In Vitro Characterization of Microdialysis Sampling of MacromoleculesClick to copy article linkArticle link copied!
Abstract
Experiments were performed to characterize the in vitro collection of macromolecules using microdialysis. Fluorescently labeled proteins and dextrans ranging from 3000 to 150 000 were sampled using a 10-mm, 100 000 molecular weight cutoff, polyethersulfone microdialysis probe. Published models describing microdialysis mass transport of small molecules were examined to determine their appropriateness for sampling of macromolecules. Collection efficiencies, reported as relative recoveries, for macromolecules from 3000 to 70 000 ranged from 5 to 44%. Collection efficiencies determined for microdialysis sampling of macromolecules follow the functionality of published models, although experimental mass transport resistances are to some extent smaller than predicted. Implications of the current study for in vivo microdialysis sampling of cytokines and growth factors are discussed.
*
To whom correspondence should be addressed. E-mail: [email protected].
Cited By
This article is cited by 49 publications.
- Andreas P. Dahlin, Karlis Purins, Fredrik Clausen, Jiangtao Chu, Amir Sedigh, Tomas Lorant, Per Enblad, Anders Lewén, and Lars Hillered . Refined Microdialysis Method for Protein Biomarker Sampling in Acute Brain Injury in the Neurointensive Care Setting. Analytical Chemistry 2014, 86
(17)
, 8671-8679. https://doi.org/10.1021/ac501880u
- Andreas P. Dahlin, Magnus Wetterhall, Karin D. Caldwell, Anders Larsson, Jonas Bergquist, Lars Hillered and Klas Hjort . Methodological Aspects on Microdialysis Protein Sampling and Quantification in Biological Fluids: An In Vitro Study on Human Ventricular CSF. Analytical Chemistry 2010, 82
(11)
, 4376-4385. https://doi.org/10.1021/ac1007706
- Xiangdan Wang,, Michelle R. Lennartz,, Daniel J. Loegering, and, Julie A. Stenken. Interleukin-6 Collection through Long-Term Implanted Microdialysis Sampling Probes in Rat Subcutaneous Space. Analytical Chemistry 2007, 79
(5)
, 1816-1824. https://doi.org/10.1021/ac061503b
- Xiangdan Wang and, Julie A. Stenken. Microdialysis Sampling Membrane Performance during in Vitro Macromolecule Collection. Analytical Chemistry 2006, 78
(17)
, 6026-6034. https://doi.org/10.1021/ac0602930
- Hsuan-Ping Chang, Se Jin Kim, Dhaval K. Shah. Whole-Body Pharmacokinetics of Antibody in Mice Determined using Enzyme-Linked Immunosorbent Assay and Derivation of Tissue Interstitial Concentrations. Journal of Pharmaceutical Sciences 2021, 110
(1)
, 446-457. https://doi.org/10.1016/j.xphs.2020.05.025
- Alexandra Högstedt, Bijar Ghafouri, Erik Tesselaar, Simon Farnebo. Sampling insulin in different tissue compartments using microdialysis: methodological aspects. Scientific Reports 2020, 10
(1)
https://doi.org/10.1038/s41598-020-78728-x
- Imran Ali, Mohd Suhail, Zeid A. Alothman, Alwarthan Abdulrahman, Hassan Y. Aboul-Enein. Drug analyses in human plasma by chromatography. 2020, 15-46. https://doi.org/10.1016/B978-0-444-64066-6.00002-2
- Susan Giorgi-Coll, Eric Peter Thelin, Caroline Lindblad, Tamara Tajsic, Keri L.H. Carpenter, Peter J.A. Hutchinson, Adel Helmy. Dextran 500 Improves Recovery of Inflammatory Markers: An
In Vitro
Microdialysis Study. Journal of Neurotrauma 2020, 37
(1)
, 106-114. https://doi.org/10.1089/neu.2019.6513
- Lee C. Mangum, Gerardo R. Garcia, Kevin S. Akers, Joseph C. Wenke. Duration of extremity tourniquet application profoundly impacts soft-tissue antibiotic exposure in a rat model of ischemia-reperfusion injury. Injury 2019, 50
(12)
, 2203-2214. https://doi.org/10.1016/j.injury.2019.09.025
- Scott Buckley, Diane Allen, Richard Brackin, Sandra Jämtgård, Torgny Näsholm, Susanne Schmidt. Microdialysis as an in situ technique for sampling soil enzymes. Soil Biology and Biochemistry 2019, 135 , 20-27. https://doi.org/10.1016/j.soilbio.2019.04.007
- Scott Buckley, Richard Brackin, Torgny Näsholm, Susanne Schmidt, Sandra Jämtgård. Improving in situ recovery of soil nitrogen using the microdialysis technique. Soil Biology and Biochemistry 2017, 114 , 93-103. https://doi.org/10.1016/j.soilbio.2017.07.009
- Yvonne Förster, Johannes R. Schmidt, Dirk K. Wissenbach, Susanne E. M. Pfeiffer, Sven Baumann, Lorenz C. Hofbauer, Martin von Bergen, Stefan Kalkhof, Stefan Rammelt, . Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles. PLOS ONE 2016, 11
(7)
, e0159580. https://doi.org/10.1371/journal.pone.0159580
- Kho Chun Min, Zainal Arifin Ahmad, Siti Kartini Enche Ab Rahim, Norazharuddin Shah Abdullah. Mass Transport Analysis in Linear Microdialysis Probes Utilizing Structural Characterization Technique. Procedia Chemistry 2016, 19 , 153-161. https://doi.org/10.1016/j.proche.2016.03.017
- Jiangtao Chu, Torgny Undin, Sara Bergström Lind, Klas Hjort, Andreas P. Dahlin. Influence of surface modification and static pressure on microdialysis protein extraction efficiency. Biomedical Microdevices 2015, 17
(5)
https://doi.org/10.1007/s10544-015-0005-3
- V Iyer, A Raj, R K Annabattula, A K Sen. Experimental and numerical studies of a microfluidic device with compliant chambers for flow stabilization. Journal of Micromechanics and Microengineering 2015, 25
(7)
, 075003. https://doi.org/10.1088/0960-1317/25/7/075003
- S. R. Corrie, J. W. Coffey, J. Islam, K. A. Markey, M. A. F. Kendall. Blood, sweat, and tears: developing clinically relevant protein biosensors for integrated body fluid analysis. The Analyst 2015, 140
(13)
, 4350-4364. https://doi.org/10.1039/C5AN00464K
- Lars Hillered, Andreas P. Dahlin, Fredrik Clausen, Jiangtao Chu, Jonas Bergquist, Klas Hjort, Per Enblad, Anders Lewén. Cerebral Microdialysis for Protein Biomarker Monitoring in the Neurointensive Care Setting – A Technical Approach. Frontiers in Neurology 2014, 5 https://doi.org/10.3389/fneur.2014.00245
- Jiangtao Chu, Vitali Koudriavtsev, Klas Hjort, Andreas P. Dahlin. Fluorescence imaging of macromolecule transport in high molecular weight cut-off microdialysis. Analytical and Bioanalytical Chemistry 2014, 406
(29)
, 7601-7609. https://doi.org/10.1007/s00216-014-8192-y
- Cynthia R. Sides, Julie A. Stenken. Microdialysis sampling techniques applied to studies of the foreign body reaction. European Journal of Pharmaceutical Sciences 2014, 57 , 74-86. https://doi.org/10.1016/j.ejps.2013.11.002
- Magnus Wetterhall, Jonas Bergquist, Lars Hillered, Klas Hjort, Andreas P. Dahlin. Identification of human cerebrospinal fluid proteins and their distribution in an in vitro microdialysis sampling system. European Journal of Pharmaceutical Sciences 2014, 57 , 34-40. https://doi.org/10.1016/j.ejps.2013.12.011
- Jiangtao Chu, Klas Hjort, Anders Larsson, Andreas P. Dahlin. Impact of static pressure on transmembrane fluid exchange in high molecular weight cut off microdialysis. Biomedical Microdevices 2014, 16
(2)
, 301-310. https://doi.org/10.1007/s10544-013-9833-1
- Geetika Bajpai, Rosalia C. M. Simmen, Julie A. Stenken. In vivo microdialysis sampling of adipokines CCL2, IL-6, and leptin in the mammary fat pad of adult female rats. Mol. BioSyst. 2014, 10
(4)
, 806-812. https://doi.org/10.1039/C3MB70308H
- Patrik Olausson, Björn Gerdle, Nazdar Ghafouri, Linn Karlsson, Britt Larsson, Bijar Ghafouri. Relative recovery over time – an
in vivo
microdialysis study of human skeletal muscle. Scandinavian Journal of Clinical and Laboratory Investigation 2013, 73
(1)
, 10-16. https://doi.org/10.3109/00365513.2012.729081
- Yvonne Förster, Wenling Gao, Anne Demmrich, Ute Hempel, Lorenz C Hofbauer, Stefan Rammelt. Monitoring of the first stages of bone healing with microdialysis. Acta Orthopaedica 2013, 84
(1)
, 76-81. https://doi.org/10.3109/17453674.2013.769080
- Geraldine F. Clough, Julie A. Stenken, Martin K. Church. High Molecular Weight Targets and Treatments Using Microdialysis. 2013, 243-268. https://doi.org/10.1007/978-1-4614-4815-0_13
- Kirsten Huinink, Jakob Korf, Jan Bert Gramsbergen. Microdialysis and Microfiltration: Technology and Cerebral Applications for Energy Substrates. 2012, 371-414. https://doi.org/10.1007/978-1-4614-1788-0_13
- Adel Helmy, Maria-Grazia De Simoni, Mathew R. Guilfoyle, Keri L.H. Carpenter, Peter J. Hutchinson. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Progress in Neurobiology 2011, 95
(3)
, 352-372. https://doi.org/10.1016/j.pneurobio.2011.09.003
- Sahitya Katikaneni, Purna Kasha, Advait Badkar, Ajay Banga. Iontophoresis of A 13 Kda Protein Monitored by Subcutaneous Microdialysis
In Vivo. Bioanalysis 2011, 3
(21)
, 2419-2426. https://doi.org/10.4155/bio.11.238
- Gijs H. Goossens, Wim H. M. Saris, Ellen E. Blaak. Microdialysis on Adipose Tissue: Monitoring Tissue Metabolism and Blood Flow in Humans. 2011, 335-358. https://doi.org/10.1002/9781118011294.ch11
- Wen‐Chuan Lee, Tung‐Hu Tsai. In Vitro Applications of Microdialysis. 2011, 445-464. https://doi.org/10.1002/9781118011294.ch15
- . Experimental Methods and Tools for Transdermal Delivery by Physical Enhancement Methods. 2011, 27-51. https://doi.org/10.1201/b10906-3
- Xiaodun Mou, Michelle R. Lennartz, Daniel J. Loegering, Julie A. Stenken. Long-term calibration considerations during subcutaneous microdialysis sampling in mobile rats. Biomaterials 2010, 31
(16)
, 4530-4539. https://doi.org/10.1016/j.biomaterials.2010.02.016
- Peter M. Bungay, Tianli Wang, Hua Yang, William F. Elmquist. Utilizing transmembrane convection to enhance solute sampling and delivery by microdialysis: Theory and in vitro validation. Journal of Membrane Science 2010, 348
(1-2)
, 131-149. https://doi.org/10.1016/j.memsci.2009.10.050
- Yuexi Wang, Julie A. Stenken. Affinity-based microdialysis sampling using heparin for in vitro collection of human cytokines. Analytica Chimica Acta 2009, 651
(1)
, 105-111. https://doi.org/10.1016/j.aca.2009.08.009
- L.C. Mmualefe, N. Torto. Environmental and food sample handling challenges for developing countries. Toxicological & Environmental Chemistry 2009, 91
(5)
, 819-835. https://doi.org/10.1080/02772240802674592
- R. Afinowi, M. Tisdall, G. Keir, M. Smith, N. Kitchen, A. Petzold. Improving the recovery of S100B protein in cerebral microdialysis: Implications for multimodal monitoring in neurocritical care. Journal of Neuroscience Methods 2009, 181
(1)
, 95-99. https://doi.org/10.1016/j.jneumeth.2009.02.021
- Bozhi Yang, Qiao Lin. A Compliance-Based Microflow Stabilizer. Journal of Microelectromechanical Systems 2009, 18
(3)
, 539-546. https://doi.org/10.1109/JMEMS.2009.2021826
- J.A. De Los Rios, J. Sahuquillo, M.A. Merino, M.A. Poca, L. Expósito. Microdiálisis de alta resolución. Aspectos metodológicos y aplicación al estudio de la respuesta inflamatoria cerebral. Neurocirugía 2009, 20
(5)
, 433-447. https://doi.org/10.1016/S1130-1473(09)70140-X
- Yi Chen, Zhenpeng Guo, Xiaoyu Wang, Changgui Qiu. Sample preparation. Journal of Chromatography A 2008, 1184
(1-2)
, 191-219. https://doi.org/10.1016/j.chroma.2007.10.026
- Geraldine F. Clough, Claire L. Jackson, Jacob J.P. Lee, Sarah C. Jamal, Martin K. Church. What Can Microdialysis Tell Us About the Temporal and Spatial Generation of Cytokines in Allergen-Induced Responses in Human Skin In Vivo?. Journal of Investigative Dermatology 2007, 127
(12)
, 2799-2806. https://doi.org/10.1038/sj.jid.5700930
- Suniket V. Fulzele, R.J. Babu, E. Ahaghotu, Mandip Singh. Estimation of proinflammatory biomarkers of skin irritation by dermal microdialysis following exposure with irritant chemicals. Toxicology 2007, 237
(1-3)
, 77-88. https://doi.org/10.1016/j.tox.2007.05.005
- Xiaoping Ao, Xiangdan Wang, Michelle R. Lennartz, Daniel J. Loegering, Julie A. Stenken. Multiplexed cytokine detection in microliter microdialysis samples obtained from activated cultured macrophages. Journal of Pharmaceutical and Biomedical Analysis 2006, 40
(4)
, 915-921. https://doi.org/10.1016/j.jpba.2005.07.044
- A.J. Rosenbloom, R. Ferris, D.M. Sipe, S.A. Riddler, N.C. Connolly, K. Abe, T.L. Whiteside. In vitro and in vivo protein sampling by combined microdialysis and ultrafiltration. Journal of Immunological Methods 2006, 309
(1-2)
, 55-68. https://doi.org/10.1016/j.jim.2005.11.013
- . Entwicklung einer Architektur für Preisinformationssysteme (ARPIS). 2006, 191-231. https://doi.org/10.1007/978-3-8350-9404-8_4
- Jan Kehr. Chapter 2.1 New methodological aspects of microdialysis. 2006, 111-129. https://doi.org/10.1016/S1569-7339(06)16007-5
- Robert T. Kennedy. Chapter 3.4 In vivo peptidomics: discovery and monitoring of neuropeptides using microdialysis and liquid chromatography with mass spectrometry. 2006, 279-295. https://doi.org/10.1016/S1569-7339(06)16016-6
- Xiaoping Ao, Julie A. Stenken. No delayed temporal response to sample concentration changes during enhanced microdialysis sampling using cyclodextrins and antibody-immobilized microspheres. The Analyst 2006, 131
(1)
, 62-67. https://doi.org/10.1039/B504180E
- Geraldine F. Clough. Microdialysis of large molecules. The AAPS Journal 2005, 7
(3)
, E686-E692. https://doi.org/10.1208/aapsj070369
- Jennifer A. Jakubowski, Nathan G. Hatcher, Jonathan V. Sweedler. Online microdialysis‐dynamic nanoelectrospray ionization‐mass spectrometry for monitoring neuropeptide secretion. Journal of Mass Spectrometry 2005, 40
(7)
, 924-931. https://doi.org/10.1002/jms.869
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.