ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Microelectrode Biosensor for Real-Time Measurement of ATP in Biological Tissue

View Author Information
Warwick Biosensors Group, Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
Cite this: Anal. Chem. 2005, 77, 10, 3267–3273
Publication Date (Web):April 6, 2005
https://doi.org/10.1021/ac048106q
Copyright © 2005 American Chemical Society

    Article Views

    3684

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The purines ATP, ADP, and adenosine are important extracellular signaling agents. Analysis of purinergic signaling has been slowed by lack of direct methods for measurement of purine release in real-time during physiological activity. We have previously reported microelectrode biosensors for adenosine, but similar sensors for ATP have remained elusive. We now describe an ATP biosensor formed by coating a Pt microelectrode with an ultrathin biolayer containing glycerol kinase and glycerol-3-phosphate oxidase. It responds rapidly (10−90% rise time <10 s) and exhibits a linear response to ATP over the physiologically relevant concentrations of 200 nM−50 μM and is very sensitive ∼250 mA·M-1·cm-2. By including phosphocreatine kinase in the biolayer, we can optionally amplify the ATP signal and also make the sensor sensitive to external ADP. We have used our sensors to make the first demonstration that ATP is released from spinal networks in vivo during locomotor activity.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected]. Tel:  +44-24-7652-3729. Fax:  +44-24-7657-2594.

    Cited By

    This article is cited by 230 publications.

    1. Asal Ghaffari Zaki, Esra N. Yiğit, Mehmet Ş. Aydın, Emre Vatandaslar, Gürkan Öztürk, Emrah Eroglu. Genetically Encoded Biosensors Unveil Neuronal Injury Dynamics via Multichromatic ATP and Calcium Imaging. ACS Sensors 2024, Article ASAP.
    2. Hai-Ling Liu, Saud Asif Ahmed, Qiu-Cen Jiang, Qi Shen, Kan Zhan, Kang Wang. Gold Nanotriangle-Assembled Nanoporous Structures for Electric Field-Assisted Surface-Enhanced Raman Scattering Detection of Adenosine Triphosphate. ACS Sensors 2023, 8 (3) , 1280-1286. https://doi.org/10.1021/acssensors.2c02759
    3. Yuxin Li, Alexandra L. Keller, Michael T. Cryan, Ashley E. Ross. Metal Nanoparticle Modified Carbon-Fiber Microelectrodes Enhance Adenosine Triphosphate Surface Interactions with Fast-Scan Cyclic Voltammetry. ACS Measurement Science Au 2022, 2 (2) , 96-105. https://doi.org/10.1021/acsmeasuresciau.1c00026
    4. Gaurav Sinsinbar, Alagappan Palaniappan, Umit Hakan Yildiz, Bo Liedberg. A Perspective on Polythiophenes as Conformation Dependent Optical Reporters for Label-Free Bioanalytics. ACS Sensors 2022, 7 (3) , 686-703. https://doi.org/10.1021/acssensors.1c02476
    5. Maria Antonietta Casulli, Irene Taurino, Takeshi Hashimoto, Sandro Carrara, Takashi Hayashita. Electrochemical Sensing of Adenosin Triphosphate by Specific Binding to Dipicolylamine Group in Cyclodextrin Supramolecular Complex. ACS Applied Bio Materials 2021, 4 (4) , 3041-3045. https://doi.org/10.1021/acsabm.1c00166
    6. Cong Xu, Fei Wu, Ping Yu, Lanqun Mao. In Vivo Electrochemical Sensors for Neurochemicals: Recent Update. ACS Sensors 2019, 4 (12) , 3102-3118. https://doi.org/10.1021/acssensors.9b01713
    7. Danlei Li, Christopher Batchelor-McAuley, Lifu Chen, Richard G. Compton. Band Electrodes in Sensing Applications: Response Characteristics and Band Fabrication Methods. ACS Sensors 2019, 4 (9) , 2250-2266. https://doi.org/10.1021/acssensors.9b01172
    8. Mirelis Santos-Cancel, Laura W. Simpson, Jennie B. Leach, Ryan J. White. Direct, Real-Time Detection of Adenosine Triphosphate Release from Astrocytes in Three-Dimensional Culture Using an Integrated Electrochemical Aptamer-Based Sensor. ACS Chemical Neuroscience 2019, 10 (4) , 2070-2079. https://doi.org/10.1021/acschemneuro.9b00033
    9. Manli Yu, Yishan Yao, Bo Cui, Changjiao Sun, Xiang Zhao, Yan Wang, Guoqiang Liu, Haixin Cui, Zhanghua Zeng. Metal-Enhanced Near Infrared Fluorescence-Based Sensor with Highly Improved Sensitivity for Adenosine Triphosphate. ACS Applied Nano Materials 2019, 2 (1) , 48-57. https://doi.org/10.1021/acsanm.8b01583
    10. Yao-Yao Fan, Zhao-Li Mou, Man Wang, Jun Li, Jing Zhang, Fu-Quan Dang, Zhi-Qi Zhang. Chimeric Aptamers-Based and MoS2 Nanosheet-Enhanced Label-Free Fluorescence Polarization Strategy for Adenosine Triphosphate Detection. Analytical Chemistry 2018, 90 (22) , 13708-13713. https://doi.org/10.1021/acs.analchem.8b04107
    11. Alice Soldà, Giovanni Valenti, Massimo Marcaccio, Marco Giorgio, Pier Giuseppe Pelicci, Francesco Paolucci, and Stefania Rapino . Glucose and Lactate Miniaturized Biosensors for SECM-Based High-Spatial Resolution Analysis: A Comparative Study. ACS Sensors 2017, 2 (9) , 1310-1318. https://doi.org/10.1021/acssensors.7b00324
    12. Kailin Zhang, Xiulan He, Yang Liu, Ping Yu, Junjie Fei, and Lanqun Mao . Highly Selective Cerebral ATP Assay Based on Micrometer Scale Ion Current Rectification at Polyimidazolium-Modified Micropipettes. Analytical Chemistry 2017, 89 (12) , 6794-6799. https://doi.org/10.1021/acs.analchem.7b01218
    13. Tongfang Xiao, Fei Wu, Jie Hao, Meining Zhang, Ping Yu, and Lanqun Mao . In Vivo Analysis with Electrochemical Sensors and Biosensors. Analytical Chemistry 2017, 89 (1) , 300-313. https://doi.org/10.1021/acs.analchem.6b04308
    14. Mahmoud Labib, Edward H. Sargent, and Shana O. Kelley . Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chemical Reviews 2016, 116 (16) , 9001-9090. https://doi.org/10.1021/acs.chemrev.6b00220
    15. Florika C. Macazo and Ryan J. White . Bioinspired Protein Channel-Based Scanning Ion Conductance Microscopy (Bio-SICM) for Simultaneous Conductance and Specific Molecular Imaging. Journal of the American Chemical Society 2016, 138 (8) , 2793-2801. https://doi.org/10.1021/jacs.5b13252
    16. Ping Yu, Xiulan He, Li Zhang, and Lanqun Mao . Dual Recognition Unit Strategy Improves the Specificity of the Adenosine Triphosphate (ATP) Aptamer Biosensor for Cerebral ATP Assay. Analytical Chemistry 2015, 87 (2) , 1373-1380. https://doi.org/10.1021/ac504249k
    17. Juan Liu, Samiullah Wagan, Melissa Dávila Morris, James Taylor, and Ryan J. White . Achieving Reproducible Performance of Electrochemical, Folding Aptamer-Based Sensors on Microelectrodes: Challenges and Prospects. Analytical Chemistry 2014, 86 (22) , 11417-11424. https://doi.org/10.1021/ac503407e
    18. Yueting Liu, Jianping Lei, Yin Huang, and Huangxian Ju . “Off-On” Electrochemiluminescence System for Sensitive Detection of ATP via Target-Induced Structure Switching. Analytical Chemistry 2014, 86 (17) , 8735-8741. https://doi.org/10.1021/ac501913c
    19. Ivan S. Kucherenko, Daria Yu. Didukh, Oleksandr O. Soldatkin, and Alexei P. Soldatkin . Amperometric Biosensor System for Simultaneous Determination of Adenosine-5′-Triphosphate and Glucose. Analytical Chemistry 2014, 86 (11) , 5455-5462. https://doi.org/10.1021/ac5006553
    20. Prasenjit Mahato, Amrita Ghosh, Sanjiv K. Mishra, Anupama Shrivastav, Sandhya Mishra, and Amitava Das . Zn(II)−Cyclam Based Chromogenic Sensors for Recognition of ATP in Aqueous Solution Under Physiological Conditions and Their Application as Viable Staining Agents for Microorganism. Inorganic Chemistry 2011, 50 (9) , 4162-4170. https://doi.org/10.1021/ic200223g
    21. Donita L. Robinson, Andre Hermans, Andrew T. Seipel and R. Mark Wightman. Monitoring Rapid Chemical Communication in the Brain. Chemical Reviews 2008, 108 (7) , 2554-2584. https://doi.org/10.1021/cr068081q
    22. George S. Wilson, and Michael A. Johnson, . In-Vivo Electrochemistry: What Can We Learn about Living Systems?. Chemical Reviews 2008, 108 (7) , 2462-2481. https://doi.org/10.1021/cr068082i
    23. Jean-Francois Masson, Christine Kranz, Boris Mizaikoff and Estelle B. Gauda. Amperometric ATP Microbiosensors for the Analysis of Chemosensitivity at Rat Carotid Bodies. Analytical Chemistry 2008, 80 (11) , 3991-3998. https://doi.org/10.1021/ac7018969
    24. Qiuyi Teng, Kunkun Zhou, Kaihua Yu, Xinyi Zhang, Zijun Li, Huafeng Wang, Chengzhi Zhu, Zhaoyin Wang, Zhihui Dai. Principal component analysis-assisted zirconium-based metal-organic Frameworks/DNA biosensor for the analysis of various phosphates. Talanta 2024, 31 , 125733. https://doi.org/10.1016/j.talanta.2024.125733
    25. Kaustuv Roy, Songling Jiang, Eun-Jung Jin, Sung Young Park. pH-sensitivity of a hybrid ionotronic device-based self-diagnostic hydrogel for sensing and therapeutic activity. Chemical Engineering Journal 2023, 475 , 146168. https://doi.org/10.1016/j.cej.2023.146168
    26. Andreas Hellmann, Annika Schundner, Manfred Frick, Christine Kranz. Electrochemical detection of ATP release in-vitro and in-vivo. Current Opinion in Electrochemistry 2023, 39 , 101282. https://doi.org/10.1016/j.coelec.2023.101282
    27. Subramaniyam Sivagnanam, Prasenjit Mahato, Priyadip Das. An overview on the development of different optical sensing platforms for adenosine triphosphate (ATP) recognition. Organic & Biomolecular Chemistry 2023, 96 https://doi.org/10.1039/D3OB00209H
    28. Mark J. Wall, Katie Puddefoot, Wencheng Yin, Chris Bingham, Mohsen Seifi, Jerome D. Swinny, Richard Teke Ngomba. Adenosine is released during thalamic oscillations to provide negative feedback control. Neuropharmacology 2022, 216 , 109172. https://doi.org/10.1016/j.neuropharm.2022.109172
    29. Kobi P. Bermingham, Michelle M. Doran, Fiachra B. Bolger, John P. Lowry. Design optimisation and characterisation of an amperometric glutamate oxidase-based composite biosensor for neurotransmitter l-glutamic acid. Analytica Chimica Acta 2022, 1224 , 340205. https://doi.org/10.1016/j.aca.2022.340205
    30. Zhaofa Wu, Dayu Lin, Yulong Li. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nature Reviews Neuroscience 2022, 23 (5) , 257-274. https://doi.org/10.1038/s41583-022-00577-6
    31. Sharif Hossain, Christopher W. K. Chow, David Cook, Emma Sawade, Guna A. Hewa. Review of Nitrification Monitoring and Control Strategies in Drinking Water System. International Journal of Environmental Research and Public Health 2022, 19 (7) , 4003. https://doi.org/10.3390/ijerph19074003
    32. Keine Nishiyama, Ryohei Mizukami, Shizuka Kuki, Akihiko Ishida, Junji Chida, Hiroshi Kido, Masatoshi Maeki, Hirofumi Tani, Manabu Tokeshi. Electrochemical enzyme-based blood ATP and lactate sensor for a rapid and straightforward evaluation of illness severity. Biosensors and Bioelectronics 2022, 198 , 113832. https://doi.org/10.1016/j.bios.2021.113832
    33. Hao Li, Beibei Kou, Yali Yuan, Yaqin Chai, Ruo Yuan. Porous Fe3O4@COF-Immobilized gold nanoparticles with excellent catalytic performance for sensitive electrochemical detection of ATP. Biosensors and Bioelectronics 2022, 197 , 113758. https://doi.org/10.1016/j.bios.2021.113758
    34. Hideo Doi, Tomoko Horio, Yong-Joon Choi, Kazuhiro Takahashi, Toshihiko Noda, Kazuaki Sawada. CMOS-Based Redox-Type Label-Free ATP Image Sensor for In Vitro Sensitive Imaging of Extracellular ATP. Sensors 2022, 22 (1) , 75. https://doi.org/10.3390/s22010075
    35. Alexander V. Gourine, K. Michael Spyer. Geoff Burnstock, purinergic signalling, and chemosensory control of breathing. Autonomic Neuroscience 2021, 235 , 102839. https://doi.org/10.1016/j.autneu.2021.102839
    36. Nana Lyu, Vinoth Kumar Rajendran, Jun Li, Alexander Engel, Mark P. Molloy, Yuling Wang. Highly specific detection of KRAS single nucleotide polymorphism by asymmetric PCR/SERS assay. The Analyst 2021, 146 (18) , 5714-5721. https://doi.org/10.1039/D1AN01108A
    37. Kenton M. Sanders, Violeta N. Mutafova-Yambolieva. Neurotransmitters responsible for purinergic motor neurotransmission and regulation of GI motility. Autonomic Neuroscience 2021, 234 , 102829. https://doi.org/10.1016/j.autneu.2021.102829
    38. Asel S. Arykbaeva, Dorottya K. de Vries, Jason B. Doppenberg, Marten A. Engelse, Thomas Hankemeier, Amy C. Harms, Leonie G. Wijermars, Alexander F. Schaapherder, Jaap A. Bakker, Rutger J. Ploeg, Ian P.J. Alwayn, Jan H.N. Lindeman. Metabolic needs of the kidney graft undergoing normothermic machine perfusion. Kidney International 2021, 100 (2) , 301-310. https://doi.org/10.1016/j.kint.2021.04.001
    39. Hideo Doi, Tomoko Horio, Young-Joon Choi, Kazuhiro Takahashi, Toshihiko Noda, Kazuaki Sawada. Redox-Type Label-Free ATP Image Sensor for Highly Sensitive in Vitro Imaging of Extracellular ATP. 2021, 711-714. https://doi.org/10.1109/Transducers50396.2021.9495500
    40. Jia Lun He, Bing Ying Jiang, Wen Jiao Zhou, Ruo Yuan, Yun Xiang. Target Recycling Transcription of Lighting-Up RNA Aptamers for Highly Sensitive and Label-Free Detection of ATP. Journal of Analysis and Testing 2021, 5 (2) , 174-180. https://doi.org/10.1007/s41664-021-00170-3
    41. Yuxin Li, Moriah E. Weese, Michael T. Cryan, Ashley E. Ross. Amine-functionalized carbon-fiber microelectrodes for enhanced ATP detection with fast-scan cyclic voltammetry. Analytical Methods 2021, 13 (20) , 2320-2330. https://doi.org/10.1039/D1AY00089F
    42. Nicholas Dale. Biological insights from the direct measurement of purine release. Biochemical Pharmacology 2021, 187 , 114416. https://doi.org/10.1016/j.bcp.2021.114416
    43. Hideo Doi, Bijay Parajuli, Tomoko Horio, Eiji Shigetomi, Youichi Shinozaki, Toshihiko Noda, Kazuhiro Takahashi, Toshiaki Hattori, Schuichi Koizumi, Kazuaki Sawada. Development of a label-free ATP image sensor for analyzing spatiotemporal patterns of ATP release from biological tissues. Sensors and Actuators B: Chemical 2021, 335 , 129686. https://doi.org/10.1016/j.snb.2021.129686
    44. Jun'ya Tsutsumi, Anthony P.F. Turner, Wing Cheung Mak. Precise and rapid solvent-assisted geometric protein self-patterning with submicron spatial resolution for scalable fabrication of microelectronic biosensors. Biosensors and Bioelectronics 2021, 177 , 112968. https://doi.org/10.1016/j.bios.2021.112968
    45. Nicholas Dale. Real-time measurement of adenosine and ATP release in the central nervous system. Purinergic Signalling 2021, 17 (1) , 109-115. https://doi.org/10.1007/s11302-020-09733-y
    46. Serban F. Peteu, Skye A. Russell, James J. Galligan, Greg M. Swain. An Electrochemical ATP Biosensor with Enzymes Entrapped within a PEDOT Film. Electroanalysis 2021, 33 (2) , 495-505. https://doi.org/10.1002/elan.202060397
    47. Abilesh Kumar, Subramaniyam Sivagnanam, Soumyajit Ghosh, Priyadip Das. Polydiacetylene (PDA) liposome-based colorimetric sensor for the detection of ATP in aqueous medium. Materials Today: Proceedings 2021, 40 , S230-S235. https://doi.org/10.1016/j.matpr.2020.10.659
    48. Valentina Vultaggio-Poma, Alba Clara Sarti, Francesco Di Virgilio. Extracellular ATP: A Feasible Target for Cancer Therapy. Cells 2020, 9 (11) , 2496. https://doi.org/10.3390/cells9112496
    49. Chunli Li, Hongkun Li, Guifen Jie. Click chemistry reaction-triggered DNA walker amplification coupled with hyperbranched DNA nanostructure for versatile fluorescence detection and drug delivery to cancer cells. Microchimica Acta 2020, 187 (11) https://doi.org/10.1007/s00604-020-04580-5
    50. Yao-Yao Fan, Xu Deng, Man Wang, Jun Li, Zhi-Qi Zhang. A dual-function oligonucleotide-based ratiometric fluorescence sensor for ATP detection. Talanta 2020, 219 , 121349. https://doi.org/10.1016/j.talanta.2020.121349
    51. Yixin Nie, Yang Liu, Qian Zhang, Feng Zhang, Qiang Ma, Xingguang Su. Fe3O4 NP@ZIF-8/MoS2 QD-based electrochemiluminescence with nanosurface energy transfer strategy for point-of-care determination of ATP. Analytica Chimica Acta 2020, 1127 , 190-197. https://doi.org/10.1016/j.aca.2020.06.051
    52. Dandan Wang, Fenghua Geng, Yongxiang Wang, Yu Ma, Guixin Li, Peng Qu, Congying Shao, Maotian Xu. Design of a Fluorescence Turn-on and Label-free Aptasensor Using the Intrinsic Quenching Power of G-Quadruplex to AMT. Analytical Sciences 2020, 36 (8) , 965-970. https://doi.org/10.2116/analsci.19P455
    53. Nami Kitajima, Kenji Takikawa, Hiroshi Sekiya, Kaname Satoh, Daisuke Asanuma, Hirokazu Sakamoto, Shodai Takahashi, Kenjiro Hanaoka, Yasuteru Urano, Shigeyuki Namiki, Masamitsu Iino, Kenzo Hirose. Real-time in vivo imaging of extracellular ATP in the brain with a hybrid-type fluorescent sensor. eLife 2020, 9 https://doi.org/10.7554/eLife.57544
    54. Wang Zhang, Chao Wang, Meihong Peng, Guoyuan Ren, Kai Li, Yuqing Lin. ATP-responsive laccase@ZIF-90 as a signal amplification platform to achieve indirect highly sensitive online detection of ATP in rat brain. Chemical Communications 2020, 56 (47) , 6436-6439. https://doi.org/10.1039/D0CC02021D
    55. Gabriel García-Molina, Paolo Natale, Laura Valenzuela, Julia Alvarez-Malmagro, Cristina Gutiérrez-Sánchez, Ana Iglesias-Juez, Iván López-Montero, Marisela Vélez, Marcos Pita, Antonio L. De Lacey. Potentiometric detection of ATP based on the transmembrane proton gradient generated by ATPase reconstituted on a gold electrode. Bioelectrochemistry 2020, 133 , 107490. https://doi.org/10.1016/j.bioelechem.2020.107490
    56. Yi-Lun Ying, Jiajun Wang, Anna Rose Leach, Ying Jiang, Rui Gao, Cong Xu, Martin A. Edwards, Andrew D. Pendergast, Hang Ren, Connor K. Terry Weatherly, Wei Wang, Paolo Actis, Lanqun Mao, Henry S. White, Yi-Tao Long. Single-entity electrochemistry at confined sensing interfaces. Science China Chemistry 2020, 63 (5) , 589-618. https://doi.org/10.1007/s11426-020-9716-2
    57. Xueqing Gao, Jia Liu, Xuming Zhuang, Chunyuan Tian, Feng Luan, Huitao Liu, Yuan Xiong. Incorporating copper nanoclusters into a zeolitic imidazole framework-90 for use as a highly sensitive adenosine triphosphate sensing system to evaluate the freshness of aquatic products. Sensors and Actuators B: Chemical 2020, 308 , 127720. https://doi.org/10.1016/j.snb.2020.127720
    58. Zhaofa Wu, Yulong Li. New frontiers in probing the dynamics of purinergic transmitters in vivo. Neuroscience Research 2020, 152 , 35-43. https://doi.org/10.1016/j.neures.2020.01.008
    59. Giampaolo Milior, Mélanie Morin-Brureau, Farah Chali, Caroline Le Duigou, Etienne Savary, Gilles Huberfeld, Nathalie Rouach, Johan Pallud, Laurent Capelle, Vincent Navarro, Bertrand Mathon, Stéphane Clemenceau, Richard Miles. Distinct P2Y Receptors Mediate Extension and Retraction of Microglial Processes in Epileptic and Peritumoral Human Tissue. The Journal of Neuroscience 2020, 40 (7) , 1373-1388. https://doi.org/10.1523/JNEUROSCI.0218-19.2019
    60. Ahmet Ucar, Eva González-Fernández, Matteo Staderini, Nicolaos Avlonitis, Alan F. Murray, Mark Bradley, Andrew R. Mount. Miniaturisation of a peptide-based electrochemical protease activity sensor using platinum microelectrodes. The Analyst 2020, 145 (3) , 975-982. https://doi.org/10.1039/C9AN02321F
    61. Elena De Marchi, Elisa Orioli, Anna Pegoraro, Elena Adinolfi, Francesco Di Virgilio. Detection of Extracellular ATP in the Tumor Microenvironment, Using the pmeLUC Biosensor. 2020, 183-195. https://doi.org/10.1007/978-1-4939-9717-6_13
    62. Laura de Diego-García, Álvaro Sebastián-Serrano, Carolina Bianchi, Caterina Di Lauro, Miguel Díaz-Hernández. ATP Measurement in Cerebrospinal Fluid Using a Microplate Reader. 2020, 233-241. https://doi.org/10.1007/978-1-4939-9717-6_17
    63. Bhavik A. Patel. Electrochemical biosensors. 2020, 267-284. https://doi.org/10.1016/B978-0-12-821203-5.00008-7
    64. Jing Lin, Dominik Weixler, Sven Daboss, Gerd M. Seibold, Corina Andronescu, Wolfgang Schuhmann, Christine Kranz. Time-resolved ATP measurements during vesicle respiration. Talanta 2019, 205 , 120083. https://doi.org/10.1016/j.talanta.2019.06.083
    65. Mark A. Lobas, Rongkun Tao, Jun Nagai, Mira T. Kronschläger, Philip M. Borden, Jonathan S. Marvin, Loren L. Looger, Baljit S. Khakh. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-08441-5
    66. Shimwe Dominique Niyonambaza, Praveen Kumar, Paul Xing, Jessy Mathault, Paul De Koninck, Elodie Boisselier, Mounir Boukadoum, Amine Miled. A Review of Neurotransmitters Sensing Methods for Neuro-Engineering Research. Applied Sciences 2019, 9 (21) , 4719. https://doi.org/10.3390/app9214719
    67. Lili Wei, Hui Cheng, Yong Chen, Juan Liu, Shaohui Jia, Wei Sun. Sensitive Electrochemical Determination of Adenosine-5’- triphosphate with 1-Butyl-2,3-dimethylimidazolium Hexafluorophosphate Based Carbon Paste Electrode. International Journal of Electrochemical Science 2019, 14 (11) , 10070-10078. https://doi.org/10.20964/2019.11.21
    68. Owain Fisher, Ruth A Benson, Christopher HE Imray. The clinical application of purine nucleosides as biomarkers of tissue Ischemia and hypoxia in humans in vivo. Biomarkers in Medicine 2019, 13 (11) , 953-964. https://doi.org/10.2217/bmm-2019-0049
    69. Sally A. N. Gowers, Michelle L. Rogers, Marsilea A. Booth, Chi L. Leong, Isabelle C. Samper, Tonghathai Phairatana, Sharon L. Jewell, Clemens Pahl, Anthony J. Strong, Martyn G. Boutelle. Clinical translation of microfluidic sensor devices: focus on calibration and analytical robustness. Lab on a Chip 2019, 19 (15) , 2537-2548. https://doi.org/10.1039/C9LC00400A
    70. Tingting Zhang, Zhiqian Xu, Haixin Xu, Yue Gu, Yue Xing, Xiaoyi Yan, He Liu, Nannan Lu, Yu Song, Siyuan Zhang, Zhiquan Zhang, Ming Yang. Catechol and zwitterion-bifunctionalized poly(ethylene glycol) based ultrasensitive antifouling electrochemical aptasensor for the quantification of adenosine triphosphate in biological media. Sensors and Actuators B: Chemical 2019, 288 , 469-475. https://doi.org/10.1016/j.snb.2019.03.027
    71. Melis Asal, Özlem Özen, Mert Şahinler, Hasan Tahsin Baysal, İlker Polatoğlu. An overview of biomolecules, immobilization methods and support materials of biosensors. Sensor Review 2019, 39 (3) , 377-386. https://doi.org/10.1108/SR-04-2018-0084
    72. Danlei Li, Chuhong Lin, Christopher Batchelor-McAuley, Lifu Chen, Richard G. Compton. Electrochemical measurement of the size of microband electrodes: A theoretical study. Journal of Electroanalytical Chemistry 2019, 840 , 279-284. https://doi.org/10.1016/j.jelechem.2019.04.006
    73. Tingting Zhang, Haixin Xu, Zhiqian Xu, Yue Gu, Xiaoyi Yan, He Liu, Nannan Lu, Siyuan Zhang, Zhiquan Zhang, Ming Yang. A bioinspired antifouling zwitterionic interface based on reduced graphene oxide carbon nanofibers: electrochemical aptasensing of adenosine triphosphate. Microchimica Acta 2019, 186 (4) https://doi.org/10.1007/s00604-019-3343-7
    74. Shicai Xu, Chao Zhang, Shouzhen Jiang, Guodong Hu, Xiaoyue Li, Yan Zou, Hanping Liu, Jun Li, Zhenhua Li, Xiaoxin Wang, Mingzhen Li, Jihua Wang. Graphene foam field-effect transistor for ultra-sensitive label-free detection of ATP. Sensors and Actuators B: Chemical 2019, 284 , 125-133. https://doi.org/10.1016/j.snb.2018.12.129
    75. Yanan Jiang, Wenjie Ma, Wenliang Ji, Huan Wei, Lanqun Mao. Aptamer superstructure-based electrochemical biosensor for sensitive detection of ATP in rat brain with in vivo microdialysis. The Analyst 2019, 144 (5) , 1711-1717. https://doi.org/10.1039/C8AN02077A
    76. N. Manjubaashini, Percy J. Sephra, K. Nehru, M. Sivakumar, T. Daniel Thangadurai. Electrochemical determination of ATP at rhodamine6G capped gold nanoparticles modified carbon felt electrode at pH 7.2. Sensors and Actuators B: Chemical 2019, 281 , 1054-1062. https://doi.org/10.1016/j.snb.2018.10.149
    77. Arash Shadlaghani, Mahsa Farzaneh, Dacen Kinser, Russell C. Reid. Direct Electrochemical Detection of Glutamate, Acetylcholine, Choline, and Adenosine Using Non-Enzymatic Electrodes. Sensors 2019, 19 (3) , 447. https://doi.org/10.3390/s19030447
    78. Scott D. Adams, Abbas Z. Kouzani, Susannah J. Tye, Kevin E. Bennet, Michael Berk. An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction. Journal of NeuroEngineering and Rehabilitation 2018, 15 (1) https://doi.org/10.1186/s12984-018-0349-z
    79. Harminder Singh, Rashmi Sharma, Gaurav Bhargava, Subodh Kumar, Prabhpreet Singh. ESIPT‐Based Dual Chemosensor for Sequential Detection of Cd 2+ /Zn 2+ and Nucleoside Triphosphates in Water: Application in Logic Gates. ChemistrySelect 2018, 3 (27) , 7840-7848. https://doi.org/10.1002/slct.201801196
    80. Charles Chatard, Anne Meiller, Stéphane Marinesco. Microelectrode Biosensors for in vivo Analysis of Brain Interstitial Fluid. Electroanalysis 2018, 30 (6) , 977-998. https://doi.org/10.1002/elan.201700836
    81. Francie Moehring, Ashley M Cowie, Anthony D Menzel, Andy D Weyer, Michael Grzybowski, Thiago Arzua, Aron M Geurts, Oleg Palygin, Cheryl L Stucky. Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling. eLife 2018, 7 https://doi.org/10.7554/eLife.31684
    82. , Andrea Terron, Anna Bal-Price, Alicia Paini, Florianne Monnet-Tschudi, Susanne Hougaard Bennekou, Marcel Leist, Stefan Schildknecht. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Archives of Toxicology 2018, 92 (1) , 41-82. https://doi.org/10.1007/s00204-017-2133-4
    83. Javad Tavakoli, Youhong Tang. Hydrogel Based Sensors for Biomedical Applications: An Updated Review. Polymers 2017, 9 (12) , 364. https://doi.org/10.3390/polym9080364
    84. Heng Li, Chaoning Liang, Wei Chen, Jian-Ming Jin, Shuang-Yan Tang, Yong Tao. Monitoring in vivo metabolic flux with a designed whole-cell metabolite biosensor of shikimic acid. Biosensors and Bioelectronics 2017, 98 , 457-465. https://doi.org/10.1016/j.bios.2017.07.022
    85. Greta Lazutkaite, Alice Soldà, Kristina Lossow, Wolfgang Meyerhof, Nicholas Dale. Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Molecular Metabolism 2017, 6 (11) , 1480-1492. https://doi.org/10.1016/j.molmet.2017.08.015
    86. Rebecca Diez, Magnus J. E. Richardson, Mark J. Wall. Reducing Extracellular Ca2+ Induces Adenosine Release via Equilibrative Nucleoside Transporters to Provide Negative Feedback Control of Activity in the Hippocampus. Frontiers in Neural Circuits 2017, 11 https://doi.org/10.3389/fncir.2017.00075
    87. Omprakash Sunnapu, Niranjan G. Kotla, Balaji Maddiboyina, Srujan Marepally, Jeyabalan Shanmugapriya, Karuppannan Sekar, Subramanian Singaravadivel, Gandhi Sivaraman. Rhodamine-Based Fluorescent Turn-On Probe for Facile Sensing and Imaging of ATP in Mitochondria. ChemistrySelect 2017, 2 (25) , 7654-7658. https://doi.org/10.1002/slct.201701149
    88. Giampaolo Morciano, Alba Clara Sarti, Saverio Marchi, Sonia Missiroli, Simonetta Falzoni, Lizzia Raffaghello, Vito Pistoia, Carlotta Giorgi, Francesco Di Virgilio, Paolo Pinton. Use of luciferase probes to measure ATP in living cells and animals. Nature Protocols 2017, 12 (8) , 1542-1562. https://doi.org/10.1038/nprot.2017.052
    89. Ondřej Novák, Richard Napier, Karin Ljung. Zooming In on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches. Annual Review of Plant Biology 2017, 68 (1) , 323-348. https://doi.org/10.1146/annurev-arplant-042916-040812
    90. Mohammad Hasanzadeh, Nasrin Shadjou, Miguel de la Guardia. Aptamer-based assay of biomolecules: Recent advances in electro-analytical approach. TrAC Trends in Analytical Chemistry 2017, 89 , 119-132. https://doi.org/10.1016/j.trac.2017.02.003
    91. Charlotte Ziller, Jing Lin, Peter Knittel, Laura Friedrich, Corina Andronescu, Sascha Pöller, Wolfgang Schuhmann, Christine Kranz. Poly(benzoxazine) as an Immobilization Matrix for Miniaturized ATP and Glucose Biosensors. ChemElectroChem 2017, 4 (4) , 864-871. https://doi.org/10.1002/celc.201600765
    92. Adam J. H. Newton, Mark J. Wall, Magnus J. E. Richardson. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations. Journal of Neurophysiology 2017, 117 (3) , 937-949. https://doi.org/10.1152/jn.00788.2016
    93. Graciela L. Mazzone, Priyadharishini Veeraraghavan, Carlota Gonzalez-Inchauspe, Andrea Nistri, Osvaldo D. Uchitel. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury. Neuroscience 2017, 343 , 398-410. https://doi.org/10.1016/j.neuroscience.2016.12.008
    94. Ivan S. Kucherenko, Carole Farre, Gaetan Raimondi, Carole Chaix, Nicole Jaffrezic-Renault, Oleksandr O. Soldatkin, Alexei P. Soldatkin, Florence Lagarde. Gold Nanoparticle/Polymer/Enzyme Nanocomposite for the Development of Adenosine Triphosphate Biosensor. 2017, 533-545. https://doi.org/10.1007/978-3-319-56422-7_39
    95. Kelly E. Bosse, Johnna A. Birbeck, Brooke D. Newman, Tiffany A. Mathews. Analysis of neurotransmitters and their metabolites by liquid chromatography. 2017, 665-725. https://doi.org/10.1016/B978-0-12-805392-8.00021-9
    96. F Di Virgilio, E Adinolfi. Extracellular purines, purinergic receptors and tumor growth. Oncogene 2017, 36 (3) , 293-303. https://doi.org/10.1038/onc.2016.206
    97. Keith Van Meter. Hyperbaric Oxygen in Resuscitation. 2017, 551-566. https://doi.org/10.1007/978-3-319-47140-2_42
    98. Robert T. R. Huckstepp, Enrique Llaudet, Alexander V. Gourine, . CO2-Induced ATP-Dependent Release of Acetylcholine on the Ventral Surface of the Medulla Oblongata. PLOS ONE 2016, 11 (12) , e0167861. https://doi.org/10.1371/journal.pone.0167861
    99. Scott Adams, Abbas Z. Kouzani. A fast-scan cyclic voltammetry device with programmable excitation waveform. 2016, 472-475. https://doi.org/10.1109/ICAMechS.2016.7813494
    100. Scott Adams, Abbas Z. Kouzani, Kevin Bennet, Susannah J. Tye. Towards in-vivo ATP sensing. 2016, 2457-2460. https://doi.org/10.1109/TENCON.2016.7848474
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect