. View the notice.
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Tandem Mass Tags:  A Novel Quantification Strategy for Comparative Analysis of Complex Protein Mixtures by MS/MS

View Author Information
Proteome Sciences§, Coveham House, Downside Bridge Road, Cobham, Surrey, KT11 3EP, U.K., and Xzillion GmbH, Industriepark Höchst, Building G865a, 65929 Frankfurt am Main, Germany
Cite this: Anal. Chem. 2003, 75, 8, 1895–1904
Publication Date (Web):March 1, 2003
https://doi.org/10.1021/ac0262560
Copyright © 2003 American Chemical Society

    Article Views

    25523

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    A novel MS/MS-based analysis strategy using isotopomer labels, referred to as “tandem mass tags” (TMTs), for the accurate quantification of peptides and proteins is described. The new tags are designed to ensure that identical peptides labeled with different TMTs exactly comigrate in all separations. The tags require novel methods of quantification analysis using tandem mass spectrometry. The new tags and analysis methods allow peptides from different samples to be identified by their relative abundance with greater ease and accuracy than other methods. The new TMTs permit simultaneous determination of both the identity and relative abundances of peptide pairs using a collision induced dissociation (CID)-based analysis method. Relative abundance measurements made in the MS/MS mode using the new tags are accurate and sensitive. Compared to MS-mode measurements, a very high signal-to-noise ratio is achieved with MS/MS based detection. The new tags should be applicable to a wide variety of peptide isolation methods.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Proteome Sciences.

     Xzillion GmbH.

    *

     Corresponding author. Fax:  0049 69 30544302. E-mail:  Christian.Hamon@ xzillion.com.

    §

     Company contact:  [email protected].

    Cited By

    This article is cited by 1838 publications.

    1. Annika Topitsch, Tim Halstenbach, René Rothweiler, Tobias Fretwurst, Katja Nelson, Oliver Schilling. Mass Spectrometry-Based Proteomics of Poly(methylmethacrylate)-Embedded Bone. Journal of Proteome Research 2024, Article ASAP.
    2. Tingyuan Yang, Shuli Tang, Jiaxin Feng, Xin Yan. Lipid Isobaric Mass Tagging for Enhanced Relative Quantification of Unsaturated sn-Positional Isomers. ACS Measurement Science Au 2024, 4 (2) , 213-222. https://doi.org/10.1021/acsmeasuresciau.3c00062
    3. Zicong Wang, Peng-Kai Liu, Lingjun Li. A Tutorial Review of Labeling Methods in Mass Spectrometry-Based Quantitative Proteomics. ACS Measurement Science Au 2024, Article ASAP.
    4. Vanya Bhushan, Aleksandra Nita-Lazar. Recent Advancements in Subcellular Proteomics: Growing Impact of Organellar Protein Niches on the Understanding of Cell Biology. Journal of Proteome Research 2024, Article ASAP.
    5. Liya Popova, Rachel A. Carr, Valerie J. Carabetta. Recent Contributions of Proteomics to Our Understanding of Reversible Nε-Lysine Acylation in Bacteria. Journal of Proteome Research 2024, Article ASAP.
    6. Louise Ulrich Kurt, Milan Avila Clasen, Ísis Venturi Biembengut, Max Ruwolt, Fan Liu, Fabio César Gozzo, Diogo Borges Lima, Paulo Costa Carvalho. RawVegetable 2.0: Refining XL-MS Data Acquisition through Enhanced Quality Control. Journal of Proteome Research 2024, Article ASAP.
    7. Zhen Wu, Xirui Huang, Lin Huang, Xumin Zhang. 102-Plex Approach for Accurate and Multiplexed Proteome Quantification. Analytical Chemistry 2024, 96 (4) , 1402-1409. https://doi.org/10.1021/acs.analchem.3c03036
    8. Junho Park, Seung Hak Lee, Dongyoon Shin, Yeongshin Kim, Young Sik Kim, Min Yong Seong, Jin Joo Lee, Han Gil Seo, Won-Sang Cho, Young Sun Ro, Youngsoo Kim, Byung-Mo Oh. Multiplexed Quantitative Proteomics Reveals Proteomic Alterations in Two Rodent Traumatic Brain Injury Models. Journal of Proteome Research 2024, 23 (1) , 249-263. https://doi.org/10.1021/acs.jproteome.3c00544
    9. Ci Wu, Jiao Lei, Fei Meng, Xingyao Wang, Cassandra J. Wong, Jiaxi Peng, Ge Lin, Anne-Claude Gingras, Junfeng Ma, Shen Zhang. Trace Sample Proteome Quantification by Data-Dependent Acquisition without Dynamic Exclusion. Analytical Chemistry 2023, 95 (49) , 17981-17987. https://doi.org/10.1021/acs.analchem.3c03357
    10. Kelly G. Stratton, Daniel M. Claborne, David J. Degnan, Rachel E. Richardson, Amanda M. White, Lee Ann McCue, Bobbie-Jo M. Webb-Robertson, Lisa M. Bramer. PMart Web Application: Marketplace for Interactive Analysis of Panomics Data. Journal of Proteome Research 2023, Article ASAP.
    11. Zongtao Lin, Joanna Gongora, Xingyu Liu, Yixuan Xie, Chenfeng Zhao, Dongwen Lv, Benjamin A. Garcia. Automation to Enable High-Throughput Chemical Proteomics. Journal of Proteome Research 2023, 22 (12) , 3676-3682. https://doi.org/10.1021/acs.jproteome.3c00467
    12. Xiaowen Qiao, Xinyu Qi, Pu Xing, Tianqi Liu, Hao Hao, Xinying Yang, Beihai Jiang, Ming Cui, Xiangqian Su. Tandem Mass Tag-Based Proteomic Profiling Identifies Biomarkers in Drainage Fluid for Early Detection of Anastomotic Leakage after Rectal Cancer Resection. Journal of Proteome Research 2023, 22 (11) , 3559-3569. https://doi.org/10.1021/acs.jproteome.3c00394
    13. Michael R. Lazear. Sage: An Open-Source Tool for Fast Proteomics Searching and Quantification at Scale. Journal of Proteome Research 2023, 22 (11) , 3652-3659. https://doi.org/10.1021/acs.jproteome.3c00486
    14. Steven R. Shuken, Graeme C. McAlister, William D. Barshop, Jesse D. Canterbury, David Bergen, Jingjing Huang, Romain Huguet, João A. Paulo, Vlad Zabrouskov, Steven P. Gygi, Qing Yu. Deep Proteomic Compound Profiling with the Orbitrap Ascend Tribrid Mass Spectrometer Using Tandem Mass Tags and Real-Time Search. Analytical Chemistry 2023, 95 (41) , 15180-15188. https://doi.org/10.1021/acs.analchem.3c01701
    15. Dong-Gi Mun, Neha S. Joshi, Rohit Budhraja, Gunveen S. Sachdeva, Taewook Kang, Firdous A. Bhat, Husheng Ding, Benjamin J. Madden, Jun Zhong, Akhilesh Pandey. Automated Sample Preparation Workflow for Tandem Mass Tag-Based Proteomics. Journal of the American Society for Mass Spectrometry 2023, 34 (10) , 2087-2092. https://doi.org/10.1021/jasms.3c00095
    16. Nikolas R. Burton, Daniel A. Polasky, Flowreen Shikwana, Samuel Ofori, Tianyang Yan, Daniel J. Geiszler, Felipe da Veiga Leprevost, Alexey I. Nesvizhskii, Keriann M. Backus. Solid-Phase Compatible Silane-Based Cleavable Linker Enables Custom Isobaric Quantitative Chemoproteomics. Journal of the American Chemical Society 2023, 145 (39) , 21303-21318. https://doi.org/10.1021/jacs.3c05797
    17. Quinn Neale, Alexandre Prefontaine, Taylor Battellino, Benilde Mizero, Darien Yeung, Victor Spicer, Nediljko Budisa, Helene Perreault, Rene P. Zahedi, Oleg V. Krokhin. Compendium of Chromatographic Behavior of Post-translationally and Chemically Modified Peptides in Bottom-Up Proteomic Experiments. Analytical Chemistry 2023, 95 (39) , 14634-14642. https://doi.org/10.1021/acs.analchem.3c02412
    18. Suyeon Yeom, Dowoon Nam, Kwon Hee Bok, Hye Kyeong Kwon, Seungwoo Kim, Sang-Won Lee, Hak Joong Kim. Synthesis of S-Carbamidomethyl Cysteine and Its Use for Quantification of Cysteinyl Peptides by Targeted Proteomics. Analytical Chemistry 2023, 95 (38) , 14413-14420. https://doi.org/10.1021/acs.analchem.3c02768
    19. Martin Novak, Marie Vajrychova, Stefania Koutsilieri, Despoina-Christina Sismanoglou, Tereza Kobrlova, Lukas Prchal, Barbora Svobodova, Jan Korabecny, Tomas Zarybnicky, Lucie Raisova-Stuchlikova, Lenka Skalova, Volker M. Lauschke, Radim Kučera, Ondrej Soukup. Tacrine First-Phase Biotransformation and Associated Hepatotoxicity: A Possible Way to Avoid Quinone Methide Formation. ACS Chemical Biology 2023, 18 (9) , 1993-2002. https://doi.org/10.1021/acschembio.3c00219
    20. Benjamin Muselius, Florence Roux-Dalvai, Arnaud Droit, Jennifer Geddes-McAlister. Resolving the Temporal Splenic Proteome during Fungal Infection for Discovery of Putative Dual Perspective Biomarker Signatures. Journal of the American Society for Mass Spectrometry 2023, 34 (9) , 1928-1940. https://doi.org/10.1021/jasms.3c00114
    21. Ting Huang, Mateusz Staniak, Felipe da Veiga Leprevost, Amanda M. Figueroa-Navedo, Alexander R. Ivanov, Alexey I. Nesvizhskii, Meena Choi, Olga Vitek. Statistical Detection of Differentially Abundant Proteins in Experiments with Repeated Measures Designs and Isobaric Labeling. Journal of Proteome Research 2023, 22 (8) , 2641-2659. https://doi.org/10.1021/acs.jproteome.3c00155
    22. Amanda M. Tallon, Yingrong Xu, Graham M. West, Christopher W. am Ende, Joseph M. Fox. Thiomethyltetrazines Are Reversible Covalent Cysteine Warheads Whose Dynamic Behavior can be “Switched Off” via Bioorthogonal Chemistry Inside Live Cells. Journal of the American Chemical Society 2023, 145 (29) , 16069-16080. https://doi.org/10.1021/jacs.3c04444
    23. Rijing Liao, Pu You, Kai Weng, Lulu Li, Yang Song. TMT Labeling under Acidic pH Overcomes Detrimental Overlabeling and Improves Peptide Identification Rates. Analytical Chemistry 2023, 95 (28) , 10595-10602. https://doi.org/10.1021/acs.analchem.3c00525
    24. Taylur P. Ma, Anita Izrael-Tomasevic, Rana Mroue, Hanna Budayeva, Sushant Malhotra, Ryan Raisner, Marie Evangelista, Christopher M. Rose, Donald S. Kirkpatrick, Kebing Yu. AzidoTMT Enables Direct Enrichment and Highly Multiplexed Quantitation of Proteome-Wide Functional Residues. Journal of Proteome Research 2023, 22 (7) , 2218-2231. https://doi.org/10.1021/acs.jproteome.2c00703
    25. Steven R. Shuken. An Introduction to Mass Spectrometry-Based Proteomics. Journal of Proteome Research 2023, 22 (7) , 2151-2171. https://doi.org/10.1021/acs.jproteome.2c00838
    26. Senhan Xu, Xing Xu, Ronghu Wu. Deciphering the Properties and Functions of Glycoproteins Using Quantitative Proteomics. Journal of Proteome Research 2023, 22 (6) , 1571-1588. https://doi.org/10.1021/acs.jproteome.3c00015
    27. Yuan Liu, Hua Zhang, William F. Dove, Zicong Wang, Zhijun Zhu, Perry J. Pickhardt, Mark Reichelderfer, Lingjun Li. Quantification of Serum Metabolites in Early Colorectal Adenomas Using Isobaric Labeling Mass Spectrometry. Journal of Proteome Research 2023, 22 (5) , 1483-1491. https://doi.org/10.1021/acs.jproteome.3c00006
    28. Yanting Guo, Trishika Chowdhury, Meena Seshadri, Kellye A. Cupp-Sutton, Qingyu Wang, Dahang Yu, Si Wu. Optimization of Higher-Energy Collisional Dissociation Fragmentation Energy for Intact Protein-Level Tandem Mass Tag Labeling. Journal of Proteome Research 2023, 22 (5) , 1406-1418. https://doi.org/10.1021/acs.jproteome.2c00549
    29. Yang Zhao, Qian Xue, Man Wang, Bo Meng, You Jiang, Rui Zhai, Yong Zhang, Xinhua Dai, Xiang Fang. Evolution of Mass Spectrometry Instruments and Techniques for Blood Proteomics. Journal of Proteome Research 2023, 22 (4) , 1009-1023. https://doi.org/10.1021/acs.jproteome.3c00102
    30. Xinyue Liu, Valentina Rossio, Steven P. Gygi, Joao A. Paulo. Enriching Cysteine-Containing Peptides Using a Sulfhydryl-Reactive Alkylating Reagent with a Phosphonic Acid Group and Immobilized Metal Affinity Chromatography. Journal of Proteome Research 2023, 22 (4) , 1270-1279. https://doi.org/10.1021/acs.jproteome.2c00806
    31. Zhen Wu, Weirong Xiang, Lin Huang, Shuwei Li, Xumin Zhang. Hyperplexing Approaches for up to 45-Plex Quantitative Proteomic Analysis. Analytical Chemistry 2023, 95 (12) , 5169-5175. https://doi.org/10.1021/acs.analchem.3c00237
    32. Anton N. Kozhinov, Alex Johnson, Konstantin O. Nagornov, Michael Stadlmeier, Warham Lance Martin, Loïc Dayon, John Corthésy, Martin Wühr, Yury O. Tsybin. Super-Resolution Mass Spectrometry Enables Rapid, Accurate, and Highly Multiplexed Proteomics at the MS2 Level. Analytical Chemistry 2023, 95 (7) , 3712-3719. https://doi.org/10.1021/acs.analchem.2c04742
    33. Kai Cheng, Zhibin Ning, Leyuan Li, Xu Zhang, Joeselle M. Serrana, Janice Mayne, Daniel Figeys. MetaLab-MAG: A Metaproteomic Data Analysis Platform for Genome-Level Characterization of Microbiomes from the Metagenome-Assembled Genomes Database. Journal of Proteome Research 2023, 22 (2) , 387-398. https://doi.org/10.1021/acs.jproteome.2c00554
    34. Eric W. Deutsch, Luis Mendoza, David D. Shteynberg, Michael R. Hoopmann, Zhi Sun, Jimmy K. Eng, Robert L. Moritz. Trans-Proteomic Pipeline: Robust Mass Spectrometry-Based Proteomics Data Analysis Suite. Journal of Proteome Research 2023, 22 (2) , 615-624. https://doi.org/10.1021/acs.jproteome.2c00624
    35. Xiaomei He, Xingyuan Chen, Yinsheng Wang. Mass Spectrometry for Assessing Protein–Nucleic Acid Interactions. Analytical Chemistry 2023, 95 (1) , 115-127. https://doi.org/10.1021/acs.analchem.2c04353
    36. Xiaohui Zhao, Xinglin Yang, Howard C. Hang. Chemoproteomic Analysis of Microbiota Metabolite–Protein Targets and Mechanisms. Biochemistry 2022, 61 (24) , 2822-2834. https://doi.org/10.1021/acs.biochem.1c00758
    37. Tianen He, Youqi Liu, Yan Zhou, Lu Li, He Wang, Shanjun Chen, Jinlong Gao, Wenhao Jiang, Yi Yu, Weigang Ge, Hui-Yin Chang, Ziquan Fan, Alexey I. Nesvizhskii, Tiannan Guo, Yaoting Sun. Comparative Evaluation of Proteome Discoverer and FragPipe for the TMT-Based Proteome Quantification. Journal of Proteome Research 2022, 21 (12) , 3007-3015. https://doi.org/10.1021/acs.jproteome.2c00390
    38. Zhuoyuan Zhang, Jianwei Lin, Zheng Liu, Gaofei Tian, Xiao-Meng Li, Yihang Jing, Xin Li, Xiang David Li. Photo-Cross-Linking To Delineate Epigenetic Interactome. Journal of the American Chemical Society 2022, 144 (46) , 20979-20997. https://doi.org/10.1021/jacs.2c06135
    39. Paolo Cifani, Alex Kentsis. Quantitative Cell Proteomic Atlas: Pathway-Scale Targeted Mass Spectrometry for High-Resolution Functional Profiling of Cell Signaling. Journal of Proteome Research 2022, 21 (10) , 2535-2544. https://doi.org/10.1021/acs.jproteome.2c00223
    40. Kejun Yin, Ming Tong, Fangxu Sun, Ronghu Wu. Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress. Analytical Chemistry 2022, 94 (38) , 13250-13260. https://doi.org/10.1021/acs.analchem.2c03076
    41. Zhen Wu, Yi Shen, Xumin Zhang. TAG-TMTpro, a Hyperplexing Quantitative Approach for High-Throughput Proteomic Studies. Analytical Chemistry 2022, 94 (37) , 12565-12569. https://doi.org/10.1021/acs.analchem.2c02099
    42. Simion Kreimer, Ali Haghani, Aleksandra Binek, Alisse Hauspurg, Saeed Seyedmohammad, Alejandro Rivas, Amanda Momenzadeh, Jesse G. Meyer, Koen Raedschelders, Jennifer E. Van Eyk. Parallelization with Dual-Trap Single-Column Configuration Maximizes Throughput of Proteomic Analysis. Analytical Chemistry 2022, 94 (36) , 12452-12460. https://doi.org/10.1021/acs.analchem.2c02609
    43. Danqing Wang, Min Ma, Junfeng Huang, Ting-Jia Gu, Yusi Cui, Miyang Li, Zicong Wang, Henrik Zetterberg, Lingjun Li. Boost-DiLeu: Enhanced Isobaric N,N-Dimethyl Leucine Tagging Strategy for a Comprehensive Quantitative Glycoproteomic Analysis. Analytical Chemistry 2022, 94 (34) , 11773-11782. https://doi.org/10.1021/acs.analchem.2c01773
    44. Rick A. Homan, Appaso M. Jadhav, Louis P. Conway, Christopher G. Parker. A Chemical Proteomic Map of Heme–Protein Interactions. Journal of the American Chemical Society 2022, 144 (33) , 15013-15019. https://doi.org/10.1021/jacs.2c06104
    45. Yang Zhang, Benjamin Dreyer, Natalia Govorukhina, Alexander M. Heberle, Saša Končarević, Christoph Krisp, Christiane A. Opitz, Pauline Pfänder, Rainer Bischoff, Hartmut Schlüter, Marcel Kwiatkowski, Kathrin Thedieck, Peter L. Horvatovich. Comparative Assessment of Quantification Methods for Tumor Tissue Phosphoproteomics. Analytical Chemistry 2022, 94 (31) , 10893-10906. https://doi.org/10.1021/acs.analchem.2c01036
    46. Yinyi Gao, Kaili Li, Lijun Zhang, Chu Chen, Chuan Bai. A Nucleophilic Chemical Probe Targeting Electrophilic Functional Groups in an Untargeted Way to Explore Cysteine Modulators in Natural Products. ACS Chemical Biology 2022, 17 (7) , 1685-1690. https://doi.org/10.1021/acschembio.2c00385
    47. Mihebai Yilimulati, Lang Zhou, Dmitry Shevela, Shujuan Zhang. Acetylacetone Interferes with Carbon and Nitrogen Metabolism of Microcystis aeruginosa by Cutting Off the Electron Flow to Ferredoxin. Environmental Science & Technology 2022, 56 (13) , 9683-9692. https://doi.org/10.1021/acs.est.2c00776
    48. Michael R. Armbruster, Scott F. Grady, Christopher K. Arnatt, James L. Edwards. Isobaric 4-Plex Tagging for Absolute Quantitation of Biological Acids in Diabetic Urine Using Capillary LC–MS/MS. ACS Measurement Science Au 2022, 2 (3) , 287-295. https://doi.org/10.1021/acsmeasuresciau.1c00061
    49. Xinyue Liu, Jiaming Li, Steven P. Gygi, Joao A. Paulo. Profiling Yeast Deletion Strains Using Sample Multiplexing and Network-Based Analyses. Journal of Proteome Research 2022, 21 (6) , 1525-1536. https://doi.org/10.1021/acs.jproteome.2c00137
    50. Jianhui Liu, Yuan Zhou, Xinhang Hou, Chao Liu, Baofeng Zhao, Yichu Shan, Zhigang Sui, Zhen Liang, Lihua Zhang, Yukui Zhang. A1 Ions: Peptide-Specific and Intensity-Enhanced Fragment Ions for Accurate and Multiplexed Proteome Quantitation. Analytical Chemistry 2022, 94 (21) , 7637-7646. https://doi.org/10.1021/acs.analchem.2c00876
    51. Benilde Mizero, Carina Villacrés, Victor Spicer, Rosa Viner, Julian Saba, Bhavinkumar Patel, Sergei Snovida, Penny Jensen, Andreas Huhmer, Oleg V. Krokhin. Retention Time Prediction for TMT-Labeled Peptides in Proteomic LC-MS Experiments. Journal of Proteome Research 2022, 21 (5) , 1218-1228. https://doi.org/10.1021/acs.jproteome.1c00833
    52. Rivkah Rogawski, Michal Sharon. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chemical Reviews 2022, 122 (8) , 7386-7414. https://doi.org/10.1021/acs.chemrev.1c00217
    53. Juan D. Chavez, Helisa H. Wippel, Xiaoting Tang, Andrew Keller, James E. Bruce. In-Cell Labeling and Mass Spectrometry for Systems-Level Structural Biology. Chemical Reviews 2022, 122 (8) , 7647-7689. https://doi.org/10.1021/acs.chemrev.1c00223
    54. Max Ruwolt, Lennart Schnirch, Diogo Borges Lima, Michal Nadler-Holly, Rosa Viner, Fan Liu. Optimized TMT-Based Quantitative Cross-Linking Mass Spectrometry Strategy for Large-Scale Interactomic Studies. Analytical Chemistry 2022, 94 (13) , 5265-5272. https://doi.org/10.1021/acs.analchem.1c04812
    55. Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li. 12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response. Analytical Chemistry 2022, 94 (7) , 3074-3081. https://doi.org/10.1021/acs.analchem.1c04073
    56. Kenneth W. Lee, Trenton M. Peters-Clarke, Keaton L. Mertz, Graeme C. McAlister, John E. P. Syka, Michael S. Westphall, Joshua J. Coon. Infrared Photoactivation Boosts Reporter Ion Yield in Isobaric Tagging. Analytical Chemistry 2022, 94 (7) , 3328-3334. https://doi.org/10.1021/acs.analchem.1c05398
    57. David L. Williamson, Addison E. Bergman, Emily C. Heider, Gabe Nagy. Experimental Measurements of Relative Mobility Shifts Resulting from Isotopic Substitutions with High-Resolution Cyclic Ion Mobility Separations. Analytical Chemistry 2022, 94 (6) , 2988-2995. https://doi.org/10.1021/acs.analchem.1c05240
    58. Helisa H. Wippel, Juan D. Chavez, Andrew D. Keller, James E. Bruce. Multiplexed Isobaric Quantitative Cross-Linking Reveals Drug-Induced Interactome Changes in Breast Cancer Cells. Analytical Chemistry 2022, 94 (6) , 2713-2722. https://doi.org/10.1021/acs.analchem.1c02208
    59. Stephan Eckert, Yun-Chien Chang, Florian P. Bayer, Matthew The, Peer-Hendrik Kuhn, Wilko Weichert, Bernhard Kuster. Evaluation of Disposable Trap Column nanoLC–FAIMS–MS/MS for the Proteomic Analysis of FFPE Tissue. Journal of Proteome Research 2021, 20 (12) , 5402-5411. https://doi.org/10.1021/acs.jproteome.1c00695
    60. Stephanie Biedka, Brigitte F. Schmidt, Nolan M. Frey, Sarah M. Boothman, Jonathan S. Minden, Amber Lee Wilson. Reversible Click Chemistry Tag for Universal Proteome Sample Preparation for Top-Down and Bottom-Up Analysis. Journal of Proteome Research 2021, 20 (10) , 4787-4800. https://doi.org/10.1021/acs.jproteome.1c00443
    61. Sansi Xing, Akshat Pai, Ruilin Wu, Yu Lu. NHS-Ester Tandem Labeling in One Pot Enables 48-Plex Quantitative Proteomics. Analytical Chemistry 2021, 93 (38) , 12827-12832. https://doi.org/10.1021/acs.analchem.1c01314
    62. Anna K.W. Tribe, Melanie J. McConnell, Paul H. Teesdale-Spittle. The Big Picture of Glioblastoma Malignancy: A Meta-Analysis of Glioblastoma Proteomics to Identify Altered Biological Pathways. ACS Omega 2021, 6 (38) , 24535-24544. https://doi.org/10.1021/acsomega.1c02991
    63. Konrad Winkels, Tomas Koudelka, Andreas Tholey. Quantitative Top-Down Proteomics by Isobaric Labeling with Thiol-Directed Tandem Mass Tags. Journal of Proteome Research 2021, 20 (9) , 4495-4506. https://doi.org/10.1021/acs.jproteome.1c00460
    64. Bo Zhang, Lei Zhang, Hongshuang Wang, Xiaohui Wang. Lessons Learned from the Explosion that Occurred during the Synthesis of Diaminomethanesulfonic Acid: Discussion and Preventative Strategies. ACS Chemical Health & Safety 2021, 28 (4) , 244-249. https://doi.org/10.1021/acs.chas.1c00021
    65. Olesja Popow, Xinyue Liu, Kevin M. Haigis, Steven P. Gygi, Joao A. Paulo. A Compendium of Murine (Phospho)Peptides Encompassing Different Isobaric Labeling and Data Acquisition Strategies. Journal of Proteome Research 2021, 20 (7) , 3678-3688. https://doi.org/10.1021/acs.jproteome.1c00247
    66. Kiall F. Suazo, Keun-Young Park, Mark D. Distefano. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chemical Reviews 2021, 121 (12) , 7178-7248. https://doi.org/10.1021/acs.chemrev.0c01108
    67. Magnus Palmblad. Theoretical Considerations for Next-Generation Proteomics. Journal of Proteome Research 2021, 20 (6) , 3395-3399. https://doi.org/10.1021/acs.jproteome.1c00136
    68. Dahang Yu, Zhe Wang, Kellye A. Cupp-Sutton, Yanting Guo, Qiang Kou, Kenneth Smith, Xiaowen Liu, Si Wu. Quantitative Top-Down Proteomics in Complex Samples Using Protein-Level Tandem Mass Tag Labeling. Journal of the American Society for Mass Spectrometry 2021, 32 (6) , 1336-1344. https://doi.org/10.1021/jasms.0c00464
    69. Thomas J. M. Michiels, Madelief A. van Veen, Hugo D. Meiring, Wim Jiskoot, Gideon F. A. Kersten, Bernard Metz. Common Reference-Based Tandem Mass Tag Multiplexing for the Relative Quantification of Peptides: Design and Application to Degradome Analysis of Diphtheria Toxoid. Journal of the American Society for Mass Spectrometry 2021, 32 (6) , 1490-1497. https://doi.org/10.1021/jasms.1c00070
    70. Chelsea Hutchinson-Bunch, James A. Sanford, Joshua R. Hansen, Marina A. Gritsenko, Karin D. Rodland, Paul D. Piehowski, Wei-Jun Qian, Joshua N. Adkins. Assessment of TMT Labeling Efficiency in Large-Scale Quantitative Proteomics: The Critical Effect of Sample pH. ACS Omega 2021, 6 (19) , 12660-12666. https://doi.org/10.1021/acsomega.1c00776
    71. Sarah A. Peck Justice, Neil A. McCracken, José F. Victorino, Guihong D. Qi, Aruna B. Wijeratne, Amber L. Mosley. Boosting Detection of Low-Abundance Proteins in Thermal Proteome Profiling Experiments by Addition of an Isobaric Trigger Channel to TMT Multiplexes. Analytical Chemistry 2021, 93 (18) , 7000-7010. https://doi.org/10.1021/acs.analchem.1c00012
    72. Alban Ordureau, Qing Yu, Ryan D. Bomgarden, John C. Rogers, J. Wade Harper, Steven P. Gygi, Joao A. Paulo. Super Heavy TMTpro Labeling Reagent: An Alternative and Higher-Charge-State-Amenable Stable-Isotope-Labeled TMTpro Variant. Journal of Proteome Research 2021, 20 (5) , 3009-3013. https://doi.org/10.1021/acs.jproteome.0c01056
    73. Jan Leipert, Max K. Steinbach, Andreas Tholey. Isobaric Peptide Labeling on Digital Microfluidics for Quantitative Low Cell Number Proteomics. Analytical Chemistry 2021, 93 (15) , 6278-6286. https://doi.org/10.1021/acs.analchem.1c01205
    74. Svenja Wiechmann, Benjamin Ruprecht, Theresa Siekmann, Runsheng Zheng, Martin Frejno, Elena Kunold, Thomas Bajaj, Daniel P. Zolg, Stephan A. Sieber, Nils C. Gassen, Bernhard Kuster. Chemical Phosphoproteomics Sheds New Light on the Targets and Modes of Action of AKT Inhibitors. ACS Chemical Biology 2021, 16 (4) , 631-641. https://doi.org/10.1021/acschembio.0c00872
    75. Mark V. Ivanov, Julia A. Bubis, Vladimir Gorshkov, Daniil A. Abdrakhimov, Frank Kjeldsen, Mikhail V. Gorshkov. Boosting MS1-only Proteomics with Machine Learning Allows 2000 Protein Identifications in Single-Shot Human Proteome Analysis Using 5 min HPLC Gradient. Journal of Proteome Research 2021, 20 (4) , 1864-1873. https://doi.org/10.1021/acs.jproteome.0c00863
    76. Shengnan Wang, Jie Pang, Peng Liang. Differential Proteomics Analysis of Penaeus vannamei Muscles with Quality Characteristics by TMT Quantitative Proteomics during Low-Temperature Storage. Journal of Agricultural and Food Chemistry 2021, 69 (10) , 3247-3254. https://doi.org/10.1021/acs.jafc.0c08110
    77. Ayako Takemori, Jun Ishizaki, Kenji Nakashima, Takeshi Shibata, Hidemasa Kato, Yoshio Kodera, Tetsuro Suzuki, Hitoshi Hasegawa, Nobuaki Takemori. BAC-DROP: Rapid Digestion of Proteome Fractionated via Dissolvable Polyacrylamide Gel Electrophoresis and Its Application to Bottom-Up Proteomics Workflow. Journal of Proteome Research 2021, 20 (3) , 1535-1543. https://doi.org/10.1021/acs.jproteome.0c00749
    78. Nico Zinn, Thilo Werner, Carola Doce, Toby Mathieson, Christine Boecker, Gavain Sweetman, Christian Fufezan, Marcus Bantscheff. Improved Proteomics-Based Drug Mechanism-of-Action Studies Using 16-Plex Isobaric Mass Tags. Journal of Proteome Research 2021, 20 (3) , 1792-1801. https://doi.org/10.1021/acs.jproteome.0c00900
    79. James A. Dowell, Logan J. Wright, Eric A. Armstrong, John M. Denu. Benchmarking Quantitative Performance in Label-Free Proteomics. ACS Omega 2021, 6 (4) , 2494-2504. https://doi.org/10.1021/acsomega.0c04030
    80. Yihang Jing, Jose L. Montano, Michaella Levy, Jeffrey E. Lopez, Pei-Pei Kung, Paul Richardson, Krzysztof Krajewski, Laurence Florens, Michael P. Washburn, Jordan L. Meier. Harnessing Ionic Selectivity in Acetyltransferase Chemoproteomic Probes. ACS Chemical Biology 2021, 16 (1) , 27-34. https://doi.org/10.1021/acschembio.0c00766
    81. Danting Liu, Shu Yang, Kanisha Kavdia, Jeffrey M. Sifford, Zhiping Wu, Boer Xie, Zhen Wang, Vishwajeeth R. Pagala, Hong Wang, Kaiwen Yu, Kaushik Kumar Dey, Anthony A. High, Geidy E. Serrano, Thomas G. Beach, Junmin Peng. Deep Profiling of Microgram-Scale Proteome by Tandem Mass Tag Mass Spectrometry. Journal of Proteome Research 2021, 20 (1) , 337-345. https://doi.org/10.1021/acs.jproteome.0c00426
    82. Tian Zhang, Steven P. Gygi, Joao A. Paulo. Temporal Proteomic Profiling of SH-SY5Y Differentiation with Retinoic Acid Using FAIMS and Real-Time Searching. Journal of Proteome Research 2021, 20 (1) , 704-714. https://doi.org/10.1021/acs.jproteome.0c00614
    83. Xiaobo Tian, Marcel P. de Vries, Hjalmar P. Permentier, Rainer Bischoff. A Versatile Isobaric Tag Enables Proteome Quantification in Data-Dependent and Data-Independent Acquisition Modes. Analytical Chemistry 2020, 92 (24) , 16149-16157. https://doi.org/10.1021/acs.analchem.0c03858
    84. Katharina Dodt, Marc D. Driessen, Stephanie Lamer, Andreas Schlosser, Tessa Lühmann, Lorenz Meinel. A Complete and Versatile Protocol: Decoration of Cell-Derived Matrices with Mass-Encoded Peptides for Multiplexed Protease Activity Detection. ACS Biomaterials Science & Engineering 2020, 6 (12) , 6598-6617. https://doi.org/10.1021/acsbiomaterials.0c01134
    85. Gilbert S. Omenn, Lydie Lane, Christopher M. Overall, Ileana M. Cristea, Fernando J. Corrales, Cecilia Lindskog, Young-Ki Paik, Jennifer E. Van Eyk, Siqi Liu, Stephen R. Pennington, Michael P. Snyder, Mark S. Baker, Nuno Bandeira, Ruedi Aebersold, Robert L. Moritz, Eric W. Deutsch. Research on the Human Proteome Reaches a Major Milestone: >90% of Predicted Human Proteins Now Credibly Detected, According to the HUPO Human Proteome Project. Journal of Proteome Research 2020, 19 (12) , 4735-4746. https://doi.org/10.1021/acs.jproteome.0c00485
    86. Maike Sperk, Robert van Domselaar, Jimmy Esneider Rodriguez, Flora Mikaeloff, Beatriz Sá Vinhas, Elisa Saccon, Anders Sönnerborg, Kamal Singh, Soham Gupta, Ákos Végvári, Ujjwal Neogi. Utility of Proteomics in Emerging and Re-Emerging Infectious Diseases Caused by RNA Viruses. Journal of Proteome Research 2020, 19 (11) , 4259-4274. https://doi.org/10.1021/acs.jproteome.0c00380
    87. Juan D. Chavez, Andrew Keller, Jared P. Mohr, James E. Bruce. Isobaric Quantitative Protein Interaction Reporter Technology for Comparative Interactome Studies. Analytical Chemistry 2020, 92 (20) , 14094-14102. https://doi.org/10.1021/acs.analchem.0c03128
    88. Sung-Huan Yu, Pelagia Kyriakidou, Jürgen Cox. Isobaric Matching between Runs and Novel PSM-Level Normalization in MaxQuant Strongly Improve Reporter Ion-Based Quantification. Journal of Proteome Research 2020, 19 (10) , 3945-3954. https://doi.org/10.1021/acs.jproteome.0c00209
    89. Katharina Dodt, Stephanie Lamer, Marc Drießen, Sebastian Bölch, Andreas Schlosser, Tessa Lühmann, Lorenz Meinel. Mass-Encoded Reporters Reporting Proteolytic Activity from within the Extracellular Matrix. ACS Biomaterials Science & Engineering 2020, 6 (9) , 5240-5253. https://doi.org/10.1021/acsbiomaterials.0c00691
    90. Xiang Gao, Liping Zhang, Peng Zhou, Yongguang Zhang, Yanming Wei, Yonglu Wang, Xinsheng Liu. Tandem Mass Tag-Based Quantitative Proteome Analysis of Porcine Deltacoronavirus (PDCoV)-Infected LLC Porcine Kidney Cells. ACS Omega 2020, 5 (35) , 21979-21987. https://doi.org/10.1021/acsomega.0c00886
    91. Xiaobo Tian, Marcel P. de Vries, Hjalmar P. Permentier, Rainer Bischoff. A Collision-Induced Dissociation Cleavable Isobaric Tag for Peptide Fragment Ion-Based Quantification in Proteomics. Journal of Proteome Research 2020, 19 (9) , 3817-3824. https://doi.org/10.1021/acs.jproteome.0c00371
    92. Amélie M. Joffrin, Linda C. Hsieh-Wilson. Photoaffinity Probes for the Identification of Sequence-Specific Glycosaminoglycan-Binding Proteins. Journal of the American Chemical Society 2020, 142 (32) , 13672-13676. https://doi.org/10.1021/jacs.0c06046
    93. Yuan Mao, Andrew Kleinberg, Ning Li. Isobaric Tandem Mass Tag Multiplexed Post-Translational Modification Quantitation of Biopharmaceuticals by Targeted High-Resolution Mass Spectrometry. Analytical Chemistry 2020, 92 (14) , 9682-9690. https://doi.org/10.1021/acs.analchem.0c00999
    94. Sibylle Pfammatter, Eric Bonneil, Joel Lanoix, Krystel Vincent, Marie-Pierre Hardy, Mathieu Courcelles, Claude Perreault, Pierre Thibault. Extending the Comprehensiveness of Immunopeptidome Analyses Using Isobaric Peptide Labeling. Analytical Chemistry 2020, 92 (13) , 9194-9204. https://doi.org/10.1021/acs.analchem.0c01545
    95. Tong Zhang, Matthew J. Gaffrey, Matthew E. Monroe, Dennis G. Thomas, Karl K. Weitz, Paul D. Piehowski, Vladislav A. Petyuk, Ronald J. Moore, Brian D. Thrall, Wei-Jun Qian. Block Design with Common Reference Samples Enables Robust Large-Scale Label-Free Quantitative Proteome Profiling. Journal of Proteome Research 2020, 19 (7) , 2863-2872. https://doi.org/10.1021/acs.jproteome.0c00310
    96. Michelle A. Kennedy, William A. Hofstadter, Ileana M. Cristea. TRANSPIRE: A Computational Pipeline to Elucidate Intracellular Protein Movements from Spatial Proteomics Data Sets. Journal of the American Society for Mass Spectrometry 2020, 31 (7) , 1422-1439. https://doi.org/10.1021/jasms.0c00033
    97. Alexander R. Pelletier, Yun-En Chung, Zhibin Ning, Nora Wong, Daniel Figeys, Mathieu Lavallée-Adam. MealTime-MS: A Machine Learning-Guided Real-Time Mass Spectrometry Analysis for Protein Identification and Efficient Dynamic Exclusion. Journal of the American Society for Mass Spectrometry 2020, 31 (7) , 1459-1472. https://doi.org/10.1021/jasms.0c00064
    98. Dustin C. Frost, Yu Feng, Lingjun Li. 21-plex DiLeu Isobaric Tags for High-Throughput Quantitative Proteomics. Analytical Chemistry 2020, 92 (12) , 8228-8234. https://doi.org/10.1021/acs.analchem.0c00473
    99. Kosuke Ogata, Yasushi Ishihama. Extending the Separation Space with Trapped Ion Mobility Spectrometry Improves the Accuracy of Isobaric Tag-Based Quantitation in Proteomic LC/MS/MS. Analytical Chemistry 2020, 92 (12) , 8037-8040. https://doi.org/10.1021/acs.analchem.0c01695
    100. Xiaobo Tian, Marcel P. de Vries, Susan W. J. Visscher, Hjalmar P. Permentier, Rainer Bischoff. Selective Maleylation-Directed Isobaric Peptide Termini Labeling for Accurate Proteome Quantification. Analytical Chemistry 2020, 92 (11) , 7836-7844. https://doi.org/10.1021/acs.analchem.0c01059
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect