ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

An Experimental Study of Membrane Materials and Inner Contacting Layers for Ion-Selective K+ Electrodes with a Stable Response and Good Dynamic Range

View Author Information
Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT U.K., and Department of Chemistry, University of Warsaw, PL-02093 Poland
Cite this: Anal. Chem. 2004, 76, 7, 2031–2039
Publication Date (Web):March 6, 2004
https://doi.org/10.1021/ac0353132
Copyright © 2004 American Chemical Society

    Article Views

    1103

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The goal was to identify formulations for use in valinomycin K+ ion-selective electrodes that could routinely achieve a detection limit of <10-6 M, even after repeated use and exposure at higher K+ activity (0.1 M) and without the requirement for special pretreatment or conditioning in low K+ activity (10-3 M). Electrodes that would be characterized by high potential stability were sought in this work. Valinomycin-containing membranes with diffusion coefficient of ∼10-11 cm2 s-1, formulated from methacrylic/acrylic polymers with or without plasticizer, were compared with plasticized PVC membranes (diffusion coefficient 10-8 cm2 s-1). The methacrylic/acrylic membranes without plasticizer were shown to give an order of magnitude lower detection limit, when compared with PVC−dioctyl sebacate and o-nitrophenyl octyl ether plasticized methacrylic/acrylic polymers under the same conditions, highlighting the influence of plasticizer on the detection limit. As predicted from current theoretical derivation, the inner contacting layer in the ion-selective electrode construction was shown to be highly influential in maintaining the detection limit below 10-6 M with use and with poly(pyrrole) providing the inner contact ion-to-electron transduction function, a further order of magnitude improvement in the lower detection limit could be maintained for both chloride and hexacyanoferrate doped poly(pyrrole), when 2% ionophore was employed in the ion-selective membrane. This formulation showed extraordinary stability and reproducibility in terms of measurement range and drift over extended measurement testing, with close to Nernstian slopes. At higher ionophore concentrations (4%), the apparent selectivity of the electrode was improved at the expense of detection limit and the nature of the poly(pyrrole) dopant ion became important in determining the dominant exchange processes at the poly(pyrrole)/ion-selective membrane interface.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     University of Warsaw.

     University of Cambridge.

    §

     Present address:  The Faculty of Science and Technology (FST), The National University of Malaysia (UKM), 43600 Bangi, Selangor, Malaysia.

    *

     To whom correspondence should be addressed. E-mail:  lisa.hall@ biotech.cam.ac.uk.

    Cited By

    This article is cited by 88 publications.

    1. Alicia M. Battaglia, Paniz Pahlavanlu, Eloi Grignon, So Young An, Dwight S. Seferos. High Active Material Loading in Organic Electrodes Enabled by a Multifunctional Binder. ACS Applied Materials & Interfaces 2022, 14 (37) , 42298-42307. https://doi.org/10.1021/acsami.2c10070
    2. Siddhartha Akkiraju, John Vergados, Laura Hoagland, Zijie Lu, Venkataramani Anandan, Bryan W. Boudouris. Design of Mixed Electron- and Ion-Conducting Radical Polymer-Based Blends. Macromolecules 2021, 54 (11) , 5178-5186. https://doi.org/10.1021/acs.macromol.1c00113
    3. Mohammad Rostampour, Brian Bailey, Cody Autrey, Karla Ferrer, Brooke Vantoorenburg, Parth K. Patel, Percy Calvo-Marzal, Karin Y. Chumbimuni-Torres. Single-Step Integration of Poly(3-Octylthiophene) and Single-Walled Carbon Nanotubes for Highly Reproducible Paper-Based Ion-Selective Electrodes. Analytical Chemistry 2021, 93 (3) , 1271-1276. https://doi.org/10.1021/acs.analchem.0c04506
    4. Vladimir V. Egorov, Andrei D. Novakovskii, and Elena A. Zdrachek . An Interface Equilibria-Triggered Time-Dependent Diffusion Model of the Boundary Potential and Its Application for the Numerical Simulation of the Ion-Selective Electrode Response in Real Systems. Analytical Chemistry 2018, 90 (2) , 1309-1316. https://doi.org/10.1021/acs.analchem.7b04134
    5. Marcin Guzinski, Jennifer M. Jarvis, Felio Perez, Bradford D. Pendley, Ernő Lindner, Roland De Marco, Gaston A. Crespo, Robert G. Acres, Raymart Walker, and Josiah Bishop . PEDOT(PSS) as Solid Contact for Ion-Selective Electrodes: The Influence of the PEDOT(PSS) Film Thickness on the Equilibration Times. Analytical Chemistry 2017, 89 (6) , 3508-3516. https://doi.org/10.1021/acs.analchem.6b04625
    6. Katarzyna Kłucińska, Emilia Stelmach, Anna Kisiel, Krzysztof Maksymiuk, and Agata Michalska . Nanoparticles of Fluorescent Conjugated Polymers: Novel Ion-Selective Optodes. Analytical Chemistry 2016, 88 (11) , 5644-5648. https://doi.org/10.1021/acs.analchem.6b00737
    7. Xu U. Zou, Xue V. Zhen, Jia H. Cheong, and Philippe Bühlmann . Calibration-Free Ionophore-Based Ion-Selective Electrodes With a Co(II)/Co(III) Redox Couple-Based Solid Contact. Analytical Chemistry 2014, 86 (17) , 8687-8692. https://doi.org/10.1021/ac501625z
    8. Samantha T. Mensah, Yessenia Gonzalez, Percy Calvo-Marzal, and Karin Y. Chumbimuni-Torres . Nanomolar Detection Limits of Cd2+, Ag+, and K+ Using Paper-Strip Ion-Selective Electrodes. Analytical Chemistry 2014, 86 (15) , 7269-7273. https://doi.org/10.1021/ac501470p
    9. Xu U. Zou, Jia H. Cheong, Brandon J. Taitt, and Philippe Bühlmann . Solid Contact Ion-Selective Electrodes with a Well-Controlled Co(II)/Co(III) Redox Buffer Layer. Analytical Chemistry 2013, 85 (19) , 9350-9355. https://doi.org/10.1021/ac4022117
    10. Xin-Gui Li, Hao Feng, Mei-Rong Huang, Guo-Li Gu, and Mark G. Moloney . Ultrasensitive Pb(II) Potentiometric Sensor Based on Copolyaniline Nanoparticles in a Plasticizer-Free Membrane with a Long Lifetime. Analytical Chemistry 2012, 84 (1) , 134-140. https://doi.org/10.1021/ac2028886
    11. F. Xavier Rius-Ruiz, Gastón A. Crespo, Diego Bejarano-Nosas, Pascal Blondeau, Jordi Riu, and F. Xavier Rius . Potentiometric Strip Cell Based on Carbon Nanotubes as Transducer Layer: Toward Low-Cost Decentralized Measurements. Analytical Chemistry 2011, 83 (22) , 8810-8815. https://doi.org/10.1021/ac202070r
    12. F. Xavier Rius-Ruiz, Diego Bejarano-Nosas, Pascal Blondeau, Jordi Riu, and F. Xavier Rius . Disposable Planar Reference Electrode Based on Carbon Nanotubes and Polyacrylate Membrane. Analytical Chemistry 2011, 83 (14) , 5783-5788. https://doi.org/10.1021/ac200627h
    13. Ewa Jaworska, Anna Kisiel, Krzysztof Maksymiuk, and Agata Michalska. Lowering the Resistivity of Polyacrylate Ion-Selective Membranes by Platinum Nanoparticles Addition. Analytical Chemistry 2011, 83 (1) , 438-445. https://doi.org/10.1021/ac1019864
    14. Agata Michalska, Krystyna Pyrzyńska and Krzysztof Maksymiuk. Method of Achieving Desired Potentiometric Responses of Polyacrylate-Based Ion-Selective Membranes. Analytical Chemistry 2008, 80 (10) , 3921-3924. https://doi.org/10.1021/ac8000622
    15. Johan Bobacka,, Ari Ivaska, and, Andrzej Lewenstam. Potentiometric Ion Sensors. Chemical Reviews 2008, 108 (2) , 329-351. https://doi.org/10.1021/cr068100w
    16. Anna Rzewuska,, Marcin Wojciechowski,, Ewa Bulska,, Elizabeth A. H. Hall,, Krzysztof Maksymiuk, and, Agata Michalska. Composite Polyacrylate−Poly(3,4- ethylenedioxythiophene) Membranes for Improved All-Solid-State Ion-Selective Sensors. Analytical Chemistry 2008, 80 (1) , 321-327. https://doi.org/10.1021/ac070866o
    17. Eric Bakker and, Yu Qin. Electrochemical Sensors. Analytical Chemistry 2006, 78 (12) , 3965-3984. https://doi.org/10.1021/ac060637m
    18. Karin Y. Chumbimuni-Torres,, Nastassia Rubinova,, Aleksandar Radu,, Lauro T. Kubota, and, Eric Bakker. Solid Contact Potentiometric Sensors for Trace Level Measurements. Analytical Chemistry 2006, 78 (4) , 1318-1322. https://doi.org/10.1021/ac050749y
    19. Yanhua Liu, Xianghua Zeng, Geoffrey I.N. Waterhouse, Xiaohui Jiang, Zhiming Zhang, Liangmin Yu. Potential stability improvement in solid-contact Pb2+ ion-selective electrodes by using polyaniline/montmorillonite composites as the ion-to-electron transducer. Journal of Electroanalytical Chemistry 2023, 939 , 117472. https://doi.org/10.1016/j.jelechem.2023.117472
    20. Mei-Rong Huang, Xin-Gui Li. Highly sensing and transducing materials for potentiometric ion sensors with versatile applicability. Progress in Materials Science 2022, 125 , 100885. https://doi.org/10.1016/j.pmatsci.2021.100885
    21. Shiho Tatsumi, Terumasa Omatsu, Kohji Maeda, Maral P.S. Mousavi, George M. Whitesides, Yumi Yoshida. An all-solid-state thin-layer laminated cell for calibration-free coulometric determination of K+. Electrochimica Acta 2022, 408 , 139946. https://doi.org/10.1016/j.electacta.2022.139946
    22. Tugba Ozer, Charles S. Henry. All-solid-state potassium-selective sensor based on carbon black modified thermoplastic electrode. Electrochimica Acta 2022, 404 , 139762. https://doi.org/10.1016/j.electacta.2021.139762
    23. Krzysztof Maksymiuk, Emilia Stelmach, Agata Michalska. Unintended Changes of Ion-Selective Membranes Composition—Origin and Effect on Analytical Performance. Membranes 2020, 10 (10) , 266. https://doi.org/10.3390/membranes10100266
    24. Youngtak Cho, Viet Anh Pham Ba, Jin-Young Jeong, Yoonji Choi, Seunghun Hong. Ion-Selective Carbon Nanotube Field-Effect Transistors for Monitoring Drug Effects on Nicotinic Acetylcholine Receptor Activation in Live Cells. Sensors 2020, 20 (13) , 3680. https://doi.org/10.3390/s20133680
    25. Saad S. M. Hassan, Ayman H. Kamel, Abd El-Galil E. Amr, M. Abdelwahab Fathy, Mohamed A. Al-Omar. Paper Strip and Ceramic Potentiometric Platforms Modified with Nano-Sized Polyaniline (PANi) for Static and Hydrodynamic Monitoring of Chromium in Industrial Samples. Molecules 2020, 25 (3) , 629. https://doi.org/10.3390/molecules25030629
    26. Yueling Liu, Yingying Gao, Rui Yan, Haobo Huang, Ping Wang. Disposable Multi-Walled Carbon Nanotubes-Based Plasticizer-Free Solid-Contact Pb2+-Selective Electrodes with a Sub-PPB Detection Limit †. Sensors 2019, 19 (11) , 2550. https://doi.org/10.3390/s19112550
    27. Jonathan W. Onorato, Christine K. Luscombe. Morphological effects on polymeric mixed ionic/electronic conductors. Molecular Systems Design & Engineering 2019, 4 (2) , 310-324. https://doi.org/10.1039/C8ME00093J
    28. Taeil Kim, Chao Bao, Michael Hausmann, Gilberto Siqueira, Tanja Zimmermann, Woo Soo Kim. 3D Printed Disposable Wireless Ion Sensors with Biocompatible Cellulose Composites. Advanced Electronic Materials 2019, 5 (2) https://doi.org/10.1002/aelm.201800778
    29. Vladimir V. Egorov, Andrei D. Novakovskii. Application of the interface equilibria-triggered dynamic diffusion model of the boundary potential for the numerical simulation of neutral carrier-based ion-selective electrodes response. Analytica Chimica Acta 2018, 1043 , 20-27. https://doi.org/10.1016/j.aca.2018.08.043
    30. Roberta Pinalli, Alessandro Pedrini, Enrico Dalcanale. Biochemical sensing with macrocyclic receptors. Chemical Society Reviews 2018, 47 (18) , 7006-7026. https://doi.org/10.1039/C8CS00271A
    31. Xianzhong Zeng, Wei Qin. A solid-contact potassium-selective electrode with MoO2 microspheres as ion-to-electron transducer. Analytica Chimica Acta 2017, 982 , 72-77. https://doi.org/10.1016/j.aca.2017.05.032
    32. Christoph Bieg, Kai Fuchsberger, Martin Stelzle. Introduction to polymer-based solid-contact ion-selective electrodes—basic concepts, practical considerations, and current research topics. Analytical and Bioanalytical Chemistry 2017, 409 (1) , 45-61. https://doi.org/10.1007/s00216-016-9945-6
    33. L. van de Velde, E. d'Angremont, W. Olthuis. Solid contact potassium selective electrodes for biomedical applications – a review. Talanta 2016, 160 , 56-65. https://doi.org/10.1016/j.talanta.2016.06.050
    34. Xianzhong Zeng, Shunyang Yu, Qun Yuan, Wei Qin. Solid-contact K+-selective electrode based on three-dimensional molybdenum sulfide nanoflowers as ion-to-electron transducer. Sensors and Actuators B: Chemical 2016, 234 , 80-83. https://doi.org/10.1016/j.snb.2016.04.153
    35. Nasim Nikkhoo, Nichole Cumby, P. Glenn Gulak, Karen L. Maxwell, . Rapid Bacterial Detection via an All-Electronic CMOS Biosensor. PLOS ONE 2016, 11 (9) , e0162438. https://doi.org/10.1371/journal.pone.0162438
    36. Cheng Fang, Zuliang Chen, Mallavarapu Megharaj, Ravendra Naidu. Potentiometric detection of AFFFs based on MIP. Environmental Technology & Innovation 2016, 5 , 52-59. https://doi.org/10.1016/j.eti.2015.12.003
    37. Anna Kisiel, Agata Michalska, Krzysztof Maksymiuk. Bilayer membranes for ion-selective electrodes. Journal of Electroanalytical Chemistry 2016, 766 , 128-134. https://doi.org/10.1016/j.jelechem.2016.01.040
    38. Hye Jin Lee, Damien W. M. Arrigan, Md. Nurul Karim, Hyerim Kim. Amperometric Ion Sensing Approaches at Liquid/Liquid Interfaces for Inorganic, Organic and Biological Ions. 2015, 296-340. https://doi.org/10.1039/9781782622529-00296
    39. Shunyang Yu, Lan Ju, Tao Xiong, Yancang Li, Yongming Liu. Solid-contact Polymeric Membrane Electrode for Real-Time Monitoring of Lead Adsorption. International Journal of Electrochemical Science 2015, 10 (7) , 5994-6001. https://doi.org/10.1016/S1452-3981(23)17311-1
    40. Katharina Melzer, Vijay Deep Bhatt, Tobias Schuster, Ewa Jaworska, Krzysztof Maksymiuk, Agata Michalska, Paolo Lugli, Giuseppe Scarpa. Flexible Electrolyte-Gated Ion-Selective Sensors Based on Carbon Nanotube Networks. IEEE Sensors Journal 2015, 15 (6) , 3127-3134. https://doi.org/10.1109/JSEN.2014.2362679
    41. Xu U. Zou, Li D. Chen, Chun‐Ze Lai, Philippe Bühlmann. Ionic Liquid Reference Electrodes With a Well‐Controlled Co(II)/Co(III) Redox Buffer as Solid Contact. Electroanalysis 2015, 27 (3) , 602-608. https://doi.org/10.1002/elan.201400274
    42. Anna Kisiel, Emilia Woźnica, Marcin Wojciechowski, Ewa Bulska, Krzysztof Maksymiuk, Agata Michalska. Potentiometric layered membranes. Sensors and Actuators B: Chemical 2015, 207 , 995-1003. https://doi.org/10.1016/j.snb.2014.10.020
    43. I. A. Pechenkina, K. N. Mikhelson. Materials for the ionophore-based membranes for ion-selective electrodes: Problems and achievements (review paper). Russian Journal of Electrochemistry 2015, 51 (2) , 93-102. https://doi.org/10.1134/S1023193515020111
    44. Li-Min Kuo, Yi-Chia Chou, Kuan-Neng Chen, Chien-Chia Lu, Shuchi Chao. A precise pH microsensor using RF-sputtering IrO2 and Ta2O5 films on Pt-electrode. Sensors and Actuators B: Chemical 2014, 193 , 687-691. https://doi.org/10.1016/j.snb.2013.11.109
    45. K. Melzer, A. M. Münzer, E. Jaworska, K. Maksymiuk, A. Michalska, G. Scarpa. Selective ion-sensing with membrane-functionalized electrolyte-gated carbon nanotube field-effect transistors. The Analyst 2014, 139 (19) , 4947. https://doi.org/10.1039/C4AN00714J
    46. S.A.A. Almeida, M.C.B.S.M. Montenegro, M.G.F. Sales. New and low cost plastic membrane electrode with low detection limits for sulfadimethoxine determination in aquaculture waters. Journal of Electroanalytical Chemistry 2013, 709 , 39-45. https://doi.org/10.1016/j.jelechem.2013.09.029
    47. Krzysztof Maksymiuk, Agata Michalska. Conducting Polymer Membranes. 2013, 1-16. https://doi.org/10.1002/9781118522318.emst123
    48. Konstantin N. Mikhelson. Ionophore-Based ISEs. 2013, 51-95. https://doi.org/10.1007/978-3-642-36886-8_4
    49. Agata Michalska. All‐Solid‐State Ion Selective and All‐Solid‐State Reference Electrodes. Electroanalysis 2012, 24 (6) , 1253-1265. https://doi.org/10.1002/elan.201200059
    50. N. M. Ivanova, M. B. Levin, K. N. Mikhelson. Problems and prospects of solid contact ion-selective electrodes with ionophore-based membranes. Russian Chemical Bulletin 2012, 61 (5) , 926-936. https://doi.org/10.1007/s11172-012-0136-0
    51. S.A.A. Almeida, Liliana A.A.N.A. Truta, Raquel B. Queirós, M.C.B.S.M. Montenegro, Alexandre L. Cunha, M.G.F. Sales. Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: Application to sulfamethoxazole. Biosensors and Bioelectronics 2012, 35 (1) , 319-326. https://doi.org/10.1016/j.bios.2012.03.007
    52. M. Pesavento, G. D'Agostino, R. Biesuz, G. Alberti, A. Profumo. Ion Selective Electrode for Dopamine Based on a Molecularly Imprinted Polymer. Electroanalysis 2012, 24 (4) , 813-824. https://doi.org/10.1002/elan.201100509
    53. Marcin Wojciechowski, Anna Kisiel, Ewa Bulska, Agata Michalska. Microspheres aided introduction of ionophore and ion-exchanger to the ion-selective membrane. Talanta 2012, 88 , 66-72. https://doi.org/10.1016/j.talanta.2011.10.008
    54. Shunyang Yu, Fuhai Li, Tanji Yin, Yongming Liu, Dawei Pan, Wei Qin. A solid-contact Pb2+-selective electrode using poly(2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene) as ion-to-electron transducer. Analytica Chimica Acta 2011, 702 (2) , 195-198. https://doi.org/10.1016/j.aca.2011.06.049
    55. F. Xavier Rius-Ruiz, Anna Kisiel, Agata Michalska, Krzystof Maksymiuk, Jordi Riu, F. Xavier Rius. Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes. Analytical and Bioanalytical Chemistry 2011, 399 (10) , 3613-3622. https://doi.org/10.1007/s00216-011-4689-9
    56. Emilia Woźnica, Józef Mieczkowski, Agata Michalska. Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes. The Analyst 2011, 136 (22) , 4787. https://doi.org/10.1039/c1an15131b
    57. Monika Lyczewska, Monika Kakietek, Krzysztof Maksymiuk, Józef Mieczkowski, Agata Michalska. Comparison of trihexadecylalkylammonium iodides as ion-exchangers for polyacrylate and poly(vinyl chloride) based iodide-selective electrodes. Sensors and Actuators B: Chemical 2010, 146 (1) , 283-288. https://doi.org/10.1016/j.snb.2010.02.016
    58. Jordi Ampurdanés, Gastón A. Crespo, Alicia Maroto, M. Angeles Sarmentero, Pablo Ballester, F. Xavier Rius. Determination of choline and derivatives with a solid-contact ion-selective electrode based on octaamide cavitand and carbon nanotubes. Biosensors and Bioelectronics 2009, 25 (2) , 344-349. https://doi.org/10.1016/j.bios.2009.07.006
    59. Agata Michalska, Marcin Wojciechowski, Ewa Bulska, Krzysztof Maksymiuk. Quantifying Primary Silver Ions Contents in Poly(vinyl chloride) and Poly( n ‐butyl acrylate) Ion‐Selective Membranes. Electroanalysis 2009, 21 (17-18) , 1931-1938. https://doi.org/10.1002/elan.200804611
    60. Jiawang Ding, Wei Qin. Polymeric Membrane Ion‐Selective Electrode for Butyrylcholinesterase Based on Controlled Release of Substrate. Electroanalysis 2009, 21 (17-18) , 2030-2035. https://doi.org/10.1002/elan.200904635
    61. Charles Appiah‐Kusi, Simon J. Kew, Elizabeth Hall. Water Transport in Poly( n ‐butyl acrylate) Ion‐Selective Membranes. Electroanalysis 2009, 21 (17-18) , 1992-2003. https://doi.org/10.1002/elan.200904636
    62. Grzegorz Lisak, Ewa Grygolowicz-Pawlak, Marta Mazurkiewicz, Elzbieta Malinowska, Tomasz Sokalski, Johan Bobacka, Andrzej Lewenstam. New polyacrylate-based lead(II) ion-selective electrodes. Microchimica Acta 2009, 164 (3-4) , 293-297. https://doi.org/10.1007/s00604-008-0089-z
    63. Xian Xiang Sun, Hassan Y. Aboul-Enein. Influence of Anion Doped Polypyrrole Film as Ion-to-Electron Transducer on the Response Performance of Internal Solid Contact Potentiometric Sensors. Instrumentation Science & Technology 2009, 37 (2) , 164-188. https://doi.org/10.1080/10739140902735340
    64. Elisaveta N. Samsonova, Viktor M. Lutov, Konstantin N. Mikhelson. Solid-contact ionophore-based electrode for determination of pH in acidic media. Journal of Solid State Electrochemistry 2009, 13 (1) , 69-75. https://doi.org/10.1007/s10008-008-0557-8
    65. Tom Lindfors. Light sensitivity and potential stability of electrically conducting polymers commonly used in solid contact ion-selective electrodes. Journal of Solid State Electrochemistry 2009, 13 (1) , 77-89. https://doi.org/10.1007/s10008-008-0561-z
    66. Chun-Ze Lai, Marti M. Joyer, Melissa A. Fierke, Nicholas D. Petkovich, Andreas Stein, Philippe Bühlmann. Subnanomolar detection limit application of ion-selective electrodes with three-dimensionally ordered macroporous (3DOM) carbon solid contacts. Journal of Solid State Electrochemistry 2009, 13 (1) , 123-128. https://doi.org/10.1007/s10008-008-0579-2
    67. Bo Peng, Jingwei Zhu, Xiaojie Liu, Yu Qin. Potentiometric response of ion-selective membranes with ionic liquids as ion-exchanger and plasticizer. Sensors and Actuators B: Chemical 2008, 133 (1) , 308-314. https://doi.org/10.1016/j.snb.2008.02.027
    68. Farnoush Faridbod, Parviz Norouzi, Rassoul Dinarvand, Mohammad Ganjali. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade. Sensors 2008, 8 (4) , 2331-2412. https://doi.org/10.3390/s8042331
    69. Anna Kisiel, Agata Michalska, Krzysztof Maksymiuk, Elisabeth A. H. Hall. All‐Solid‐State Reference Electrodes with Poly( n ‐butyl acrylate) Based Membranes. Electroanalysis 2008, 20 (3) , 318-323. https://doi.org/10.1002/elan.200704065
    70. Cristina C. Cid, Jordi Riu, Alicia Maroto, F. Xavier Rius. Ion-sensitive field effect transistors using carbon nanotubes as the transducing layer. The Analyst 2008, 133 (8) , 1001. https://doi.org/10.1039/b800862k
    71. Eric Bakker, Ernö Pretsch. Modern Potentiometry. Angewandte Chemie International Edition 2007, 46 (30) , 5660-5668. https://doi.org/10.1002/anie.200605068
    72. Eric Bakker, Ernö Pretsch. Moderne Potentiometrie. Angewandte Chemie 2007, 119 (30) , 5758-5767. https://doi.org/10.1002/ange.200605068
    73. Monika Lyczewska, Marcin Wojciechowski, Ewa Bulska, Elizabeth A. H. Hall, Krzysztof Maksymiuk, Agata Michalska. Chloride‐Selective Electrodes with Poly( n ‐butyl acrylate) Based Membranes. Electroanalysis 2007, 19 (2-3) , 393-397. https://doi.org/10.1002/elan.200603721
    74. Johan Bobacka, Ari Ivaska. Chapter 4 Ion sensors with conducting polymers as ion-to-electron transducers. 2007, 73-86. https://doi.org/10.1016/S0166-526X(06)49004-8
    75. J.-P. Cristol, B. Balint, B. Canaud, M.-F. Daurés. Méthodes de dosage du sodium dans les liquides biologiques. Néphrologie & Thérapeutique 2007, 3 , S104-S111. https://doi.org/10.1016/S1769-7255(07)80017-4
    76. Galina A. Khripoun, Elina A. Volkova, Artiom V. Liseenkov, Konstantin N. Mikhelson. Nitrate‐Selective Solid Contact Electrodes with Poly(3‐octylthiophene) and Poly(aniline) as Ion‐to‐Electron Transducers Buffered with Electron‐Ion‐Exchanging Resin. Electroanalysis 2006, 18 (13-14) , 1322-1328. https://doi.org/10.1002/elan.200603532
    77. Zsófia Szigeti, Tamás Vigassy, Eric Bakker, Ernö Pretsch. Approaches to Improving the Lower Detection Limit of Polymeric Membrane Ion‐Selective Electrodes. Electroanalysis 2006, 18 (13-14) , 1254-1265. https://doi.org/10.1002/elan.200603539
    78. Paweł Pawłowski, Agata Michalska, Krzysztof Maksymiuk. Galvanostatic Polarization of All‐Solid‐State K + ‐Selective Electrodes with Polypyrrole Ion‐to‐Electron Transducer. Electroanalysis 2006, 18 (13-14) , 1339-1346. https://doi.org/10.1002/elan.200603553
    79. Agata Michalska, Marcin Ocypa, Krzysztof Maksymiuk. Effect of interferents present in the internal solution or in the conducting polymer transducer on the responses of ion-selective electrodes. Analytical and Bioanalytical Chemistry 2006, 385 (1) , 203-207. https://doi.org/10.1007/s00216-006-0380-y
    80. Agata Michalska, Magdalena Skompska, Józef Mieczkowski, Małgorzata Zagórska, Krzysztof Maksymiuk. Tailoring Solution Cast Poly(3,4‐dioctyloxythiophene) Transducers for Potentiometric All‐Solid‐State Ion‐Selective Electrodes. Electroanalysis 2006, 18 (8) , 763-771. https://doi.org/10.1002/elan.200503466
    81. Vasilis G. Gavalas, Maria J. Berrocal, Leonidas G. Bachas. Enhancing the blood compatibility of ion-selective electrodes. Analytical and Bioanalytical Chemistry 2006, 384 (1) , 65-72. https://doi.org/10.1007/s00216-005-0039-0
    82. Agata Michalska. Optimizing the analytical performance and construction of ion-selective electrodes with conducting polymer-based ion-to-electron transducers. Analytical and Bioanalytical Chemistry 2006, 384 (2) , 391-406. https://doi.org/10.1007/s00216-005-0132-4
    83. Maria Jose Ruedas-Rama, Elizabeth A. H. Hall. K+-selective nanospheres: maximising response range and minimising response time. The Analyst 2006, 131 (12) , 1282. https://doi.org/10.1039/b608901a
    84. Johan Bobacka. Conducting Polymer‐Based Solid‐State Ion‐Selective Electrodes. Electroanalysis 2006, 18 (1) , 7-18. https://doi.org/10.1002/elan.200503384
    85. Marcin A. Malik, Pawel J. Kulesza, Renata Wlodarczyk, Gunther Wittstock, Rüdiger Szargan, Henryk Bala, Zbigniew Galus. Formation of ultra-thin prussian blue layer on carbon steel that promotes adherence of hybrid polypyrrole based protective coating. Journal of Solid State Electrochemistry 2005, 9 (5) , 403-411. https://doi.org/10.1007/s10008-005-0654-x
    86. Zsófia Szigeti, István Bitter, Klára Tóth, Christopher Latkoczy, Daniel J. Fliegel, Detlef Günther, Ernö Pretsch. A novel polymeric membrane electrode for the potentiometric analysis of Cu2+ in drinking water. Analytica Chimica Acta 2005, 532 (2) , 129-136. https://doi.org/10.1016/j.aca.2004.10.061
    87. Eric Bakker, Ernö Pretsch. Potentiometric sensors for trace-level analysis. TrAC Trends in Analytical Chemistry 2005, 24 (3) , 199-207. https://doi.org/10.1016/j.trac.2005.01.003
    88. Agata Michalska, Marcin Ocypa, Krzysztof Maksymiuk. Highly Selective All‐Plastic, Disposable, Cu 2+ ‐Selective Electrodes. Electroanalysis 2005, 17 (4) , 327-333. https://doi.org/10.1002/elan.200403107

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect