ACS Publications. Most Trusted. Most Cited. Most Read
Effect of Nonionic Fluorosurfactant on the Electrogenerated Chemiluminescence of the Tris(2,2‘-bipyridine)ruthenium(II)/Tri-n-propylamine System:  Lower Oxidation Potential and Higher Emission Intensity
My Activity
    Article

    Effect of Nonionic Fluorosurfactant on the Electrogenerated Chemiluminescence of the Tris(2,2‘-bipyridine)ruthenium(II)/Tri-n-propylamine System:  Lower Oxidation Potential and Higher Emission Intensity
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, The University of Hong Kong, Hong Kong, P.R. China
    Other Access OptionsSupporting Information (1)

    Analytical Chemistry

    Cite this: Anal. Chem. 2004, 76, 6, 1768–1772
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac035181c
    Published February 3, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Fluorosurfactants are commercially available, and their applications in electrochemical systems have been the interest of many studies. Here, we describe a novel effect of a nonionic fluorosurfactant (Zonyl FSN) on the electrogenerated chemiluminescence (ECL) of the tris(2,2‘-bipyridine)ruthenium(II)/tri-n-propylamine (TPrA) system at gold and platinum electrodes. Compared with its hydrocarbon analogue (Triton X-100), the adsorbed fluorosurfactant species not only rendered the electrode surfaces more hydrophobic but also significantly retarded the growth of the electrode oxide layers. As a result, more facile direct oxidation of TPrA was achieved, which led to the appearance of a low oxidation potential ECL signal (below 1.0 V vs SCE). At the gold electrode, the ECL peak appeared at 0.82 V, ∼400 mV more negative than usual; while its intensity was ∼50 times higher. The generation of the intense ECL signal at low oxidation potential may lead to the development of more efficient ECL analysis.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Additional information as noted in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 112 publications.

    1. Yumeng Ma, Catherine Sella, Laurent Thouin. Electrochemiluminescence in Microfluidic Channels: Influence of Mass Transport on the Tris(2,2′-bipyridyl)ruthenium(II)/Tripropylamine System at Semitransparent Electrodes. Analytical Chemistry 2024, 96 (36) , 14650-14659. https://doi.org/10.1021/acs.analchem.4c03344
    2. Yaojia Ai, Xuwen Gao, Xiaoxuan Ren, Mengwei Li, Bin Zhang, Guizheng Zou. Low-Triggering-Potential and Narrow-Potential-Window Electrochemiluminescence of Silver Nanoclusters for Gene Assay. Analytical Chemistry 2024, 96 (17) , 6652-6658. https://doi.org/10.1021/acs.analchem.3c05970
    3. Xuwen Gao, Zhijian Tian, Xiaoxuan Ren, Yaojia Ai, Bin Zhang, Guizheng Zou. Silver Nanocluster-Tagged Electrochemiluminescence Immunoassay with a Sole and Narrow Triggering Potential Window. Analytical Chemistry 2024, 96 (4) , 1700-1706. https://doi.org/10.1021/acs.analchem.3c04816
    4. Li Fu, Zerui Liu, Pengjie Dong, Yingshu Guo. Electrochemiluminescence Mechanistic Insights of CuInS2/ZnS Nanocrystals with Hydrazine Compounds as Co-reactants. The Journal of Physical Chemistry C 2023, 127 (46) , 22827-22832. https://doi.org/10.1021/acs.jpcc.3c06277
    5. Yunxiu Jia, Li Zhang, Weijiang Guan, Chao Lu. Vesicles as a Multifunctional Microenvironment for Electrochemiluminescence Signal Amplification. Analytical Chemistry 2023, 95 (35) , 13273-13280. https://doi.org/10.1021/acs.analchem.3c02424
    6. Dongyang Wang, Xiancheng Liu, Ying Zeng, Qingqing Zhang, Bin Zhang, Guizheng Zou. Low-Triggering-Potential Single-Color Electrochemiluminescence from Bovine Serum Albumin-Stabilized Unary Au Nanocrystals for Immunoassays. Analytical Chemistry 2022, 94 (33) , 11688-11694. https://doi.org/10.1021/acs.analchem.2c02474
    7. Kohei Sakanoue, Andrea Fiorani, Claudio Ignazio Santo, Irkham, Giovanni Valenti, Francesco Paolucci, Yasuaki Einaga. Boron-Doped Diamond Electrode Outperforms the State-of-the-Art Electrochemiluminescence from Microbeads Immunoassay. ACS Sensors 2022, 7 (4) , 1145-1155. https://doi.org/10.1021/acssensors.2c00156
    8. Shuangtian Dong, Xuwen Gao, Li Fu, Jingna Jia, Guizheng Zou. Low-Triggering-Potential Electrochemiluminescence from Surface-Confined CuInS2@ZnS Nanocrystals and their Biosensing Applications. Analytical Chemistry 2021, 93 (36) , 12250-12256. https://doi.org/10.1021/acs.analchem.1c01601
    9. Xiao-Yan Wang, Kai-Di Zhu, Jin Zhu, Shou-Nian Ding. Photonic Crystal of Polystyrene Nanomembrane: Signal Amplification and Low Triggered Potential Electrochemiluminescence for Tetracycline Detection. Analytical Chemistry 2021, 93 (5) , 2959-2967. https://doi.org/10.1021/acs.analchem.0c04613
    10. Dongni Han, Bertrand Goudeau, Dechen Jiang, Danjun Fang, Neso Sojic. Electrochemiluminescence Microscopy of Cells: Essential Role of Surface Regeneration. Analytical Chemistry 2021, 93 (3) , 1652-1657. https://doi.org/10.1021/acs.analchem.0c05123
    11. Li Fu, Bin Zhang, Kena Fu, Xuwen Gao, Guizheng Zou. Electrochemically Lighting Up Luminophores at Similar Low Triggering Potentials with Mechanistic Insights. Analytical Chemistry 2020, 92 (8) , 6144-6149. https://doi.org/10.1021/acs.analchem.0c00819
    12. Michael Mayer, Maximilian Hahn, Florian Gerstl, Thomas Köwer, Simone Rink, Werner Kunz, Axel Duerkop, Antje J. Baeumner. Shedding Light on the Diversity of Surfactant Interactions with Luminol Electrochemiluminescence for Bioanalysis. Analytical Chemistry 2019, 91 (20) , 13080-13087. https://doi.org/10.1021/acs.analchem.9b03275
    13. Zhipeng Li, Shuo Wu, Bin Zhang, Li Fu, Guizheng Zou. Promising Mercaptobenzoic Acid-Bridged Charge Transfer for Electrochemiluminescence from CuInS2@ZnS Nanocrystals via Internal Cu+/Cu2+ Couple Cycling. The Journal of Physical Chemistry Letters 2019, 10 (18) , 5408-5413. https://doi.org/10.1021/acs.jpclett.9b02400
    14. Li Fu, Bin Zhang, Xiaoyan Long, Kena Fu, Xuwen Gao, Guizheng Zou. Promising Electrochemiluminescence from CuInS2/ZnS Nanocrystals/Hydrazine via Internal Cu(I)/Cu(II) Couple Cycling. Analytical Chemistry 2019, 91 (15) , 10221-10226. https://doi.org/10.1021/acs.analchem.9b02320
    15. Bin Zhang, Fang Zhang, Ping Zhang, Dazhong Shen, Xuwen Gao, Guizheng Zou. Ultrasensitive Electrochemiluminescent Sensor for MicroRNA with Multinary Zn–Ag–In–S/ZnS Nanocrystals as Tags. Analytical Chemistry 2019, 91 (5) , 3754-3758. https://doi.org/10.1021/acs.analchem.9b00199
    16. Xiaoyan Long, Fang Zhang, Yupeng He, Shifeng Hou, Bin Zhang, Guizheng Zou. Promising Anodic Electrochemiluminescence of Nontoxic Core/Shell CuInS2/ZnS Nanocrystals in Aqueous Medium and Its Biosensing Potential. Analytical Chemistry 2018, 90 (5) , 3563-3569. https://doi.org/10.1021/acs.analchem.8b00006
    17. Yaqiang Feng, Feng Sun, Ningning Wang, Jianping Lei, and Huangxian Ju . Ru(bpy)32+ Incorporated Luminescent Polymer Dots: Double-Enhanced Electrochemiluminescence for Detection of Single-Nucleotide Polymorphism. Analytical Chemistry 2017, 89 (14) , 7659-7666. https://doi.org/10.1021/acs.analchem.7b01603
    18. Henok B. Habtamu, Milica Sentic, Morena Silvestrini, Luigina De Leo, Tarcisio Not, Stephane Arbault, Dragan Manojlovic, Neso Sojic, and Paolo Ugo . A Sensitive Electrochemiluminescence Immunosensor for Celiac Disease Diagnosis Based on Nanoelectrode Ensembles. Analytical Chemistry 2015, 87 (24) , 12080-12087. https://doi.org/10.1021/acs.analchem.5b02801
    19. Kenta Imai, Giovanni Valenti, Elena Villani, Stefania Rapino, Enrico Rampazzo, Massimo Marcaccio, Luca Prodi, and Francesco Paolucci . Numerical Simulation of Doped Silica Nanoparticle Electrochemiluminescence. The Journal of Physical Chemistry C 2015, 119 (46) , 26111-26118. https://doi.org/10.1021/acs.jpcc.5b07107
    20. Guodong Liang, Shufeng Liu, Guizheng Zou, and Xiaoli Zhang . Ultrasensitive Immunoassay Based on Anodic Near-Infrared Electrochemiluminescence from Dual-Stabilizer-Capped CdTe Nanocrystals. Analytical Chemistry 2012, 84 (24) , 10645-10649. https://doi.org/10.1021/ac302236a
    21. E. Kate Walker, David A. Vanden Bout, and Keith J. Stevenson . Carbon Optically Transparent Electrodes for Electrogenerated Chemiluminescence. Langmuir 2012, 28 (2) , 1604-1610. https://doi.org/10.1021/la2042394
    22. Qianqian Li, Fang Liu, Chao Lu, and Jin-Ming Lin . Aminothiols Sensing Based on Fluorosurfactant-Mediated Triangular Gold Nanoparticle-Catalyzed Luminol Chemiluminescence. The Journal of Physical Chemistry C 2011, 115 (22) , 10964-10970. https://doi.org/10.1021/jp200711a
    23. Yanbing Zu, Aik Leong Ting, Guangshun Yi, and Zhiqiang Gao . Sequence-Selective Recognition of Nucleic Acids under Extremely Low Salt Conditions Using Nanoparticle Probes. Analytical Chemistry 2011, 83 (11) , 4090-4094. https://doi.org/10.1021/ac2001516
    24. Yongan Tang, Jiawei Yan, Feng Zhu, Chunfeng Sun, and Bingwei Mao . Comparative Electrochemical Scanning Tunneling Microscopy Study of Nonionic Fluorosurfactant Zonyl FSN Self-Assembled Monolayers on Au(111) and Au(100): A Potential-Induced Structural Transition. Langmuir 2011, 27 (3) , 943-947. https://doi.org/10.1021/la103812v
    25. Jiawei Yan, Yongan Tang, Chunfeng Sun, Yuzhuan Su and Bingwei Mao. STM Study on Nonionic Fluorosurfactant Zonyl FSN Self-Assembly on Au(100): (3−111) Molecular Lattice, Corrugations, and Adsorbate-Enhanced Mobility. Langmuir 2010, 26 (6) , 3829-3834. https://doi.org/10.1021/la903250m
    26. Zuofeng Chen and Yanbing Zu. Electrogenerated Chemiluminescence of the Tris(2,2′-bipyridine)ruthenium(II)/Tertiary Amine Systems: Effects of Electrode Surface Hydrophobicity on the Low-Oxidation-Potential Emission. The Journal of Physical Chemistry C 2009, 113 (52) , 21877-21882. https://doi.org/10.1021/jp908072v
    27. Yongan Tang, Jiawei Yan, Xiaoshun Zhou, Yongchun Fu and Bingwei Mao. An STM Study on Nonionic Fluorosurfactant Zonyl FSN Self-Assembly on Au(111): Large Domains, Few Defects, and Good Stability. Langmuir 2008, 24 (23) , 13245-13249. https://doi.org/10.1021/la802682n
    28. Zuofeng Chen and Yanbing Zu. Electrogenerated Chemiluminescence of the Tris(2,2′-bipyridine)ruthenium(II)/Tri-n-propylamine (TPrA) System: Crucial Role of the Long Lifetime of TPrA•+ Cation Radicals Suggested by Electrode Surface Effects. The Journal of Physical Chemistry C 2008, 112 (42) , 16663-16667. https://doi.org/10.1021/jp802873e
    29. Liyan Zheng, Yuwu Chi, Yongqiang Dong, Lan Zhang and Guonan Chen. Electrochemiluminescent Behavior of Tris(2,2-bipyridine) Ruthenium(II)/Triethylamine in Ionic Liquid Solution. The Journal of Physical Chemistry C 2008, 112 (39) , 15570-15575. https://doi.org/10.1021/jp805609y
    30. Chia-Chi Huang and Wei-Lung Tseng. Role of Fluorosurfactant-Modified Gold Nanoparticles in Selective Detection of Homocysteine Thiolactone: Remover and Sensor. Analytical Chemistry 2008, 80 (16) , 6345-6350. https://doi.org/10.1021/ac8006973
    31. Xuan Liu and Huangxian Ju. Coreactant Enhanced Anodic Electrochemiluminescence of CdTe Quantum Dots at Low Potential for Sensitive Biosensing Amplified by Enzymatic Cycle. Analytical Chemistry 2008, 80 (14) , 5377-5382. https://doi.org/10.1021/ac8003715
    32. Wujian Miao. Electrogenerated Chemiluminescence and Its Biorelated Applications. Chemical Reviews 2008, 108 (7) , 2506-2553. https://doi.org/10.1021/cr068083a
    33. Mei-Jin Li, Zuofeng Chen, Vivian Wing-Wah Yam and Yanbing Zu . Multifunctional Ruthenium(II) Polypyridine Complex-Based Core–Shell Magnetic Silica Nanocomposites: Magnetism, Luminescence, and Electrochemiluminescence. ACS Nano 2008, 2 (5) , 905-912. https://doi.org/10.1021/nn800123w
    34. Mei-Jin Li,, Zuofeng Chen,, Nianyong Zhu,, Vivian Wing-Wah Yam, and, Yanbing Zu. Electrochemiluminescence of Ruthenium(II) Complexes Functionalized with Crown Ether Pendants and Effects of Cation Binding. Inorganic Chemistry 2008, 47 (3) , 1218-1223. https://doi.org/10.1021/ic7019582
    35. Zuofeng Chen and, Yanbing Zu. Gold Nanoparticle-Modified ITO Electrode for Electrogenerated Chemiluminescence:  Well-Preserved Transparency and Highly Enhanced Activity. Langmuir 2007, 23 (23) , 11387-11390. https://doi.org/10.1021/la702417w
    36. Zuofeng Chen,, Huzhi Zheng,, Chao Lu, and, Yanbing Zu. Oxidation of l-Cysteine at a Fluorosurfactant-Modified Gold Electrode:  Lower Overpotential and Higher Selectivity. Langmuir 2007, 23 (21) , 10816-10822. https://doi.org/10.1021/la701667p
    37. Huzhi Zheng and, Yanbing Zu. Highly Efficient Quenching of Coreactant Electrogenerated Chemiluminescence by Phenolic Compounds. The Journal of Physical Chemistry B 2005, 109 (33) , 16047-16051. https://doi.org/10.1021/jp052843o
    38. Huzhi Zheng and, Yanbing Zu. Emission of Tris(2,2‘-bipyridine)ruthenium(II) by Coreactant Electrogenerated Chemiluminescence:  From O2-Insensitive to Highly O2-Sensitive. The Journal of Physical Chemistry B 2005, 109 (24) , 12049-12053. https://doi.org/10.1021/jp050350d
    39. Yuan Ni, Ding Jiang, Xiaomei An, Wenchang Wang, Fangmin Xu, Hong Wei Liu, Zhidong Chen. Low-triggering-potential electrochemiluminescence based on mental-organic frameworks encapsulation of ruthenium for synthetic cathinone detection by coupling photonic crystal light-scattering signal amplification of covalent-organic frameworks. Analytica Chimica Acta 2024, 1312 , 342763. https://doi.org/10.1016/j.aca.2024.342763
    40. Mengwei Li, Xuwen Gao, Xiaoxuan Ren, Yaojia Ai, Bin Zhang, Guizheng Zou. Potential-selective electrochemiluminescence of AgInS 2 /ZnS nanocrystals and its immunoassay application. Chemical Communications 2024, 60 (37) , 4958-4961. https://doi.org/10.1039/D4CC00888J
    41. Zhongnan Huang, Zhenglian Li, Zhimin Weng, Paramasivam Balasubramanian, Mingchun Lai, Wei Chen, Juewen Liu, Huaping Peng. Electrocatalytic regulation of electrochemiluminescence: Mechanisms and sensing strategies. Chemical Engineering Journal 2023, 475 , 146452. https://doi.org/10.1016/j.cej.2023.146452
    42. L. D'Alton, C.F. Hogan. A simple strategy for enhancing the detection limits of blue-green ECL emitters. Electrochimica Acta 2023, 463 , 142783. https://doi.org/10.1016/j.electacta.2023.142783
    43. Yizhong Shen, Xiang Gao, Hai-Jie Lu, Chao Nie, Jianlong Wang. Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices. Coordination Chemistry Reviews 2023, 476 , 214927. https://doi.org/10.1016/j.ccr.2022.214927
    44. Zihua Li, Yusheng Zhou, Yuhan Cui, Guodong Liang. A flexible and bright surface-enhanced electrochemiluminescence film constructed from efficient aggregation-induced emission luminogens for biomolecular sensing. Journal of Materials Chemistry B 2022, 10 (17) , 3320-3328. https://doi.org/10.1039/D2TB00400C
    45. Apostolia Tsiasioti, Constantinos K. Zacharis, Paraskevas D. Tzanavaras. Single-Step Hydrolysis and Derivatization of Homocysteine Thiolactone Using Zone Fluidics: Simultaneous Analysis of Mixtures with Homocysteine Following Separation by Fluorosurfactant-Modified Gold Nanoparticles. Molecules 2022, 27 (7) , 2040. https://doi.org/10.3390/molecules27072040
    46. Saima Parveen, Yequan Chen, Yali Yuan, Lianzhe Hu, Wei Zhang, M.Rehan H.Shah Gilani, Yulin Shi, Aziz-ur-Rehman, Guobao Xu. Electrochemiluminescence of [Ru(bpy)3]2+/tripropylamine at glassy carbon, platinum, and palladium electrodes. Sensors and Actuators Reports 2021, 3 , 100062. https://doi.org/10.1016/j.snr.2021.100062
    47. Janis S. Borchers, Claire R. Campbell, Savanah B. Van Scoy, Morgan J. Clark, Robbyn K. Anand. Redox Cycling at an Array of Interdigitated Bipolar Electrodes for Enhanced Sensitivity in Biosensing**. ChemElectroChem 2021, 8 (18) , 3482-3491. https://doi.org/10.1002/celc.202100523
    48. Emily Kerr, Richard Alexander, Paul S. Francis, Rosanne M. Guijt, Gregory J. Barbante, Egan H. Doeven. A Comparison of Commercially Available Screen-Printed Electrodes for Electrogenerated Chemiluminescence Applications. Frontiers in Chemistry 2021, 8 https://doi.org/10.3389/fchem.2020.628483
    49. Priyal Chikhaliwala, Sudeshna Chandra. Poly‐amidoamine Dendrimers@Fe 3 O 4 Based Electrochemiluminescent Nanomaterials for Biosensing of Liver Cancer Biomarkers. Electroanalysis 2020, 32 (11) , 2404-2414. https://doi.org/10.1002/elan.202060075
    50. Chikkili Venkateswara Raju, Mathavan Sornambigai, Shanmugam Senthil Kumar. Unraveling the reaction mechanism of co-reactant free in-situ cathodic solid state ECL of Ru(bpy)32+ molecule immobilized on Nafion coated nanoporous gold electrode. Electrochimica Acta 2020, 358 , 136920. https://doi.org/10.1016/j.electacta.2020.136920
    51. Ming Zhou, Nianping Dan, Hong Wang. Long‐lived electrochemiluminescence of ruthenium (II) complexes/tri‐ n ‐propylamine in aqueous solutions. Luminescence 2020, 35 (2) , 215-221. https://doi.org/10.1002/bio.3716
    52. Pavel Podešva, Xiaocheng Liu, Pavel Neužil. Single nanostructured gold amalgam microelectrode electrochemiluminescence: From arrays to a single point. Sensors and Actuators B: Chemical 2019, 286 , 282-288. https://doi.org/10.1016/j.snb.2018.11.127
    53. Qi-Qi Gai, Dong-Mei Wang, Rong-Fu Huang, Xia-Xia Liang, Hong-Lin Wu, Xing-Yi Tao. Distance-dependent quenching and enhancing of electrochemiluminescence from tris(2, 2′-bipyridine) ruthenium (II)/tripropylamine system by gold nanoparticles and its sensing applications. Biosensors and Bioelectronics 2018, 118 , 80-87. https://doi.org/10.1016/j.bios.2018.07.023
    54. Stefanie Kirschbaum-Harriman, Axel Duerkop, Antje J. Baeumner. Improving ruthenium-based ECL through nonionic surfactants and tertiary amines. The Analyst 2017, 142 (14) , 2648-2653. https://doi.org/10.1039/C7AN00197E
    55. Stefanie Kirschbaum-Harriman, Michael Mayer, Axel Duerkop, Thomas Hirsch, Antje J. Baeumner. Signal enhancement and low oxidation potentials for miniaturized ECL biosensors via N-butyldiethanolamine. The Analyst 2017, 142 (13) , 2469-2474. https://doi.org/10.1039/C7AN00261K
    56. Giovanni Valenti, Andrea Fiorani, Haidong Li, Neso Sojic, Francesco Paolucci. Essential Role of Electrode Materials in Electrochemiluminescence Applications. ChemElectroChem 2016, 3 (12) , 1990-1997. https://doi.org/10.1002/celc.201600602
    57. Xiaolong Ma, Xin Zhang, Xinli Guo, Qi Kang, Dazhong Shen, Guizheng Zou. Sensitive and selective determining ascorbic acid and activity of alkaline phosphatase based on electrochemiluminescence of dual-stabilizers-capped CdSe quantum dots in carbon nanotube-nafion composite. Talanta 2016, 154 , 175-182. https://doi.org/10.1016/j.talanta.2016.03.036
    58. Steffen Czioska, Zuofeng Chen. Electrogenerated chemiluminescence of the tris(2,2′-bipyridine)ruthenium( ii )/aliphatic amine system: a universal effect of perchlorate salts. RSC Advances 2016, 6 (8) , 6583-6588. https://doi.org/10.1039/C5RA24111A
    59. Jianying Wang, Shangshang Zuo, Cui Lu, Yanbing Zu, Zuofeng Chen. Effect of surfactants and halide ions on the adsorption and oxidation of homocysteine at the gold electrode. RSC Advances 2016, 6 (55) , 50315-50321. https://doi.org/10.1039/C6RA07357C
    60. Giovanni Valenti, Martina Zangheri, Sandra E. Sansaloni, Mara Mirasoli, Alain Penicaud, Aldo Roda, Francesco Paolucci. Transparent Carbon Nanotube Network for Efficient Electrochemiluminescence Devices. Chemistry – A European Journal 2015, 21 (36) , 12640-12645. https://doi.org/10.1002/chem.201501342
    61. Stefanie E. K. Kirschbaum, Antje J. Baeumner. A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices. Analytical and Bioanalytical Chemistry 2015, 407 (14) , 3911-3926. https://doi.org/10.1007/s00216-015-8557-x
    62. Shufeng Liu, Xin Zhang, Yanmin Yu, Guizheng Zou. Bandgap engineered and high monochromatic electrochemiluminescence from dual-stabilizers-capped CdSe nanocrystals with practical application potential. Biosensors and Bioelectronics 2014, 55 , 203-208. https://doi.org/10.1016/j.bios.2013.11.078
    63. Lingyun Wang, Lijuan Zhang, Chao Lu. Applications in analytical chemistry using the attractive properties of non-ionic fluorosurfactants. TrAC Trends in Analytical Chemistry 2014, 54 , 45-55. https://doi.org/10.1016/j.trac.2013.11.003
    64. Nicola J. Rogers, Sunil Claire, Robert M. Harris, Shiva Farabi, Gerald Zikeli, Iain B. Styles, Nikolas J. Hodges, Zoe Pikramenou. High coating of Ru( ii ) complexes on gold nanoparticles for single particle luminescence imaging in cells. Chem. Commun. 2014, 50 (5) , 617-619. https://doi.org/10.1039/C3CC47606E
    65. Milica Sentic, Milena Milutinovic, Frédéric Kanoufi, Dragan Manojlovic, Stéphane Arbault, Neso Sojic. Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays. Chem. Sci. 2014, 5 (6) , 2568-2572. https://doi.org/10.1039/C4SC00312H
    66. Shuang Chen, Ming Yang, Song Hong, Chao Lu. Nonionic fluorosurfactant as an ideal candidate for one-step modification of gold nanorods. Nanoscale 2014, 6 (6) , 3197. https://doi.org/10.1039/c3nr05546a
    67. Baomei Huang, Xibin Zhou, Zhonghua Xue, Xiaoquan Lu. Electrochemiluminescence quenching of tris(2,2′-bipyridyl)ruthenium. TrAC Trends in Analytical Chemistry 2013, 51 , 107-116. https://doi.org/10.1016/j.trac.2013.06.012
    68. Saima Parveen, Muhammad Sohail Aslam, Lianzhe Hu, Guobao Xu. Generation Pathways of Electrogenerated Chemiluminescence. 2013, 15-31. https://doi.org/10.1007/978-3-642-39555-0_2
    69. Yali Yuan, Shuang Han, Lianzhe Hu, Saima Parveen, Guobao Xu. Coreactants of tris(2,2′-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence. Electrochimica Acta 2012, 82 , 484-492. https://doi.org/10.1016/j.electacta.2012.03.156
    70. Lijun Li, Wenyan Gao, Wenyi Huang, Zhuo Cai, Dachun Hu, Yanqing Li. Electrochemiluminescence of SDBS‐Ru(bpy) 3 2+ ‐CPM System and Its Application. Chinese Journal of Chemistry 2012, 30 (1) , 103-108. https://doi.org/10.1002/cjoc.201100012
    71. Maria Hepel, Magdalena Stobiecka. Detection of Oxidative Stress Biomarkers Using Functional Gold Nanoparticles. 2012, 241-281. https://doi.org/10.1007/978-1-4614-0379-1_9
    72. Mei-Jin Li, Xing Liu, Yun-Qin Shi, Rui-Jia Xie, Qiao-Hua Wei, Guo-Nan Chen. Synthesis, structure, photophysics and electrochemiluminescence of Re(i) tricarbonyl complexes with cationic 2,2-bipyridyl ligands. Dalton Transactions 2012, 41 (35) , 10612. https://doi.org/10.1039/c2dt30074e
    73. Qianqian Li, Biqi Lu, Lijuan Zhang, Chao Lu. Synthesis and stability evaluation of size-controlled gold nanoparticles via nonionic fluorosurfactant-assisted hydrogen peroxide reduction. Journal of Materials Chemistry 2012, 22 (27) , 13564. https://doi.org/10.1039/c2jm31528a
    74. Mei-Jin Li, Min Lin, Ruijia Xie, Xing Liu, Qiao-Hua Wei, Guo-Nan Chen. Synthesis and electrochemiluminescence studies of tricarbonylrhenium(I) complexes with a cationic 2,2′-bipyridyl ligand. Electrochimica Acta 2011, 56 (25) , 9344-9349. https://doi.org/10.1016/j.electacta.2011.08.016
    75. Rongfu Huang, Ming-Yuan Wei, Liang-Hong Guo. Enhanced electrogenerated chemiluminescence of /tripropylamine system on indium tin oxide nanoparticle modified transparent electrode. Journal of Electroanalytical Chemistry 2011, 656 (1-2) , 136-139. https://doi.org/10.1016/j.jelechem.2010.12.015
    76. Dong-Yuan Liu, Yue Zhao, Xi-Wen He, Xue-Bo Yin. Electrochemical aptasensor using the tripropylamine oxidation to probe intramolecular displacement between target and complementary nucleotide for protein array. Biosensors and Bioelectronics 2011, 26 (6) , 2905-2910. https://doi.org/10.1016/j.bios.2010.11.035
    77. Dong-Yuan Liu, You-Ying Xin, Xi-Wen He, Xue-Bo Yin. The electrochemiluminescence of ruthenium complex/tripropylamine systems at DNA-modified gold electrodes. Biosensors and Bioelectronics 2011, 26 (5) , 2703-2706. https://doi.org/10.1016/j.bios.2010.08.074
    78. Mei-Jin Li, Pengchong Jiao, Min Lin, Weiwen He, Guo-Nan Chen, Xi Chen. High electrochemiluminescence of a new water-soluble iridium( iii ) complex for determination of antibiotics. The Analyst 2011, 136 (1) , 205-210. https://doi.org/10.1039/C0AN00444H
    79. Dong-Yuan Liu, You-Ying Xin, Xi-Wen He, Xue-Bo Yin. A sensitive, non-damaging electrochemiluminescent aptasensor via a low potential approach at DNA-modified goldelectrodes. The Analyst 2011, 136 (3) , 479-485. https://doi.org/10.1039/C0AN00607F
    80. Ying Chen, Bingying Jiang, Yun Xiang, Yaqin Chai, Ruo Yuan. Aptamer-based highly sensitive electrochemiluminescent detection of thrombin via nanoparticle layer-by-layer assembled amplification labels. Chemical Communications 2011, 47 (27) , 7758. https://doi.org/10.1039/c1cc12249e
    81. Yali Li, Ming Sun, Fan Yang, Xiurong Yang. Electrochemiluminescence Enhancement of CdTe Quantum Dots by the Addition of Silver(I) Ions. Analytical Letters 2010, 43 (18) , 2837-2847. https://doi.org/10.1080/00032711003763632
    82. Xuan Liu, Lingxiao Cheng, Jianping Lei, Hui Liu, Huangxian Ju. Formation of Surface Traps on Quantum Dots by Bidentate Chelation and Their Application in Low‐Potential Electrochemiluminescent Biosensing. Chemistry – A European Journal 2010, 16 (35) , 10764-10770. https://doi.org/10.1002/chem.201001738
    83. Magdalena Stobiecka, Jeffrey Deeb, Maria Hepel. Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: Homocysteine and cysteine. Biophysical Chemistry 2010, 146 (2-3) , 98-107. https://doi.org/10.1016/j.bpc.2009.11.001
    84. Yan‐Li Mei, Huai‐Sheng Wang, Yan‐Fen Li, Zhuang‐Ying Pan, Wen‐Li Jia. Electochemiluminescence of CdTe/CdS Quantum Dots with Triproprylamine as Coreactant in Aqueous Solution at a Lower Potential and Its Application for Highly Sensitive and Selective Detection of Cu 2+. Electroanalysis 2010, 22 (2) , 155-160. https://doi.org/10.1002/elan.200904685
    85. Xiu Yu, Jianyuan Dai, Li Yang, Dan Xiao. 1-Butyl-3-methylimidazolium based ionic liquid as solvent for determination of hydrophobic naphthol with the electrogenerated chemiluminescence of tris(2,2′-bipyridine) ruthenium(ii). The Analyst 2010, 135 (3) , 630. https://doi.org/10.1039/b916435a
    86. Lianzhe Hu, Guobao Xu. Applications and trends in electrochemiluminescence. Chemical Society Reviews 2010, 39 (8) , 3275. https://doi.org/10.1039/b923679c
    87. Chun-Xia Tang, Yue Zhao, Xi-Wen He, Xue-Bo Yin. A “turn-on” electrochemiluminescent biosensor for detecting Hg2+ at femtomole level based on the intercalation of Ru(phen)32+ into ds-DNA. Chemical Communications 2010, 46 (47) , 9022. https://doi.org/10.1039/c0cc03495a
    88. Robert J. Forster, Paolo Bertoncello, Tia E. Keyes. Electrogenerated Chemiluminescence. Annual Review of Analytical Chemistry 2009, 2 (1) , 359-385. https://doi.org/10.1146/annurev-anchem-060908-155305
    89. Ping Jiang, Lei Yan, Yun‐Hua Liu, Hong‐Yan Yuan, Dan Xiao. Enhanced Electrogenerated Chemiluminescence of Tris(2,2′‐bipyridyl) Ruthenium(II)/tripropylamine in the Presence of Pyridine and Its Analogues. Electroanalysis 2009, 21 (14) , 1611-1616. https://doi.org/10.1002/elan.200804585
    90. Zuofeng Chen, Keith Man-Chung Wong, Vonika Ka-Man Au, Yanbing Zu, Vivian Wing-Wah Yam. Electrogenerated chemiluminescence of a bis-cyclometalated alkynylgold(iii) complex with irreversible oxidation using tri-n-propylamine as co-reactant. Chemical Communications 2009, 104 (7) , 791. https://doi.org/10.1039/b820400d
    91. Zuofeng Chen, Yanbing Zu. Electrochemical recognition of single-methylene difference between cysteine and homocysteine. Journal of Electroanalytical Chemistry 2008, 624 (1-2) , 9-13. https://doi.org/10.1016/j.jelechem.2008.07.015
    92. Jianguo Bai, Hui Wei, Bingling Li, Lihua Song, Lanyun Fang, Zhaozi Lv, Weihong Zhou, Erkang Wang. [Ru(bpy) 2 (dcbpy)NHS] Labeling/Aptamer‐Based Biosensor for the Detection of Lysozyme by Increasing Sensitivity with Gold Nanoparticle Amplification. Chemistry – An Asian Journal 2008, 3 (11) , 1935-1941. https://doi.org/10.1002/asia.200800104
    93. Yuanhong Xu, Bingling Li, Jing Li, Erkang Wang. Ionic liquids supported growth of highly ordered microdroplets induced by fluidic leakage at poly(dimethylsiloxane) interfaces. Analytica Chimica Acta 2008, 625 (1) , 35-40. https://doi.org/10.1016/j.aca.2008.07.009
    94. Rong Lei, Xiao Xu, Da Xu, Gang Zhu, Na Li, Huwei Liu, Ke’an Li. Enhanced anodic Ru(bpy)32+ electrogenerated chemiluminescence by polyphenols. Analytica Chimica Acta 2008, 625 (1) , 13-21. https://doi.org/10.1016/j.aca.2008.07.011
    95. Hitoshi Kodamatani, Yu Komatsu, Shigeo Yamazaki, Keiitsu Saito. Electrogenerated chemiluminescence reaction of tris(2,2′-bipyridine)ruthenium(II) with 2,5-dimethylthiophene as co-reactant in aqueous solution. Analytica Chimica Acta 2008, 622 (1-2) , 119-125. https://doi.org/10.1016/j.aca.2008.05.050
    96. Hui Wei, Erkang Wang. Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium. TrAC Trends in Analytical Chemistry 2008, 27 (5) , 447-459. https://doi.org/10.1016/j.trac.2008.02.009
    97. Hui Wei, Jifeng Liu, Lingling Zhou, Jing Li, Xiue Jiang, Jianzhen Kang, Xiurong Yang, Shaojun Dong, Erkang Wang. [Ru(bpy) 3 ] 2+ ‐Doped Silica Nanoparticles within Layer‐by‐Layer Biomolecular Coatings and Their Application as a Biocompatible Electrochemiluminescent Tag Material. Chemistry – A European Journal 2008, 14 (12) , 3687-3693. https://doi.org/10.1002/chem.200701518
    98. Zhaowu Xu, Yang Li, Xuemei Ma, Xindong Gao, He Tian. Synthesis and properties of iridium complexes based 1,3,4-oxadiazoles derivatives. Tetrahedron 2008, 64 (8) , 1860-1867. https://doi.org/10.1016/j.tet.2007.11.099
    99. Mark M. Richter. ELECTROCHEMILUMINESCENCE. 2008, 317-384. https://doi.org/10.1016/B978-044453125-4.50009-7
    100. Paul S. Francis, Conor F. Hogan. Luminescence. 2008, 343-373. https://doi.org/10.1016/S0166-526X(08)00613-2
    Load all citations

    Analytical Chemistry

    Cite this: Anal. Chem. 2004, 76, 6, 1768–1772
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac035181c
    Published February 3, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    1328

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.