Thermal Bonding of Polymeric Capillary Electrophoresis Microdevices in WaterClick to copy article linkArticle link copied!
Abstract
A new method for thermally bonding poly(methyl methacrylate) (PMMA) substrates to form microfluidic systems has been demonstrated. A PMMA substrate is first imprinted with a Si template using applied pressure and elevated temperature to form microchannel structures. This embossing method has been used to successfully pattern over 65 PMMA pieces using a single Si template. Thermal bonding for channel enclosure is accomplished by clamping together an imprinted and a blank substrate and placing the assembly in boiling water for 1 h. The functionality of these water-bonded microfluidic substrates was demonstrated by performing high-resolution electrophoretic separations of fluorescently labeled amino acids. Testing of bond strength in four microdevices showed an average failure pressure of 130 kPa, which was comparable to the bond strength for devices sealed in air. Subsequent profilometry of separated substrates revealed that the dimensions of the channels were well preserved during the bonding process. This new methodology for generation of microfluidic constructs should facilitate the permanent incorporation of hydrated, molecular size-selective membranes in microdevices, thus circumventing problems associated with membrane swelling in microfluidic systems upon exposure to water.
*
Corresponding author. Phone: (801) 422-1701. Fax: (801) 422-0153. E-mail: [email protected].
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 116 publications.
- Major A. Selemani, Andre D. Castiaux, R. Scott Martin. PolyJet-Based 3D Printing against Micromolds to Produce Channel Structures for Microchip Electrophoresis. ACS Omega 2022, 7
(15)
, 13362-13370. https://doi.org/10.1021/acsomega.2c01265
- Guy W. Dayhoff, II, David M. Rogers. Hydration and Dispersion Forces in Hydroxypropylcellulose Phase Behavior. The Journal of Physical Chemistry B 2019, 123
(23)
, 4976-4985. https://doi.org/10.1021/acs.jpcb.9b01049
- Michael
J. Beauchamp, Anna V. Nielsen, Hua Gong, Gregory P. Nordin, Adam T. Woolley. 3D Printed Microfluidic Devices for Microchip Electrophoresis of Preterm Birth Biomarkers. Analytical Chemistry 2019, 91
(11)
, 7418-7425. https://doi.org/10.1021/acs.analchem.9b01395
- Chad I. Rogers, Jayson V. Pagaduan, Gregory P. Nordin, and Adam T. Woolley . Single-Monomer Formulation of Polymerized Polyethylene Glycol Diacrylate as a Nonadsorptive Material for Microfluidics. Analytical Chemistry 2011, 83
(16)
, 6418-6425. https://doi.org/10.1021/ac201539h
- Ming Yu, Qingsong Wang, James E. Patterson, and Adam T. Woolley . Multilayer Polymer Microchip Capillary Array Electrophoresis Devices with Integrated On-Chip Labeling for High-Throughput Protein Analysis. Analytical Chemistry 2011, 83
(9)
, 3541-3547. https://doi.org/10.1021/ac200254c
- Weichun Yang, Xiuhua Sun, Hsiang-Yu Wang and Adam T. Woolley . Integrated Microfluidic Device for Serum Biomarker Quantitation Using Either Standard Addition or a Calibration Curve. Analytical Chemistry 2009, 81
(19)
, 8230-8235. https://doi.org/10.1021/ac901566s
- Mark D. Goldberg, Roger C. Lo, Silvija Abele, Miroslav Macka and Frank A. Gomez. Development of Microfluidic Chips for Heterogeneous Receptor−Ligand Interaction Studies. Analytical Chemistry 2009, 81
(12)
, 5095-5098. https://doi.org/10.1021/ac9006649
- Myra T. Koesdjojo, Corey R. Koch and Vincent T. Remcho. Technique for Microfabrication of Polymeric-Based Microchips from an SU-8 Master with Temperature-Assisted Vaporized Organic Solvent Bonding. Analytical Chemistry 2009, 81
(4)
, 1652-1659. https://doi.org/10.1021/ac802450u
- Xiuhua Sun, Weichun Yang, Tao Pan and Adam T. Woolley. Affinity Monolith-Integrated Poly(methyl methacrylate) Microchips for On-Line Protein Extraction and Capillary Electrophoresis. Analytical Chemistry 2008, 80
(13)
, 5126-5130. https://doi.org/10.1021/ac800322f
- Myra T. Koesdjojo,, Yolanda H. Tennico, and, Vincent T. Remcho. Fabrication of a Microfluidic System for Capillary Electrophoresis Using a Two-Stage Embossing Technique and Solvent Welding on Poly(methyl methacrylate) with Water as a Sacrificial Layer. Analytical Chemistry 2008, 80
(7)
, 2311-2318. https://doi.org/10.1021/ac7021647
- Hernan V. Fuentes and, Adam T. Woolley. Phase-Changing Sacrificial Layer Fabrication of Multilayer Polymer Microfluidic Devices. Analytical Chemistry 2008, 80
(1)
, 333-339. https://doi.org/10.1021/ac7017475
- Jikun Liu,, Xuefei Sun, and, Milton L. Lee. Adsorption-Resistant Acrylic Copolymer for Prototyping of Microfluidic Devices for Proteins and Peptides. Analytical Chemistry 2007, 79
(5)
, 1926-1931. https://doi.org/10.1021/ac0617621
- Jonathan A. Vickers,, Meghan M. Caulum, and, Charles S. Henry. Generation of Hydrophilic Poly(dimethylsiloxane) for High-Performance Microchip Electrophoresis. Analytical Chemistry 2006, 78
(21)
, 7446-7452. https://doi.org/10.1021/ac0609632
- Hongyan Bi,, Wei Zhong,, Sheng Meng,, Jilie Kong,, Pengyuan Yang, and, Baohong Liu. Construction of a Biomimetic Surface on Microfluidic Chips for Biofouling Resistance. Analytical Chemistry 2006, 78
(10)
, 3399-3405. https://doi.org/10.1021/ac0522963
- Ryan T. Kelly,, Yi Li, and, Adam T. Woolley. Phase-Changing Sacrificial Materials for Interfacing Microfluidics with Ion-Permeable Membranes To Create On-Chip Preconcentrators and Electric Field Gradient Focusing Microchips. Analytical Chemistry 2006, 78
(8)
, 2565-2570. https://doi.org/10.1021/ac0521394
- Jikun Liu,, Xuefei Sun, and, Milton L. Lee. Surface-Reactive Acrylic Copolymer for Fabrication of Microfluidic Devices. Analytical Chemistry 2005, 77
(19)
, 6280-6287. https://doi.org/10.1021/ac0580060
- Ryan T. Kelly,, Tao Pan, and, Adam T. Woolley. Phase-Changing Sacrificial Materials for Solvent Bonding of High-Performance Polymeric Capillary Electrophoresis Microchips. Analytical Chemistry 2005, 77
(11)
, 3536-3541. https://doi.org/10.1021/ac0501083
- Jikun Liu,, Tao Pan,, Adam T. Woolley, and, Milton L. Lee. Surface-Modified Poly(methyl methacrylate) Capillary Electrophoresis Microchips for Protein and Peptide Analysis. Analytical Chemistry 2004, 76
(23)
, 6948-6955. https://doi.org/10.1021/ac040094l
- Paul H. Humble,, Ryan T. Kelly,, Adam T. Woolley,, H. Dennis Tolley, and, Milton L. Lee. Electric Field Gradient Focusing of Proteins Based on Shaped Ionically Conductive Acrylic Polymer. Analytical Chemistry 2004, 76
(19)
, 5641-5648. https://doi.org/10.1021/ac040055+
- Torsten Vilkner,, Dirk Janasek, and, Andreas Manz. Micro Total Analysis Systems. Recent Developments. Analytical Chemistry 2004, 76
(12)
, 3373-3386. https://doi.org/10.1021/ac040063q
- Alexander Muck, Jr.,, Joseph Wang,, Michael Jacobs,, Gang Chen,, Madhu Prakash Chatrathi,, Vlastimil Jurka,, Zdeněk Výborný,, Scott D. Spillman,, Gautham Sridharan, and, Michael J. Schöning. Fabrication of Poly(methyl methacrylate) Microfluidic Chips by Atmospheric Molding. Analytical Chemistry 2004, 76
(8)
, 2290-2297. https://doi.org/10.1021/ac035030+
- Chia-Wen Tsao, Chang-Yen Chang, Wei-Wen Hu, Yun-Shan Tian. Bonding of thermoplastic microfluidic device by water assistance. International Journal of Adhesion and Adhesives 2023, 125 , 103429. https://doi.org/10.1016/j.ijadhadh.2023.103429
- Anthony Tony, Ildiko Badea, Chun Yang, Yuyi Liu, Kemin Wang, Shih-Mo Yang, Wenjun Zhang. A Preliminary Experimental Study of Polydimethylsiloxane (PDMS)-To-PDMS Bonding Using Oxygen Plasma Treatment Incorporating Isopropyl Alcohol. Polymers 2023, 15
(4)
, 1006. https://doi.org/10.3390/polym15041006
- Philip Dalsbecker, Caroline Beck Adiels, Mattias Goksör. Liver-on-a-chip devices: the pros and cons of complexity. American Journal of Physiology-Gastrointestinal and Liver Physiology 2022, 323
(3)
, G188-G204. https://doi.org/10.1152/ajpgi.00346.2021
- Akitsu Ogo, Shotaro Okayama, Masaya Nakatani, Masahiko Hashimoto. CO2-Laser-Micromachined, Polymer Microchannels with a Degassed PDMS slab for the Automatic Production of Monodispersed Water-in-Oil Droplets. Micromachines 2022, 13
(9)
, 1389. https://doi.org/10.3390/mi13091389
- Kieu The Loan Trinh, Duc Anh Thai, Nae Yoon Lee. Bonding Strategies for Thermoplastics Applicable for Bioanalysis and Diagnostics. Micromachines 2022, 13
(9)
, 1503. https://doi.org/10.3390/mi13091503
- Robert Strutt, Felix Sheffield, Nathan E. Barlow, Anthony J. Flemming, John D. Harling, Robert V. Law, Nicholas J. Brooks, Laura M. C. Barter, Oscar Ces. UV-DIB: label-free permeability determination using droplet interface bilayers. Lab on a Chip 2022, 22
(5)
, 972-985. https://doi.org/10.1039/D1LC01155C
- Shotaro Okayama, Masaya Nakatani, Masahiko Hashimoto. Rapid Fabrication of a Pumpless PDMS Microfluidic Device Using CO2 Laser Micromachining for Automated Formation of Monodisperse Water-in-Oil Droplets. Chemistry Letters 2022, 51
(2)
, 212-216. https://doi.org/10.1246/cl.210566
- Chia-Wen Tsao, Chang-Yen Chang, Hu Wei-Wen, Yun-Shan Tian. Water-Assisted Bonding of Thermoplastic Microfluidic Device for Biological Applications. SSRN Electronic Journal 2022, 2 https://doi.org/10.2139/ssrn.4020640
- Jacob B. Nielsen, Anna V. Nielsen, Richard H. Carson, Hsien‐Jung L. Lin, Robert L. Hanson, Mukul Sonker, Daniel N. Mortensen, John C. Price, Adam T. Woolley. Analysis of thrombin‐antithrombin complex formation using microchip electrophoresis and mass spectrometry. ELECTROPHORESIS 2019, 40
(21)
, 2853-2859. https://doi.org/10.1002/elps.201900235
- S. R. Mahmoodi, P.-K. Sun, M. Mayer, R. S. Besser. Gas-assisted thermal bonding of thermoplastics for the fabrication of microfluidic devices. Microsystem Technologies 2019, 25
(10)
, 3923-3932. https://doi.org/10.1007/s00542-019-04380-9
- Gamal A. Nasser, Ahmed M.R. Fath El-Bab, Ahmed L. Abdel-Mawgood, Hisham Mohamed, Abdelatty M. Saleh. CO2 Laser Fabrication of PMMA Microfluidic Double T-Junction Device with Modified Inlet-Angle for Cost-Effective PCR Application. Micromachines 2019, 10
(10)
, 678. https://doi.org/10.3390/mi10100678
- Carlos Matellan, Armando E. del Río Hernández. Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices. Scientific Reports 2018, 8
(1)
https://doi.org/10.1038/s41598-018-25202-4
- Md. Mamunul Islam, Amanda Loewen, Peter B. Allen. Simple, low-cost fabrication of acrylic based droplet microfluidics and its use to generate DNA-coated particles. Scientific Reports 2018, 8
(1)
https://doi.org/10.1038/s41598-018-27037-5
- Anna V. Nielsen, Jacob B. Nielsen, Mukul Sonker, Radim Knob, Vishal Sahore, Adam T. Woolley. Microchip electrophoresis separation of a panel of preterm birth biomarkers. ELECTROPHORESIS 2018, 39
(18)
, 2300-2307. https://doi.org/10.1002/elps.201800078
- Mukul Sonker, Ellen K. Parker, Anna V. Nielsen, Vishal Sahore, Adam T. Woolley. Electrokinetically operated microfluidic devices for integrated immunoaffinity monolith extraction and electrophoretic separation of preterm birth biomarkers. The Analyst 2018, 143
(1)
, 224-231. https://doi.org/10.1039/C7AN01357D
- Mukul Sonker, Radim Knob, Vishal Sahore, Adam T. Woolley. Integrated electrokinetically driven microfluidic devices with pH‐mediated solid‐phase extraction coupled to microchip electrophoresis for preterm birth biomarkers. ELECTROPHORESIS 2017, 38
(13-14)
, 1743-1754. https://doi.org/10.1002/elps.201700054
- Arshya Bamshad, Alireza Nikfarjam, Hossein Khaleghi. A new simple and fast thermally-solvent assisted method to bond PMMA–PMMA in micro-fluidics devices. Journal of Micromechanics and Microengineering 2016, 26
(6)
, 065017. https://doi.org/10.1088/0960-1317/26/6/065017
- Kieu The Loan Trinh, Hainan Zhang, Dong-Jin Kang, Sung-Hyun Kahng, Ben D. Tall, Nae Yoon Lee. Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses. International Neurourology Journal 2016, 20
(Suppl 1)
, S38-48. https://doi.org/10.5213/inj.1632602.301
- Pin-Chuan Chen, Yu-Min Liu, Huang-Chieh Chou. An adhesive bonding method with microfabricating micro pillars to prevent clogging in a microchannel. Journal of Micromechanics and Microengineering 2016, 26
(4)
, 045003. https://doi.org/10.1088/0960-1317/26/4/045003
- V. Sahore, S. Kumar, C. I. Rogers, J. K. Jensen, M. Sonker, A. T. Woolley. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers. Analytical and Bioanalytical Chemistry 2016, 408
(2)
, 599-607. https://doi.org/10.1007/s00216-015-9141-0
- V. Kumar, M. Pallapa, P. Rezai, P.R. Selvaganapathy. Polymers. 2016https://doi.org/10.1016/B978-0-12-803581-8.00522-1
- Mukul Sonker, Rui Yang, Vishal Sahore, Suresh Kumar, Adam T. Woolley. On-chip fluorescent labeling using reversed-phase monoliths and microchip electrophoretic separations of selected preterm birth biomarkers. Analytical Methods 2016, 8
(43)
, 7739-7746. https://doi.org/10.1039/C6AY01803C
- Chong Hu, Sheng Lin, Wanbo Li, Han Sun, Yangfan Chen, Chiu-Wing Chan, Chung-Hang Leung, Dik-Lung Ma, Hongkai Wu, Kangning Ren. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips. Lab on a Chip 2016, 16
(20)
, 3909-3918. https://doi.org/10.1039/C6LC00957C
- Yuanhong Xu, Jizhen Zhang, Jingquan Liu. Chip‐Based Capillary Electrophoresis
1. 2015, 707-729. https://doi.org/10.1002/9783527678129.assep042
- Chunpeng Chu, Bingyan Jiang, Laiyu Zhu, Fengze Jiang. A process analysis for microchannel deformation and bonding strength by in-mold bonding of microfluidic chips. Journal of Polymer Engineering 2015, 35
(3)
, 267-275. https://doi.org/10.1515/polyeng-2013-0092
- Rui Yang, Jayson V. Pagaduan, Ming Yu, Adam T. Woolley. On chip preconcentration and fluorescence labeling of model proteins by use of monolithic columns: device fabrication, optimization, and automation. Analytical and Bioanalytical Chemistry 2015, 407
(3)
, 737-747. https://doi.org/10.1007/s00216-014-7988-0
- Amber M. Pentecost, R. Scott Martin. Fabrication and characterization of all-polystyrene microfluidic devices with integrated electrodes and tubing. Analytical Methods 2015, 7
(7)
, 2968-2976. https://doi.org/10.1039/C5AY00197H
- Zong Bo Zhang, Qing Qiang He, Cao Qing Yan. Non-Melt Ultrasonic Bonding Method for Polymer MEMS Devices. Applied Mechanics and Materials 2014, 607 , 133-138. https://doi.org/10.4028/www.scientific.net/AMM.607.133
- Jing Wu, Nae Yoon Lee. One-step surface modification for irreversible bonding of various plastics with a poly(dimethylsiloxane) elastomer at room temperature. Lab on a Chip 2014, 14
(9)
, 1564. https://doi.org/10.1039/c3lc51324f
- Changlu Gao, Xiuhua Sun, Adam T. Woolley. Fluorescent measurement of affinity binding between thrombin and its aptamers using on-chip affinity monoliths. Journal of Chromatography A 2013, 1291 , 92-96. https://doi.org/10.1016/j.chroma.2013.03.063
- Pamela N. Nge, Jayson V. Pagaduan, Weichun Yang, Adam T. Woolley. Integrated Affinity and Electrophoresis Systems for Multiplexed Biomarker Analysis. 2013, 189-201. https://doi.org/10.1007/978-1-62703-029-8_18
- Myra T Koesdjojo, Jintana Nammoonnoy, Yuanyuan Wu, Ryan T Frederick, Vincent T Remcho. Cost-efficient fabrication techniques for microchips and interconnects enabled by polycaprolactone. Journal of Micromechanics and Microengineering 2012, 22
(11)
, 115030. https://doi.org/10.1088/0960-1317/22/11/115030
- Pamela N. Nge, Jayson V. Pagaduan, Ming Yu, Adam T. Woolley. Microfluidic chips with reversed-phase monoliths for solid phase extraction and on-chip labeling. Journal of Chromatography A 2012, 1261 , 129-135. https://doi.org/10.1016/j.chroma.2012.08.095
- , Jesper deClaville Christiansen. Sealing of polymer micro-structures by over-moulding. The International Journal of Advanced Manufacturing Technology 2012, 61
(1-4)
, 161-170. https://doi.org/10.1007/s00170-011-3690-y
- Taehyun Park, In-Hyouk Song, Daniel S. Park, Byoung Hee You, Michael C. Murphy. Thermoplastic fusion bonding using a pressure-assisted boiling point control system. Lab on a Chip 2012, 12
(16)
, 2799. https://doi.org/10.1039/c2lc40252a
- Vijaya Sunkara, Dong-Kyu Park, Yoon-Kyoung Cho. Versatile method for bonding hard and soft materials. RSC Advances 2012, 2
(24)
, 9066. https://doi.org/10.1039/c2ra20880f
- Christopher R. Phaneuf, Nikita Pak, Craig R. Forest. Modeling radiative heating of liquids in microchip reaction chambers. Sensors and Actuators A: Physical 2011, 167
(2)
, 531-536. https://doi.org/10.1016/j.sna.2011.02.002
- Pamela N. Nge, Weichun Yang, Jayson V. Pagaduan, Adam T. Woolley. Ion‐permeable membrane for on‐chip preconcentration and separation of cancer marker proteins. ELECTROPHORESIS 2011, 32
(10)
, 1133-1140. https://doi.org/10.1002/elps.201000698
- Brett L. Mellor, Nathan A. Kellis, Brian A. Mazzeo. Note: Electrode polarization of Galinstan electrodes for liquid impedance spectroscopy. Review of Scientific Instruments 2011, 82
(4)
https://doi.org/10.1063/1.3581229
- L. Romoli, G. Tantussi, G. Dini. Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices. Optics and Lasers in Engineering 2011, 49
(3)
, 419-427. https://doi.org/10.1016/j.optlaseng.2010.11.013
- Junshan Liu, Junyao Wang, Zuanguang Chen, Yong Yu, Xiujuan Yang, Xianbin Zhang, Zheng Xu, Chong Liu. A three-layer PMMA electrophoresis microchip with Pt microelectrodes insulated by a thin film for contactless conductivity detection. Lab Chip 2011, 11
(5)
, 969-973. https://doi.org/10.1039/C0LC00341G
- Jin-young Kim, Andrew J. deMello, Soo-Ik Chang, Jongin Hong, Danny O'Hare. Thermoset polyester droplet-based microfluidic devices for high frequency generation. Lab on a Chip 2011, 11
(23)
, 4108. https://doi.org/10.1039/c1lc20603f
- Sana Malahat, Pio G. Iovenitti, Igor Sbarski. Influence of tool fabrication process on characteristics of hot embossed polymer microfluidic chips for electrospray. Microsystem Technologies 2010, 16
(12)
, 2075-2085. https://doi.org/10.1007/s00542-010-1135-4
- Rajeeb K. Jena, C.Y. Yue, Y.C. Lam, Z.Y. Wang. High fidelity hot-embossing of COC microdevices using a one-step process without pre-annealing of polymer substrate. Sensors and Actuators B: Chemical 2010, 150
(2)
, 692-699. https://doi.org/10.1016/j.snb.2010.08.018
- Zongbo Zhang, Xiaodong Wang, Yi Luo, Shengqiang He, Liding Wang. Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices. Talanta 2010, 81
(4-5)
, 1331-1338. https://doi.org/10.1016/j.talanta.2010.02.031
- Weichun Yang, Adam T. Woolley. Integrated Multiprocess Microfluidic Systems for Automating Analysis. JALA: Journal of the Association for Laboratory Automation 2010, 15
(3)
, 198-209. https://doi.org/10.1016/j.jala.2010.01.008
- Nimai C. Nayak, C. Y. Yue, Y. C. Lam, Y. L. Tan. Thermal bonding of PMMA: effect of polymer molecular weight. Microsystem Technologies 2010, 16
(3)
, 487-491. https://doi.org/10.1007/s00542-009-0926-y
- . 8Chapter Applications to Cellular/Particle Analysis. 2010, 229-264. https://doi.org/10.1201/b15110-12
- Haotian Duan, Luyan Zhang, Gang Chen. Plasticizer-assisted bonding of poly(methyl methacrylate) microfluidic chips at low temperature. Journal of Chromatography A 2010, 1217
(1)
, 160-166. https://doi.org/10.1016/j.chroma.2009.11.018
- Linzhi Tang, Nae Yoon Lee. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature. Lab on a Chip 2010, 10
(10)
, 1274. https://doi.org/10.1039/b924753j
- Xiuqing Gong, Xin Yi, Kang Xiao, Shunbo Li, Rimantas Kodzius, Jianhua Qin, Weijia Wen. Wax-bonding 3D microfluidic chips. Lab on a Chip 2010, 10
(19)
, 2622. https://doi.org/10.1039/c004744a
- Weichun Yang, Ming Yu, Xiuhua Sun, Adam T. Woolley. Microdevices integrating affinity columns and capillary electrophoresis for multibiomarker analysis in human serum. Lab on a Chip 2010, 10
(19)
, 2527. https://doi.org/10.1039/c005288d
- Zongbo Zhang, Yi Luo, Xiaodong Wang, Yingsong Zheng, Yanguo Zhang, Liding Wang. Thermal assisted ultrasonic bonding of multilayer polymer microfluidic devices. Journal of Micromechanics and Microengineering 2010, 20
(1)
, 015036. https://doi.org/10.1088/0960-1317/20/1/015036
- Ming Yu, Hsiang‐Yu Wang, Adam T. Woolley. Polymer microchip CE of proteins either off‐ or on‐chip labeled with chameleon dye for simplified analysis. ELECTROPHORESIS 2009, 30
(24)
, 4230-4236. https://doi.org/10.1002/elps.200900349
- F. Umbrecht, D. Müller, F. Gattiker, C.M. Boutry, J. Neuenschwander, U. Sennhauser, Ch. Hierold. Solvent assisted bonding of polymethylmethacrylate: Characterization using the response surface methodology. Sensors and Actuators A: Physical 2009, 156
(1)
, 121-128. https://doi.org/10.1016/j.sna.2009.03.028
- Hidetoshi Shinohara, Yoshikazu Takahashi, Jun Mizuno, Shuichi Shoji. Fabrication of post-hydrophilic treatment-free plastic biochip using polyurea film. Sensors and Actuators A: Physical 2009, 154
(2)
, 187-191. https://doi.org/10.1016/j.sna.2008.09.001
- Junshan Liu, Hongchao Qiao, Chong Liu, Zheng Xu, Yongqian Li, Liding Wang. Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes. Sensors and Actuators B: Chemical 2009, 141
(2)
, 646-651. https://doi.org/10.1016/j.snb.2009.07.032
- S. R. Nugen, P. J. Asiello, A. J. Baeumner. Design and fabrication of a microfluidic device for near-single cell mRNA isolation using a copper hot embossing master. Microsystem Technologies 2009, 15
(3)
, 477-483. https://doi.org/10.1007/s00542-008-0694-0
- Chia-Wen Tsao, Don L. DeVoe. Bonding of thermoplastic polymer microfluidics. Microfluidics and Nanofluidics 2009, 6
(1)
, 1-16. https://doi.org/10.1007/s10404-008-0361-x
- Xiuhua Sun, Weichun Yang, Yanli Geng, Adam T. Woolley. A general microchip surface modification approach using a spin-coated polymer resist film doped with hydroxypropyl cellulose. Lab Chip 2009, 9
(7)
, 949-953. https://doi.org/10.1039/B815069A
- S W Li, J H Xu, Y J Wang, Y C Lu, G S Luo. Low-temperature bonding of poly-(methyl methacrylate) microfluidic devices under an ultrasonic field. Journal of Micromechanics and Microengineering 2009, 19
(1)
, 015035. https://doi.org/10.1088/0960-1317/19/1/015035
- Wendell Karlos Tomazelli Coltro, Susan M. Lunte, Emanuel Carrilho. Comparison of the analytical performance of electrophoresis microchannels fabricated in PDMS, glass, and polyester‐toner. ELECTROPHORESIS 2008, 29
(24)
, 4928-4937. https://doi.org/10.1002/elps.200700897
- Weichun Yang, Xiuhua Sun, Tao Pan, Adam T. Woolley. Affinity monolith preconcentrators for polymer microchip capillary electrophoresis. ELECTROPHORESIS 2008, 29
(16)
, 3429-3435. https://doi.org/10.1002/elps.200700704
- Hidetoshi Shinohara, Takafumi Suzuki, Fumihiko Kitagawa, Jun Mizuno, Koji Otsuka, Shuichi Shoji. Polymer microchip integrated with nano-electrospray tip for electrophoresis–mass spectrometry. Sensors and Actuators B: Chemical 2008, 132
(2)
, 368-373. https://doi.org/10.1016/j.snb.2007.09.071
- H. Shinohara, Y. Takahashi, J. Mizuno, S. Shoji. Surface hydrophilic treatment of polyurea film realized by vacuum ultraviolet light irradiation and its application for poly(methylmethacrylate) blood analysis chip. Sensors and Actuators B: Chemical 2008, 132
(2)
, 374-379. https://doi.org/10.1016/j.snb.2007.09.072
- Yun Chen, Luyan Zhang, Gang Chen. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. ELECTROPHORESIS 2008, 29
(9)
, 1801-1814. https://doi.org/10.1002/elps.200700552
- Chunmeng Lu, L. James Lee, Yi‐Je Juang. Packaging of microfluidic chips
via
interstitial bonding technique. ELECTROPHORESIS 2008, 29
(7)
, 1407-1414. https://doi.org/10.1002/elps.200700680
- Carlotta Guiducci, Christine Nardini. High parallelism, portability, and broad accessibility. ACM Journal on Emerging Technologies in Computing Systems 2008, 4
(1)
, 1-39. https://doi.org/10.1145/1330521.1330524
- Holger Becker, Claudia Gärtner. Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry 2008, 390
(1)
, 89-111. https://doi.org/10.1007/s00216-007-1692-2
- H. Shinohara, Y. Takahashi, J. Mizuno, S. Shoji. Post-hydrophilic treatment free plastic biochip fabrication method using polyurea film. 2008, 367-370. https://doi.org/10.1109/MEMSYS.2008.4443669
- M. d. C. López‐García, D. J. Beebe, W. C. Crone. Characterization of poly(isobornyl acrylate) as a construction material for microfluidic applications. Journal of Applied Polymer Science 2007, 105
(4)
, 1894-1902. https://doi.org/10.1002/app.26195
- Tao Pan, Gina S. Fiorini, Daniel T. Chiu, Adam T. Woolley. In‐channel atom‐transfer radical polymerization of thermoset polyester microfluidic devices for bioanalytical applications. ELECTROPHORESIS 2007, 28
(16)
, 2904-2911. https://doi.org/10.1002/elps.200600817
- Xiuhua Sun, Bridget A. Peeni, Weichun Yang, Hector A. Becerril, Adam T. Woolley. Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding. Journal of Chromatography A 2007, 1162
(2)
, 162-166. https://doi.org/10.1016/j.chroma.2007.04.002
- Martin Pumera. Microfluidics in amino acid analysis. ELECTROPHORESIS 2007, 28
(13)
, 2113-2124. https://doi.org/10.1002/elps.200600709
- Hidetoshi Shinohara, Jun Mizuno, Shuichi Shoji. Fabrication of a Microchannel Device by Hot Embossing and Direct Bonding of Poly(methyl methacrylate). Japanese Journal of Applied Physics 2007, 46
(6R)
, 3661. https://doi.org/10.1143/JJAP.46.3661
- P Abgrall, A-M Gué. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. Journal of Micromechanics and Microengineering 2007, 17
(5)
, R15-R49. https://doi.org/10.1088/0960-1317/17/5/R01
- Jonathan A. Vickers, Brian M. Dressen, Melissa C. Weston, Kanokporn Boonsong, Orawan Chailapakul, Donald M. Cropek, Charles S. Henry. Thermoset polyester as an alternative material for microchip electrophoresis/electrochemistry. ELECTROPHORESIS 2007, 28
(7)
, 1123-1129. https://doi.org/10.1002/elps.200600445
- Arpita Bhattacharyya, Catherine M. Klapperich. Mechanical and chemical analysis of plasma and ultraviolet–ozone surface treatments for thermal bonding of polymeric microfluidic devices. Lab Chip 2007, 7
(7)
, 876-882. https://doi.org/10.1039/B700442G
- C. W. Tsao, L. Hromada, J. Liu, P. Kumar, D. L. DeVoe. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab on a Chip 2007, 7
(4)
, 499. https://doi.org/10.1039/b618901f
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.