ACS Publications. Most Trusted. Most Cited. Most Read
Elimination of Dimer Formation in InIIIPorphyrin-Based Anion-Selective Membranes by Covalent Attachment of the Ionophore
My Activity
    Article

    Elimination of Dimer Formation in InIIIPorphyrin-Based Anion-Selective Membranes by Covalent Attachment of the Ionophore
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Auburn University, Auburn, Alabama 36849
    Other Access Options

    Analytical Chemistry

    Cite this: Anal. Chem. 2004, 76, 15, 4379–4386
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac049577f
    Published June 15, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The spontaneous hydroxy-bridged dimer formation of metalloporphyrins in ion-selective membranes gives rise to a short sensor lifetime (typically days), triggered by solubility problems, the occurrence of a super-Nernstian response slope, and a pH cross response. This dimer formation is eliminated here by covalent attachment of the ionophore to the polymer matrix. Specifically, two different indiumIIIporphyrins containing polymerizable groups, the chloride-selective chloro(3-[18-(3-acryloyloxypropyl)-7,12-bis(1-methoxyethyl)-3,8,13,17-tetramethylporphyrin-2-yl]propyl ester)indium(III) and the nitrite-selective Chloro(5-(4-acryloyloxyphenyl)-10,15,20-triphenylporphyrinato)indium(III), were synthesized and copolymerized with methyl methacrylate and decyl methacrylate. The covalent attachment of the ionophore to the polymer matrix indeed prevents the metalloporphyrin from forming dimeric species, as confirmed by UV/visible spectroscopy. The ion-selective membranes with grafted indium porphyrin showed Nernstian response slopes to chloride, nitrite, perchlorate, and thiocyanate anions, with a selectivity comparable to membranes with freely dissolved or underivatized metalloporphyrin. The membranes containing grafted ionophores showed a lifetime of at least two months, apparently since crystallization of the poorly soluble dimeric species may no longer occur. This is one of the first examples where the covalent attachment of an ionophore drastically improves on a number of important sensor characteristics.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 36 publications.

    1. Kwangrok R. Choi, Xin V. Chen, Jinbo Hu, Philippe Bühlmann. Solid-Contact pH Sensor with Covalent Attachment of Ionophores and Ionic Sites to a Poly(decyl methacrylate) Matrix. Analytical Chemistry 2021, 93 (50) , 16899-16905. https://doi.org/10.1021/acs.analchem.1c03985
    2. Grzegorz Lisak, Takashi Tamaki, and Takuji Ogawa . Dualism of Sensitivity and Selectivity of Porphyrin Dimers in Electroanalysis. Analytical Chemistry 2017, 89 (7) , 3943-3951. https://doi.org/10.1021/acs.analchem.6b04179
    3. Nathalie Busschaert, Claudia Caltagirone, Wim Van Rossom, and Philip A. Gale . Applications of Supramolecular Anion Recognition. Chemical Reviews 2015, 115 (15) , 8038-8155. https://doi.org/10.1021/acs.chemrev.5b00099
    4. Li D. Chen, Debaprasad Mandal, Gianluca Pozzi, John A. Gladysz, and Philippe Bühlmann . Potentiometric Sensors Based on Fluorous Membranes Doped with Highly Selective Ionophores for Carbonate. Journal of the American Chemical Society 2011, 133 (51) , 20869-20877. https://doi.org/10.1021/ja207680e
    5. Elsayed M. Zahran, Yuran Hua, Yongjun Li, Amar H. Flood and Leonidas G. Bachas. Triazolophanes: A New Class of Halide-Selective Ionophores for Potentiometric Sensors. Analytical Chemistry 2010, 82 (1) , 368-375. https://doi.org/10.1021/ac902132d
    6. Johan Bobacka,, Ari Ivaska, and, Andrzej Lewenstam. Potentiometric Ion Sensors. Chemical Reviews 2008, 108 (2) , 329-351. https://doi.org/10.1021/cr068100w
    7. Eric Bakker and, Yu Qin. Electrochemical Sensors. Analytical Chemistry 2006, 78 (12) , 3965-3984. https://doi.org/10.1021/ac060637m
    8. Takayo Moriuchi-Kawakami, Akihisa Higashikado, Masanari Hirahara, Keiichi Fujimori, Toshiyuki Moriuchi. Oxovanadium(IV) heteromacrocyclic complexes as ionophores for iodide-selective electrodes. Chemistry Letters 2024, 53 (4) https://doi.org/10.1093/chemle/upad058
    9. Cheng-Xiao Fan, Jin-Hai Li, Jie-Peng Yao, Jing-Jing Liu, Nan Wang, Lan Huang, Zhong-Yi Wang. All-solid-state potentiometric salicylic acid sensor for in-situ measurement of plant. Analytical and Bioanalytical Chemistry 2023, 415 (10) , 1979-1989. https://doi.org/10.1007/s00216-023-04616-8
    10. Kamonchanok Phoonsawat, Ismail Agir, Wijitar Dungchai, Tugba Ozer, Charles S. Henry. A smartphone-assisted hybrid sensor for simultaneous potentiometric and distance-based detection of electrolytes. Analytica Chimica Acta 2022, 1226 , 340245. https://doi.org/10.1016/j.aca.2022.340245
    11. Larisa Lvova, Donato Monti, Corrado Di Natale, Roberto Paolesse. The Long-Lasting Story of One Sensor Development: From Novel Ionophore Design toward the Sensor Selectivity Modeling and Lifetime Improvement. Sensors 2021, 21 (4) , 1401. https://doi.org/10.3390/s21041401
    12. Krzysztof Maksymiuk, Emilia Stelmach, Agata Michalska. Unintended Changes of Ion-Selective Membranes Composition—Origin and Effect on Analytical Performance. Membranes 2020, 10 (10) , 266. https://doi.org/10.3390/membranes10100266
    13. Lingling Fan, Tingting Xu, Junjun Feng, Zihan Ji, Le Li, Xinhao Shi, Chunxiu Tian, Yu Qin. Tripodal Squaramide Derivative as a Neutral Chloride Ionophore for Whole Blood and Sweat Chloride Measurement. Electroanalysis 2020, 32 (4) , 805-811. https://doi.org/10.1002/elan.201900693
    14. Larisa Lvova, Irina Yaroshenko, Dmitry Kirsanov, Corrado Di Natale, Roberto Paolesse, Andrey Legin. Electronic Tongue for Brand Uniformity Control: A Case Study of Apulian Red Wines Recognition and Defects Evaluation †. Sensors 2018, 18 (8) , 2584. https://doi.org/10.3390/s18082584
    15. Elena A. Tobolkina, Tatiana A. Skripnikova, Anna A. Starikova, Galina I. Shumilova, Andrey A. Pendin. Features of proteolytic properties of tetraphenylporphyrin complex with lanthanide group metals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 189 , 227-230. https://doi.org/10.1016/j.saa.2017.08.012
    16. Larisa Lvova, Corrado Di Natale, Roberto Paolesse. Porphyrin-based chemical sensors and multisensor arrays operating in the liquid phase. Sensors and Actuators B: Chemical 2013, 179 , 21-31. https://doi.org/10.1016/j.snb.2012.10.014
    17. S.A.A. Almeida, A.M. Heitor, L.C. Sá, J. Barbosa, M. da Conceição, B.S.M. Montenegro, M.G.F Sales. Solid contact PVC membrane electrodes based on neutral or charged carriers for the selective reading of anionic sulfamethoxazole and their application to the analysis of aquaculture water. International Journal of Environmental Analytical Chemistry 2012, 92 (4) , 479-495. https://doi.org/10.1080/03067319.2011.585717
    18. Philippe Bühlmann, Li D. Chen. Ion‐Selective Electrodes With Ionophore‐Doped Sensing Membranes. 2012https://doi.org/10.1002/9780470661345.smc097
    19. Nuno I.P. Valente, Paulino V. Muteto, Andreia S.F. Farinha, Augusto C. Tomé, João A.B.P. Oliveira, M. Teresa S.R. Gomes. An acoustic wave sensor for the hydrophilic fluoride. Sensors and Actuators B: Chemical 2011, 157 (2) , 594-599. https://doi.org/10.1016/j.snb.2011.05.028
    20. S.A.A. Almeida, A.M. Heitor, M.C.B.S.M. Montenegro, M.G.F. Sales. Sulfadiazine-selective determination in aquaculture environment: Selective potentiometric transduction by neutral or charged ionophores. Talanta 2011, 85 (3) , 1508-1516. https://doi.org/10.1016/j.talanta.2011.06.022
    21. Takuya Inoue, Toshiyuki Baba, Akio Yuchi. Responses of Metalloporphyrin‐Based Ion‐Selective Electrodes to pH. Electroanalysis 2011, 23 (2) , 536-542. https://doi.org/10.1002/elan.201000475
    22. Larisa Lvova, Giorgio Verrelli, Manuela Stefanelli, Sara Nardis, Corrado Di Natale, Arnaldo D' Amico, Sergey Makarychev-Mikhailov, Roberto Paolesse. Platinum porphyrins as ionophores in polymeric membrane electrodes. The Analyst 2011, 136 (23) , 4966. https://doi.org/10.1039/c1an15069c
    23. Shane Peper, Chad Gonczy. Potentiometric Response Characteristics of Membrane-Based Cs + -Selective Electrodes Containing Ionophore-Functionalized Polymeric Microspheres. International Journal of Electrochemistry 2011, 2011 , 1-8. https://doi.org/10.4061/2011/276896
    24. Agnieszka Buczkowska, Emilia Witkowska, Łukasz Górski, Anna Zamojska, Krzysztof W. Szewczyk, Wojciech Wróblewski, Patrycja Ciosek. The monitoring of methane fermentation in sequencing batch bioreactor with flow-through array of miniaturized solid state electrodes. Talanta 2010, 81 (4-5) , 1387-1392. https://doi.org/10.1016/j.talanta.2010.02.039
    25. Kai Wang, Zhi Zhang, Qianni Guo, Xiaoping Bao, Zaoying Li. Interaction of water-soluble bridged porphyrin with DNA. Frontiers of Chemistry in China 2008, 3 (4) , 406-412. https://doi.org/10.1007/s11458-008-0073-5
    26. Katarzyna Wygladacz, Yu Qin, Wojciech Wroblewski, Eric Bakker. Phosphate-selective fluorescent sensing microspheres based on uranyl salophene ionophores. Analytica Chimica Acta 2008, 614 (1) , 77-84. https://doi.org/10.1016/j.aca.2008.02.069
    27. Lin Wang, Mark E. Meyerhoff. Polymethacrylate polymers with appended aluminum(III)-tetraphenylporphyrins: Synthesis, characterization and evaluation as macromolecular ionophores for electrochemical and optical fluoride sensors. Analytica Chimica Acta 2008, 611 (1) , 97-102. https://doi.org/10.1016/j.aca.2008.01.070
    28. Youngjea Kang, Jeff W. Kampf, Mark E. Meyerhoff. Optical fluoride sensor based on monomer–dimer equilibrium of scandium(III)-octaethylporphyrin in a plasticized polymeric film. Analytica Chimica Acta 2007, 598 (2) , 295-303. https://doi.org/10.1016/j.aca.2007.07.048
    29. Aleksandar Radu, Shane Peper, Eric Bakker, Dermot Diamond. Guidelines for Improving the Lower Detection Limit of Ion‐Selective Electrodes: A Systematic Approach. Electroanalysis 2007, 19 (2-3) , 144-154. https://doi.org/10.1002/elan.200603741
    30. Kai Wang, Shi-tao Fu, Lei Wu, Zao-ying Li. Porphyrin dimers and their interaction with DNA. Mendeleev Communications 2007, 17 (1) , 37-39. https://doi.org/10.1016/j.mencom.2007.01.015
    31. Mohammad Reza Ganjali, Parviz Norouzi, Morteza Rezapour, Farnoush Faridbod, Mohammad Reza Pourjavid. Supramolecular Based Membrane Sensors. Sensors 2006, 6 (8) , 1018-1086. https://doi.org/10.3390/s6081018
    32. Youngjea Kang, Mark E. Meyerhoff. Rapid response optical ion/gas sensors using dimer–monomer metalloporphyrin equilibrium in ultrathin polymeric films coated on waveguides. Analytica Chimica Acta 2006, 565 (1) , 1-9. https://doi.org/10.1016/j.aca.2006.02.017
    33. Jeremy T. Mitchell-Koch, Mariusz Pietrzak, Elzbieta Malinowska, Mark E. Meyerhoff. Aluminum(III) Porphyrins as Ionophores for Fluoride Selective Polymeric Membrane Electrodes. Electroanalysis 2006, 18 (6) , 551-557. https://doi.org/10.1002/elan.200503450
    34. Martin Telting-Diaz, Yu Qin. Chapter 18a Potentiometry. 2006, 625-659. https://doi.org/10.1016/S0166-526X(06)47027-6
    35. Akio YUCHI. Anion-Selective Electrodes Based on Polyvalent Metal Complexes. Bunseki kagaku 2006, 55 (2) , 83-94. https://doi.org/10.2116/bunsekikagaku.55.83
    36. Jeremy T. Mitchell‐Koch, Elzbieta Malinowska, Mark E. Meyerhoff. Gallium(III)‐Schiff Base Complexes as Novel Ionophores for Fluoride Selective Polymeric Membrane Electrodes. Electroanalysis 2005, 17 (15-16) , 1347-1353. https://doi.org/10.1002/elan.200503284

    Analytical Chemistry

    Cite this: Anal. Chem. 2004, 76, 15, 4379–4386
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac049577f
    Published June 15, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    561

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.