Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Plasticizer-Free Polymer Containing a Covalently Immobilized Ca2+-Selective Ionophore for Potentiometric and Optical Sensors

View Author Information
Department of Chemistry, Auburn University, Auburn, Alabama 36849
Cite this: Anal. Chem. 2003, 75, 13, 3038–3045
Publication Date (Web):May 13, 2003
https://doi.org/10.1021/ac0263059
Copyright © 2003 American Chemical Society

    Article Views

    1607

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    A derivative of a known Ca2+-selective ionophore, ETH 129, was synthesized to contain a polymerizable acrylic moiety (AU-1) and covalently grafted into a methyl methacrylate-co-decyl methacrylate polymer matrix. The polymer containing AU-1 was prepared via a simple one-step homogeneous polymerization method. It exhibited mechanical properties suitable for the fabrication of plasticizer-free ion-selective membrane electrodes and bulk optode films by solvent-casting and spin-coating techniques, respectively. The segmented sandwich membrane technique was utilized to assess the binding constant of free and covalently bound ionophores to calcium and to study their diffusion coefficients in the membrane phase. Diffusion was greatly diminished for the bound ionophore. This was confirmed in ion-selective electrode membranes containing no calcium ions in the inner solution, which should normally show apparent super-Nernstian response slopes in dilute calcium solutions. The response slope was Nernstian down to submicromolar concentration levels, indicating slow mass transport of calcium in the membrane. Optical-sensing films with the new copolymer matrix, unblended and blended with PVC−DOS, also confirmed that covalently bound ionophores are fully functional for maintaining selective ion extraction and binding properties of the sensing membrane.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 75 publications.

    1. Kwangrok R. Choi, Madeline L. Honig, Philippe Bühlmann. Ion-Selective Potentiometry with Plasma-Initiated Covalent Attachment of Sensing Membranes onto Inert Polymeric Substrates and Carbon Solid Contacts. Analytical Chemistry 2024, 96 (11) , 4702-4708. https://doi.org/10.1021/acs.analchem.4c00204
    2. Kwangrok R. Choi, Xin V. Chen, Jinbo Hu, Philippe Bühlmann. Solid-Contact pH Sensor with Covalent Attachment of Ionophores and Ionic Sites to a Poly(decyl methacrylate) Matrix. Analytical Chemistry 2021, 93 (50) , 16899-16905. https://doi.org/10.1021/acs.analchem.1c03985
    3. Lukasz Mendecki, Xiaorui Chen, Nicole Callan, David F. Thompson, Benjamin Schazmann, Sergio Granados-Focil, and Aleksandar Radu . Simple, Robust, and Plasticizer-Free Iodide-Selective Sensor Based on Copolymerized Triazole-Based Ionic Liquid. Analytical Chemistry 2016, 88 (8) , 4311-4317. https://doi.org/10.1021/acs.analchem.5b04461
    4. Xiaojiang Xie, Jingying Zhai, Gastón A. Crespo, and Eric Bakker . Ionophore-Based Ion-Selective Optical NanoSensors Operating in Exhaustive Sensing Mode. Analytical Chemistry 2014, 86 (17) , 8770-8775. https://doi.org/10.1021/ac5019606
    5. Rafael Hernández, Jordi Riu, Johan Bobacka, Cristina Vallés, Pablo Jiménez, Ana M. Benito, Wolfgang K. Maser, and F. Xavier Rius . Reduced Graphene Oxide Films as Solid Transducers in Potentiometric All-Solid-State Ion-Selective Electrodes. The Journal of Physical Chemistry C 2012, 116 (42) , 22570-22578. https://doi.org/10.1021/jp306234u
    6. Liangxia Xie, Yu Qin, and Hong-Yuan Chen . Polymeric Optodes Based on Upconverting Nanorods for Fluorescent Measurements of pH and Metal Ions in Blood Samples. Analytical Chemistry 2012, 84 (4) , 1969-1974. https://doi.org/10.1021/ac203003w
    7. Yida Xu and Eric Bakker . Ion Channel Mimetic Chronopotentiometric Polymeric Membrane Ion Sensor for Surface-Confined Protein Detection. Langmuir 2009, 25 (1) , 568-573. https://doi.org/10.1021/la802728p
    8. Yida Xu, Wittaya Ngeontae, Ernö Pretsch and Eric Bakker. Backside Calibration Chronopotentiometry: Using Current to Perform Ion Measurements by Zeroing the Transmembrane Ion Flux. Analytical Chemistry 2008, 80 (19) , 7516-7523. https://doi.org/10.1021/ac800774e
    9. Johan Bobacka,, Ari Ivaska, and, Andrzej Lewenstam. Potentiometric Ion Sensors. Chemical Reviews 2008, 108 (2) , 329-351. https://doi.org/10.1021/cr068100w
    10. Sergey Makarychev-Mikhailov,, Alexey Shvarev, and, Eric Bakker. Calcium Pulstrodes with 10-Fold Enhanced Sensitivity for Measurements in the Physiological Concentration Range. Analytical Chemistry 2006, 78 (8) , 2744-2751. https://doi.org/10.1021/ac052211y
    11. Yu Qin and, Eric Bakker. Elimination of Dimer Formation in InIIIPorphyrin-Based Anion-Selective Membranes by Covalent Attachment of the Ionophore. Analytical Chemistry 2004, 76 (15) , 4379-4386. https://doi.org/10.1021/ac049577f
    12. Otto S. Wolfbeis. Fiber-Optic Chemical Sensors and Biosensors. Analytical Chemistry 2004, 76 (12) , 3269-3284. https://doi.org/10.1021/ac040049d
    13. Eric Bakker. Electrochemical Sensors. Analytical Chemistry 2004, 76 (12) , 3285-3298. https://doi.org/10.1021/ac049580z
    14. Yu Qin and, Eric Bakker. A Copolymerized Dodecacarborane Anion as Covalently Attached Cation Exchanger in Ion-Selective Sensors. Analytical Chemistry 2003, 75 (21) , 6002-6010. https://doi.org/10.1021/ac034447c
    15. Sihui Yu, Chengqiang Tang, Sijia Yu, Wenjun Li, Jiajia Wang, Ziwei Liu, Xinheng Yan, Liyuan Wang, Yiqing Yang, Jianyou Feng, Jiaqi Wu, Kailin Zhang, Hang Guan, Yue Liu, Songlin Zhang, Xuemei Sun, Huisheng Peng. A Biodegradable Fiber Calcium Ion Sensor by Covalently Bonding Ionophores on Bioinert Nanoparticles. Advanced Healthcare Materials 2024, 17 https://doi.org/10.1002/adhm.202400675
    16. Long Li, Carlin Thompson, Xuewei Wang. Plasticizer-based and polymer-free ion-selective optodes on cellulose paper. Sensors and Actuators B: Chemical 2024, 97 , 135925. https://doi.org/10.1016/j.snb.2024.135925
    17. Kwangrok R. Choi, Madeline L. Honig, Philippe Bühlmann. Covalently attached ionophores extend the working range of potentiometric pH sensors with poly(decyl methacrylate) sensing membranes. The Analyst 2024, 149 (4) , 1132-1140. https://doi.org/10.1039/D3AN02047A
    18. Qiuju Li, Xueyu Wang, Lianjun Song, Lanlan He, Qiao Yu, Xiao Xiao, Songdong Ding. Cyclohexyl substituted diglycolamide ligands for highly efficient separation of strontium: Synthesis, extraction and crystallography studies. Journal of Environmental Chemical Engineering 2023, 11 (5) , 110495. https://doi.org/10.1016/j.jece.2023.110495
    19. Fatemeh Ejeian, Samira Sadeghi, Masoumeh Zargar, Faezeh Arshadi, Fatemeh Noorisafa, Amir Razmjou. Ion Selective Membranes. 2023, 308-322. https://doi.org/10.1016/B978-0-12-819728-8.00075-9
    20. Natalia Abramova, Andrey Bratov. ISFET‐based ion sensors with photopolymerizable membranes. Electrochemical Science Advances 2022, 2 (5) https://doi.org/10.1002/elsa.202100145
    21. Grzegorz Lisak. Reliable environmental trace heavy metal analysis with potentiometric ion sensors - reality or a distant dream. Environmental Pollution 2021, 289 , 117882. https://doi.org/10.1016/j.envpol.2021.117882
    22. Kaikai Liu, Yuehai Song, Dean Song, Rongning Liang. Plasticizer-free polymer membrane potentiometric sensors based on molecularly imprinted polymers for determination of neutral phenols. Analytica Chimica Acta 2020, 1121 , 50-56. https://doi.org/10.1016/j.aca.2020.04.074
    23. Guangtao Zhao, Jiawang Ding, Wei Qin. Fine-scale in-situ measurement of lead ions in coastal sediment pore water based on an all-solid-state potentiometric microsensor. Analytica Chimica Acta 2019, 1073 , 39-44. https://doi.org/10.1016/j.aca.2019.04.059
    24. Souad Fettouche, Aicha Boukhriss, Mohamed Tahiri, Omar Cherkaoui, Fathallaah Bazi, Said Gmouh. Naked Eye and Selective Detection of Copper(II) in Mixed Aqueous Media Using a Cellulose-based Support. Chemical Research in Chinese Universities 2019, 35 (4) , 598-603. https://doi.org/10.1007/s40242-019-8313-4
    25. Yueling Liu, Yingying Gao, Rui Yan, Haobo Huang, Ping Wang. Disposable Multi-Walled Carbon Nanotubes-Based Plasticizer-Free Solid-Contact Pb2+-Selective Electrodes with a Sub-PPB Detection Limit †. Sensors 2019, 19 (11) , 2550. https://doi.org/10.3390/s19112550
    26. Natalia Łukasik, Ewa Wagner-Wysiecka, Aleksandra Małachowska. Iron( iii )-selective materials based on a catechol-bearing amide for optical sensing. The Analyst 2019, 144 (9) , 3119-3127. https://doi.org/10.1039/C9AN00188C
    27. Jittima Choosang, Apon Numnuam, Panote Thavarungkul, Proespichaya Kanatharana, Tanja Radu, Sami Ullah, Aleksandar Radu. Simultaneous Detection of Ammonium and Nitrate in Environmental Samples Using on Ion-Selective Electrode and Comparison with Portable Colorimetric Assays. Sensors 2018, 18 (10) , 3555. https://doi.org/10.3390/s18103555
    28. B. Schazmann, S. Demey, Z. Waqar Ali, M‐S. Plissart, E. Brennan, A. Radu. Robust, Bridge‐less Ion‐selective Electrodes with Significantly Reduced Need for Pre‐ and Post‐application Handling. Electroanalysis 2018, 30 (4) , 740-747. https://doi.org/10.1002/elan.201700716
    29. A. J. Thompson, Guang-Zhong Yang. Tethered and Implantable Optical Sensors. 2018, 439-505. https://doi.org/10.1007/978-3-319-69748-2_6
    30. T. Fayose, L. Mendecki, S. Ullah, A. Radu. Single strip solid contact ion selective electrodes on a pencil-drawn electrode substrate. Analytical Methods 2017, 9 (7) , 1213-1220. https://doi.org/10.1039/C6AY02860H
    31. Gastón A. Crespo, Majid Ghahraman Afshar, Noelia Barrabés, Marcin Pawlak, Eric Bakker. Characterization of Salophen Co(III) Acetate Ionophore for Nitrite Recognition. Electrochimica Acta 2015, 179 , 16-23. https://doi.org/10.1016/j.electacta.2015.03.180
    32. I. A. Pechenkina, K. N. Mikhelson. Materials for the ionophore-based membranes for ion-selective electrodes: Problems and achievements (review paper). Russian Journal of Electrochemistry 2015, 51 (2) , 93-102. https://doi.org/10.1134/S1023193515020111
    33. Nor Farhana Nazarudin, Mohd Adam Mohd Noor, Nora'zah Abdul Rashid, Gunawan Witjaksono, Nazrul Anuar Nayan. Characterization of acrylate-based ChemFET sensor for nitrate sensing and monitoring. 2014, 154-158. https://doi.org/10.1109/IECBES.2014.7047476
    34. Matthew T. Bamsey, Alain Berinstain, Michael A. Dixon. Calcium-selective optodes for the management of plant nutrient solutions. Sensors and Actuators B: Chemical 2014, 190 , 61-69. https://doi.org/10.1016/j.snb.2013.08.051
    35. Elsayed M. Zahran, Andrea New, Vasilis Gavalas, Leonidas G. Bachas. Polymeric plasticizer extends the lifetime of PVC-membrane ion-selective electrodes. The Analyst 2014, 139 (4) , 757-763. https://doi.org/10.1039/C3AN01963B
    36. Anna Kisiel, Katarzyna Kłucińska, Zuzanna Głębicka, Marianna Gniadek, Krzysztof Maksymiuk, Agata Michalska. Alternating polymer micelle nanospheres for optical sensing. The Analyst 2014, 139 (10) , 2515. https://doi.org/10.1039/c3an02344c
    37. Liangxia Xie, Yu Qin, Hong-Yuan Chen. Preparation of solid contact potentiometric sensors with self-plasticizing triblock polymer and ionic liquid-polymer composites. Sensors and Actuators B: Chemical 2013, 186 , 321-326. https://doi.org/10.1016/j.snb.2013.06.026
    38. Konstantin N. Mikhelson. Ionophore-Based ISEs. 2013, 51-95. https://doi.org/10.1007/978-3-642-36886-8_4
    39. Grzegorz Lisak, Johan Bobacka, Andrzej Lewenstam. Recovery of nanomolar detection limit of solid-contact lead (II)-selective electrodes by electrode conditioning. Journal of Solid State Electrochemistry 2012, 16 (9) , 2983-2991. https://doi.org/10.1007/s10008-012-1725-4
    40. Eric Bakker, Ernö Pretsch. Advances in Potentiometry. 2011, 1-74. https://doi.org/10.1201/b11480-2
    41. Jingwei Zhu, Jingying Zhai, Xue Li, Yu Qin. Applications of hydrophobic room temperature ionic liquids in ion-selective optodes. Sensors and Actuators B: Chemical 2011, 159 (1) , 256-260. https://doi.org/10.1016/j.snb.2011.06.084
    42. Rajani Gourishetty, Ann Marie Crabtree, William M. Sanderson, R. Daniel Johnson. Anion-selective electrodes based on ionic liquid membranes: effect of ionic liquid anion on observed response. Analytical and Bioanalytical Chemistry 2011, 400 (9) , 3025-3033. https://doi.org/10.1007/s00216-011-4972-9
    43. Rajiv Kumar Puri, Vipan Kumar, Mohinder Pal Mahajan, Rakesh Kumar Mahajan. Mercury(II) ion recognition by newly synthesized oxadiazaphosphepine based receptors: coated graphite and polymeric membrane electrodes. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2011, 69 (1-2) , 263-271. https://doi.org/10.1007/s10847-010-9837-x
    44. Shane Peper, Chad Gonczy. Potentiometric Response Characteristics of Membrane-Based Cs + -Selective Electrodes Containing Ionophore-Functionalized Polymeric Microspheres. International Journal of Electrochemistry 2011, 2011 , 1-8. https://doi.org/10.4061/2011/276896
    45. Mohammad Nooredeen Abbas, Abdel Lattief A. Radwan, Philippe Bühlmann, Mahmud A. Abd El Ghaffar. Solid-Contact Perchlorate Sensor with Nanomolar Detection Limit Based on Cobalt Phthalocyanine Ionophores Covalently Attached to Polyacrylamide. American Journal of Analytical Chemistry 2011, 02 (07) , 820-831. https://doi.org/10.4236/ajac.2011.27094
    46. Setsuko Yajima, Sachie Uchida, Yusuke Hori, Keiichi Kimura. Neutral carrier-type Ca 2+ sensors based on sol-gel-derived membranes incorporating diether-amide derivatives. Supramolecular Chemistry 2010, 22 (7-8) , 420-424. https://doi.org/10.1080/10610278.2010.488739
    47. In Sook Cho, Hery Han, Jun Ho Shim, Jae Seon Lee, Jae Ho Shin, Geun Sig Cha, Byeong Hyo Kim. Syntheses and evaluation of 7-deoxycholic amide-based tweezer-type copper(II) ion-selective ionophores. Tetrahedron Letters 2010, 51 (21) , 2835-2839. https://doi.org/10.1016/j.tetlet.2010.03.062
    48. Goce Dimeski, Tony Badrick, Andrew St John. Ion Selective Electrodes (ISEs) and interferences—A review. Clinica Chimica Acta 2010, 411 (5-6) , 309-317. https://doi.org/10.1016/j.cca.2009.12.005
    49. Rafael Hernández, Jordi Riu, F. Xavier Rius. Determination of calcium ion in sap using carbon nanotube-based ion-selective electrodes. The Analyst 2010, 135 (8) , 1979. https://doi.org/10.1039/c0an00148a
    50. Vladimir V. Egorov, Peter L. Lyaskovski, Irina V. Il'inchik, Vera V. Soroka, Valentine A. Nazarov. Estimation of Ion‐Pairing Constants in Plasticized Poly(vinyl chloride) Membranes Using Segmented Sandwich Membranes Technique. Electroanalysis 2009, 21 (17-18) , 2061-2070. https://doi.org/10.1002/elan.200904639
    51. Natalia Abramova, Andrei Bratov. Photocurable Polymers for Ion Selective Field Effect Transistors. 20 Years of Applications. Sensors 2009, 9 (9) , 7097-7110. https://doi.org/10.3390/s90907097
    52. K. N. Mikhel’son. Electrochemical sensors based on ionophores: Current state, trends, and prospects. Russian Journal of General Chemistry 2008, 78 (12) , 2445-2454. https://doi.org/10.1134/S1070363208120268
    53. Huarui He, Kenneth Jenkins, Chao Lin. A fluorescent chemosensor for calcium with excellent storage stability in water. Analytica Chimica Acta 2008, 611 (2) , 197-204. https://doi.org/10.1016/j.aca.2008.01.059
    54. Sergey Makarychev-Mikhailov, Alexey Shvarev, Eric Bakker. New trends in ion-selective electrodes. 2008, 71-114. https://doi.org/10.1016/B978-012373738-0.50006-4
    55. Sándor Bodor, Justin M. Zook, Ernő Lindner, Klára Tóth, Róbert E. Gyurcsányi. Electrochemical methods for the determination of the diffusion coefficient of ionophores and ionophore–ion complexes in plasticized PVC membranes. The Analyst 2008, 133 (5) , 635. https://doi.org/10.1039/b718110h
    56. Wittaya Ngeontae, Chao Xu, Nan Ye, Katarzyna Wygladacz, Wanlapa Aeungmaitrepirom, Thawatchai Tuntulani, Eric Bakker. Polymerized Nile Blue derivatives for plasticizer-free fluorescent ion optode microsphere sensors. Analytica Chimica Acta 2007, 599 (1) , 124-133. https://doi.org/10.1016/j.aca.2007.07.058
    57. Eric Bakker, Ernö Pretsch. Modern Potentiometry. Angewandte Chemie International Edition 2007, 46 (30) , 5660-5668. https://doi.org/10.1002/anie.200605068
    58. Eric Bakker, Ernö Pretsch. Moderne Potentiometrie. Angewandte Chemie 2007, 119 (30) , 5758-5767. https://doi.org/10.1002/ange.200605068
    59. Aleksandar Radu, Shane Peper, Eric Bakker, Dermot Diamond. Guidelines for Improving the Lower Detection Limit of Ion‐Selective Electrodes: A Systematic Approach. Electroanalysis 2007, 19 (2-3) , 144-154. https://doi.org/10.1002/elan.200603741
    60. Aleksandar Radu, Dermot Diamond. Chapter 2 Ion-selective electrodes in trace level analysis of heavy metals: Potentiometry for the XXI century. 2007, 25-52. https://doi.org/10.1016/S0166-526X(06)49002-4
    61. Anna Konopka, Tomasz Sokalski, Andrzej Lewenstam, Magdalena Maj‐Żurawska. The Influence of the Conditioning Procedure on Potentiometric Characteristics of Solid Contact Calcium‐Selective Electrodes in Nanomolar Concentration Solutions. Electroanalysis 2006, 18 (22) , 2232-2242. https://doi.org/10.1002/elan.200603652
    62. Róbert Bereczki, Boglárka Takács, Róbert E. Gyurcsányi, Klára Tóth, Géza Nagy, Jan Langmaier, Ernö Lindner. Simple, Single Step Potential Difference Measurement for the Determination of the Ultimate Detection Limit of Ion Selective Electrodes. Electroanalysis 2006, 18 (13-14) , 1245-1253. https://doi.org/10.1002/elan.200603521
    63. Zsófia Szigeti, Tamás Vigassy, Eric Bakker, Ernö Pretsch. Approaches to Improving the Lower Detection Limit of Polymeric Membrane Ion‐Selective Electrodes. Electroanalysis 2006, 18 (13-14) , 1254-1265. https://doi.org/10.1002/elan.200603539
    64. Vasilis G. Gavalas, Maria J. Berrocal, Leonidas G. Bachas. Enhancing the blood compatibility of ion-selective electrodes. Analytical and Bioanalytical Chemistry 2006, 384 (1) , 65-72. https://doi.org/10.1007/s00216-005-0039-0
    65. Martin Telting-Diaz, Yu Qin. Chapter 18a Potentiometry. 2006, 625-659. https://doi.org/10.1016/S0166-526X(06)47027-6
    66. Maria Jose Ruedas-Rama, Elizabeth A. H. Hall. K+-selective nanospheres: maximising response range and minimising response time. The Analyst 2006, 131 (12) , 1282. https://doi.org/10.1039/b608901a
    67. Jan Langmaier, Ernő Lindner. Detrimental changes in the composition of hydrogen ion-selective electrode and optode membranes. Analytica Chimica Acta 2005, 543 (1-2) , 156-166. https://doi.org/10.1016/j.aca.2005.04.011
    68. Chao Xu, Katarzyna Wygladacz, Yu Qin, Robert Retter, Michael Bell, Eric Bakker. Microsphere optical ion sensors based on doped silica gel templates. Analytica Chimica Acta 2005, 537 (1-2) , 135-143. https://doi.org/10.1016/j.aca.2005.01.008
    69. Katarzyna Wygladacz, Eric Bakker. Imaging fiber microarray fluorescent ion sensors based on bulk optode microspheres. Analytica Chimica Acta 2005, 532 (1) , 61-69. https://doi.org/10.1016/j.aca.2004.10.071
    70. Eric Bakker, Ernö Pretsch. Potentiometric sensors for trace-level analysis. TrAC Trends in Analytical Chemistry 2005, 24 (3) , 199-207. https://doi.org/10.1016/j.trac.2005.01.003
    71. Thierry Le Goff, Jim Braven, Les Ebdon, David Scholefield. Phosphate-selective electrodes containing immobilised ionophores. Analytica Chimica Acta 2004, 510 (2) , 175-182. https://doi.org/10.1016/j.aca.2004.01.015
    72. Robert Long, Eric Bakker. Optical determination of ionophore diffusion coefficients in plasticized poly(vinyl chloride) sensing films. Analytica Chimica Acta 2004, 511 (1) , 91-95. https://doi.org/10.1016/j.aca.2004.01.028
    73. L. F. Capitán-Vallvey, M. D. Fernández-Ramos, P. Álvarez de Cienfuegos Gálvez, F. Santoyo-González. Calcium selective test strip for water and milk. The Analyst 2004, 129 (8) , 783-788. https://doi.org/10.1039/B403231D
    74. Shane Peper, Eric Bakker. Fluorescent Ion‐Sensing Microspheres for Multiplexed Chemical Analysis of Clinical and Biological Samples. Sensors Update 2003, 13 (1) , 83-104. https://doi.org/10.1002/seup.200390014
    75. Gerhard J. Mohr. Fibre-Optic and Nanoparticle-Based Fluorescence Sensing Using Indicator Dyes: Pitfalls, Self- Referencing, Application, and Future Trends. , 347-372. https://doi.org/10.1007/4243_2008_056