Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVAccelerated ArticleNEXT

Fiber-Optic Microsensor Array Based on Fluorescent Bulk Optode Microspheres for the Trace Analysis of Silver Ions

View Author Information
Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849
Cite this: Anal. Chem. 2005, 77, 15, 4706–4712
Publication Date (Web):July 7, 2005
https://doi.org/10.1021/ac050856s
Copyright © 2005 American Chemical Society

    Article Views

    993

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    An optical microsensor array is described for the rapid analysis of silver ions at low parts per trillion levels. Because the ionophore o-xylylenebis(N,N-diisobutyldithiocarbamate) (Cu−I) was reevaluated and shown to exhibit excellent selectivity for silver ions, ion-selective electrode (ISE) membranes were optimized and found to exhibit the lowest reported detection limit so far (3 × 10-10 M). A corresponding Ag+-selective fluorescent optical microsensor array for the rapid sensing of trace level Ag+ was then developed. It was fabricated using plasticized PVC-based micrometer-scale fluorescent microspheres that were produced via a sonic particle casting device. They contained 156 mmol/kg Cu−I, 10 mmol/kg 9-(diethylamino)-5-[4-(15-butyl-1,13-dioxo-2,14-dioxanodecyl) phenylimino]benzo[a]phenoxazine (chromoionophore VII, ETH 5418), 2.3 mmol/kg 1,1‘ ‘-dioctadecyl-3,3,3‘,3‘-tetramethylindocarbocyanine perchlorate (internal reference dye), and 14 mmol/kg sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate and were deposited onto the etched distal end of a 3200-μm-diameter optical fiber bundle. The microarray was characterized by fluorescence spectroscopy in samples containing 10-12−10-8 M AgNO3 at pH 7.4, with selectivity characteristics comparable to the corresponding ISEs. The response time of the microsensor array was found to be less than 15 min for 10-9 M AgNO3, which is drastically shorter than earlier data on optode films (8 h) and corresponding ISEs (30 min). A detection limit of 4 × 10-11 M for Ag+ was observed, lower than any previously reported optode or silver-selective ISE. The microsensor array was applied for measurement of free silver levels in buffered pond water samples.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Present addresss:  Department of Chemistry, Purdue University, West Lafayette, IN 47907.

    §

     Present address:  Adaptive Information Cluster, Dublin City University, Glasnevin, Dublin 9, Ireland.

     Present addresss:  Department of Chemistry, Renmin University of China, Beijing, P. R. China, 100872.

    *

     To whom correspondence should be addressed. E-mail:  [email protected].

    Cited By

    This article is cited by 100 publications.

    1. Lu Wang, Stephanie Sadler, Tianchi Cao, Xiaojiang Xie, Joachim Moser Von Filseck, Eric Bakker. Simplified Fabrication for Ion-Selective Optical Emulsion Sensor with Hydrophobic Solvatochromic Dye Transducer: A Cautionary Tale. Analytical Chemistry 2019, 91 (14) , 8973-8978. https://doi.org/10.1021/acs.analchem.9b01145
    2. Liujiao Bian, Xu Ji, and Wei Hu . A Novel Single-Labeled Fluorescent Oligonucleotide Probe for Silver(I) Ion Detection in Water, Drugs, and Food. Journal of Agricultural and Food Chemistry 2014, 62 (21) , 4870-4877. https://doi.org/10.1021/jf404792z
    3. Carla I. M. Santos, Elisabete Oliveira, Javier Fernández-Lodeiro, Joana F. B. Barata, Sérgio M. Santos, M. Amparo F. Faustino, José A. S. Cavaleiro, M. Graça P. M. S. Neves, and Carlos Lodeiro . Corrole and Corrole Functionalized Silica Nanoparticles as New Metal Ion Chemosensors: A Case of Silver Satellite Nanoparticles Formation. Inorganic Chemistry 2013, 52 (15) , 8564-8572. https://doi.org/10.1021/ic4006295
    4. Xiaojiang Xie, Günter Mistlberger, and Eric Bakker . Reversible Photodynamic Chloride-Selective Sensor Based on Photochromic Spiropyran. Journal of the American Chemical Society 2012, 134 (41) , 16929-16932. https://doi.org/10.1021/ja307037z
    5. Liangxia Xie, Yu Qin, and Hong-Yuan Chen . Polymeric Optodes Based on Upconverting Nanorods for Fluorescent Measurements of pH and Metal Ions in Blood Samples. Analytical Chemistry 2012, 84 (4) , 1969-1974. https://doi.org/10.1021/ac203003w
    6. Hailong Li, Junfeng Zhai, and Xuping Sun . Sensitive and Selective Detection of Silver(I) Ion in Aqueous Solution Using Carbon Nanoparticles as a Cheap, Effective Fluorescent Sensing Platform. Langmuir 2011, 27 (8) , 4305-4308. https://doi.org/10.1021/la200052t
    7. Chun-Ze Lai, Melissa A. Fierke, Rosenildo Corrêa da Costa, John A. Gladysz, Andreas Stein, Philippe Bühlmann. Highly Selective Detection of Silver in the Low ppt Range with Ion-Selective Electrodes Based on Ionophore-Doped Fluorous Membranes. Analytical Chemistry 2010, 82 (18) , 7634-7640. https://doi.org/10.1021/ac1013767
    8. Chao Xu,, Katarzyna Wygladacz,, Robert Retter,, Michael Bell, and, Eric Bakker. Multiplexed Flow Cytometric Sensing of Blood Electrolytes in Physiological Samples Using Fluorescent Bulk Optode Microspheres. Analytical Chemistry 2007, 79 (24) , 9505-9512. https://doi.org/10.1021/ac7016212
    9. Chao Xu and, Eric Bakker. Multicolor Quantum Dot Encoding for Polymeric Particle-Based Optical Ion Sensors. Analytical Chemistry 2007, 79 (10) , 3716-3723. https://doi.org/10.1021/ac0701233
    10. Otto S. Wolfbeis. Fiber-Optic Chemical Sensors and Biosensors. Analytical Chemistry 2006, 78 (12) , 3859-3874. https://doi.org/10.1021/ac060490z
    11. A. Afrin, Anjitha Jayaraj, M. S. Gayathri, Chinna Ayya Swamy P.. An overview of Schiff base-based fluorescent turn-on probes: a potential candidate for tracking live cell imaging of biologically active metal ions. Sensors & Diagnostics 2023, 2 (5) , 988-1076. https://doi.org/10.1039/D3SD00110E
    12. Shuto Oka, Kenji Sueyoshi, Tatsuro Endo, Hideaki Hisamoto. Nanoemulsion-based silver ion-selective optode based on colorimetrically silver ion-responsive ionic liquid-based dye. Analytical Sciences 2023, 39 (8) , 1249-1256. https://doi.org/10.1007/s44211-023-00337-1
    13. Lu Sun, Mingxin Li, Linlin Chen, Xuebao Sun, Zihui Yang, Shifa Wang, Wen Gu. A highly sensitive dehydroabietic acid-based difunctional fluorescent probe for detecting formaldehyde and Ag+. Journal of Luminescence 2023, 257 , 119658. https://doi.org/10.1016/j.jlumin.2022.119658
    14. Sergey S. Chunikhin, Ivan N. Bardasov, Roman A. Akasov, Oleg V. Ershov. New “turn-on” chemosensor for fluorescence detection of silver (I) based on tetracyanopyridine (TCPy). Dyes and Pigments 2022, 205 , 110516. https://doi.org/10.1016/j.dyepig.2022.110516
    15. Vishab Kesarwani, Vineet Kumar Rai. Upconverting Nanoparticles in the Detection of Fungicides and Plant Viruses. 2022, 493-516. https://doi.org/10.1002/9783527834884.ch17
    16. Justine Dagher, Riham El Kurdi, Digambara Patra. Selective Detection of Silver Ions Based on Resonance Rayleigh Scattering Spectrometry Using Colloidal Silica Nanoparticles. Plasmonics 2022, 17 (4) , 1427-1436. https://doi.org/10.1007/s11468-022-01627-6
    17. Dina M. Abd El‐Aziz, Safaa Eldin H. Etaiw, Mona M. Fouda. Synergistic effects of nanosized supramolecular complex inlaid with silver nanoparticles: Catalysis, sensors, and biological activities. Applied Organometallic Chemistry 2022, 36 (6) https://doi.org/10.1002/aoc.6701
    18. Siying Wu, Minghui Wu, Gaobo Wang, Ting-Hsuan Chen. Visual quantitation of silver contamination in fresh water via accumulative length of microparticles in capillary-driven microfluidic devices. Talanta 2021, 235 , 122707. https://doi.org/10.1016/j.talanta.2021.122707
    19. Zhiwen Wei, Yifeng lan, Chao Zhang, Juan Jia, Weifen Niu, Yanli Wei, Shanlin Fu, Keming Yun. A label-free Exonuclease I-assisted fluorescence aptasensor for highly selective and sensitive detection of silver ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 260 , 119927. https://doi.org/10.1016/j.saa.2021.119927
    20. Aleksandra Kalinowska, Patrycja Matusiak, Sandra Skorupska, Ilona Grabowska-Jadach, Patrycja Ciosek-Skibińska. Influence of the Type and Amount of Plasticizer on the Sensory Properties of Microspheres Sensitive to Lipophilic Ions. 2021, 90. https://doi.org/10.3390/CSAC2021-10487
    21. Shan Lu, Zixuan Li, Xueyu Fu, Zhigang Xie, Min Zheng. Carbon dots-based fluorescence and UV–vis absorption dual-modal sensors for Ag+ and l-cysteine detection. Dyes and Pigments 2021, 187 , 109126. https://doi.org/10.1016/j.dyepig.2020.109126
    22. R. Kumar, S. Ravi, C. Immanuel David, R. Nandhakumar. A photo-induced electron transfer based reversible fluorescent chemosensor for specific detection of mercury (II) ions and its applications in logic gate, keypad lock and real samples. Arabian Journal of Chemistry 2021, 14 (1) , 102911. https://doi.org/10.1016/j.arabjc.2020.11.017
    23. Justine Dagher, Riham El Kurdi, Digambara Patra. Selective Detection of Silver Ions Based on Resonance Rayleigh Scattering Spectrometry Using Colloidal Silica Nanoparticles. SSRN Electronic Journal 2021, 84 https://doi.org/10.2139/ssrn.3936382
    24. Vikram Kamaljith, Michael G. Tanner, Harry A. C. Wood, Kerrianne Harrington, Debaditya Choudhury, Mark Bradley, Robert R. Thomson. Ultrafast-laser-ablation-assisted spatially selective attachment of fluorescent sensors onto optical fibers. Optics Letters 2020, 45 (10) , 2716. https://doi.org/10.1364/OL.381018
    25. Tanji Yin, Tingting Han, Changbai Li, Wei Qin, Johan Bobacka. Real-time monitoring of the dissolution of silver nanoparticles by using a solid-contact Ag+-selective electrode. Analytica Chimica Acta 2020, 1101 , 50-57. https://doi.org/10.1016/j.aca.2019.12.022
    26. Riham El-Kurdi, Digambara Patra. Gold and silver nanoparticles in resonance Rayleigh scattering techniques for chemical sensing and biosensing: a review. Microchimica Acta 2019, 186 (10) https://doi.org/10.1007/s00604-019-3755-4
    27. Raja Dineshkumar, Nagaraj Murugan, J M Abisha Rani, M Arthanareeswari, P Kamaraj, S Devikala, Navaneethan Duraisamy, Ashok K Sundramoorthy. Synthesis of highly fluorescent carbon dots from Plectranthus amboinicus as a fluorescent sensor for Ag + ion. Materials Research Express 2019, 6 (10) , 104006. https://doi.org/10.1088/2053-1591/ab3a7b
    28. Cuiliu Li, Xiaoxiong Zhang, Wenjun Zhang, Xiaohong Qin, Chengyu Zhu. Carbon quantum dots derived from pure solvent tetrahydrofuran as a fluorescent probe to detect pH and silver ion. Journal of Photochemistry and Photobiology A: Chemistry 2019, 382 , 111981. https://doi.org/10.1016/j.jphotochem.2019.111981
    29. Yunxia Ma, Wenjuan Lv, Yonglei Chen, Min Na, Juanjuan Liu, Yangxia Han, Sudai Ma, Xingguo Chen. Facile preparation of orange-emissive carbon dots for the highly selective detection of silver ions. New Journal of Chemistry 2019, 43 (13) , 5070-5076. https://doi.org/10.1039/C8NJ06109B
    30. Fatemeh F. Bamoharram, AmirMohammad Mozhdehi, Azadeh Radfar, Mohammad Shaker, Hassan Mallaeke, Amir Hossein Sharifi. Preyssler‐based nanocomposite as a magnetic photocatalyst: synthesis, characterisation and its photocatalytic activity for decolourisation of rhodamine B. Micro & Nano Letters 2018, 13 (12) , 1657-1661. https://doi.org/10.1049/mnl.2018.5030
    31. N. Bhuvanesh, S. Suresh, P. Ram Kumar, E.M. Mothi, K. Kannan, V. Rajesh Kannan, R. Nandhakumar. Small molecule “turn on” fluorescent probe for silver ion and application to bioimaging. Journal of Photochemistry and Photobiology A: Chemistry 2018, 360 , 6-12. https://doi.org/10.1016/j.jphotochem.2018.04.027
    32. Yan Lu, Lianjie Meng, Yan Gao, Dongli Liao, Yongxin Li, Yongxing Ai, Yuqin Ma, Cong Yu. A label free Ag+ sensing method via in situ formation of metal coordination polymer. Analytical Biochemistry 2018, 549 , 21-25. https://doi.org/10.1016/j.ab.2018.03.005
    33. Seyed Alireza Shahamirifard, Mehrorang Ghaedi, Shaaker Hajati. A new silver (I) ions optical sensor based on nanoporous thin films of sol–gel by rose bengal dye. Sensors and Actuators B: Chemical 2018, 259 , 20-29. https://doi.org/10.1016/j.snb.2017.12.030
    34. Guo Feng Chen, Lin Liu, Jiu Li Wu, Suo Juan Wu, Bao Hua Chen. Novel probes based on coumarin-bisdithiocarbamate system for selective recognition of Ag(I) in aqueous solution. Research on Chemical Intermediates 2018, 44 (2) , 1381-1395. https://doi.org/10.1007/s11164-017-3173-3
    35. Bingyan Han, Ying Li, Xixi Hu, Qin Yan, Jingmei Jiang, Mingbo Yu, Tingting Peng, Gaohong He. Paper-based visual detection of silver ions and l -cysteine with a dual-emissive nanosystem of carbon quantum dots and gold nanoclusters. Analytical Methods 2018, 10 (32) , 3945-3950. https://doi.org/10.1039/C8AY01044G
    36. Xian-En Zhao, Cuihua Lei, Yue Gao, Han Gao, Shuyun Zhu, Xue Yang, Jinmao You, Hua Wang. A ratiometric fluorescent nanosensor for the detection of silver ions using graphene quantum dots. Sensors and Actuators B: Chemical 2017, 253 , 239-246. https://doi.org/10.1016/j.snb.2017.06.086
    37. Zhi Li, Juan Ou-Yang, Ya-Jun Fu, Chun-Yan Li, Yong-Fei Li, Song-Jiao Li. A borondipyrrolemethene-based turn-on fluorescent probe for silver ion with high sensitivity and selectivity and its application in water samples and living cells. Tetrahedron Letters 2017, 58 (36) , 3536-3540. https://doi.org/10.1016/j.tetlet.2017.07.092
    38. Shan Wang, Qian Lu, Xu Yan, Mingming Yang, Ranfeng Ye, Dan Du, Yuehe Lin. “On-Off-On” fluorescence sensor based on g-C 3 N 4 nanosheets for selective and sequential detection of Ag + and S 2-. Talanta 2017, 168 , 168-173. https://doi.org/10.1016/j.talanta.2017.03.004
    39. Xue-Wen Liu, Jun-Shi Shu, Yang Xiao, Yang Yang, Song-Bai Zhang. Selective and Sensitive Detection of Silver(I) Ion Based on Tetracationic Complex and TGA/GSH Co-capped Quantum Dots as an Effective Fluorescent Sensing Platform. Analytical Sciences 2017, 33 (3) , 381-385. https://doi.org/10.2116/analsci.33.381
    40. Qian Long, Yanqing Wen, Haitao Li, Youyu Zhang, Shouzhuo Yao. A Novel Fluorescent Biosensor for Detection of Silver Ions Based on Upconversion Nanoparticles. Journal of Fluorescence 2017, 27 (1) , 205-211. https://doi.org/10.1007/s10895-016-1947-4
    41. Yu-xin Li, Shang-ju Li, Peng-fei Yan, Xin-yu Wang, Xu Yao, Guang-hui An, Guang-ming Li. Luminescence-colour-changing sensing of Mn 2+ and Ag + ions based on a white-light-emitting lanthanide coordination polymer. Chemical Communications 2017, 53 (36) , 5067-5070. https://doi.org/10.1039/C7CC00258K
    42. Limin Ning, Dawei Yang, Jue Wang, Peng Miao. Highly Sensitive Detection of Silver Ions Enabled by RecJ f Exonuclease Cleavage and Reductant‐Mediated Electrochemical Amplification. ChemElectroChem 2016, 3 (11) , 1737-1740. https://doi.org/10.1002/celc.201600408
    43. Haiyan Wang, Xinxin Fan, Yan Wang. Determination of silver ions based on the electrogenerated chemiluminescence of silver ions/peroxydisulfate. Analytical and Bioanalytical Chemistry 2016, 408 (25) , 7113-7119. https://doi.org/10.1007/s00216-016-9640-7
    44. Yaqing Chang, Zhe Zhang, Jinhui Hao, Wenshu Yang, Jilin Tang. BSA-stabilized Au clusters as peroxidase mimetic for colorimetric detection of Ag+. Sensors and Actuators B: Chemical 2016, 232 , 692-697. https://doi.org/10.1016/j.snb.2016.04.039
    45. Bingzhi Li, Xi Wang, Xin Shen, Wanying Zhu, Lei Xu, Xuemin Zhou. Aggregation-induced emission from gold nanoclusters for use as a luminescence-enhanced nanosensor to detect trace amounts of silver ions. Journal of Colloid and Interface Science 2016, 467 , 90-96. https://doi.org/10.1016/j.jcis.2016.01.002
    46. Reza Tabaraki, Ashraf Nateghi. Nitrogen- Doped Graphene Quantum Dots: “Turn-off” Fluorescent Probe for Detection of Ag+ Ions. Journal of Fluorescence 2016, 26 (1) , 297-305. https://doi.org/10.1007/s10895-015-1714-y
    47. Chengfang Qiao, Xiaoni Qu, Qi Yang, Qing Wei, Gang Xie, Sanping Chen, Desuo Yang. Instant high-selectivity Cd-MOF chemosensor for naked-eye detection of Cu( ii ) confirmed using in situ microcalorimetry. Green Chemistry 2016, 18 (4) , 951-956. https://doi.org/10.1039/C5GC02393A
    48. Yanqin Yang, Mengmeng Kang, Shaoming Fang, Minghua Wang, Linghao He, Xiaozhong Feng, Jihong Zhao, Zhihong Zhang, Hongzhong Zhang. A feasible C-rich DNA electrochemical biosensor based on Fe3O4@3D-GO for sensitive and selective detection of Ag+. Journal of Alloys and Compounds 2015, 652 , 225-233. https://doi.org/10.1016/j.jallcom.2015.08.229
    49. Xiaojiang Xie, Eric Bakker. Ion selective optodes: from the bulk to the nanoscale. Analytical and Bioanalytical Chemistry 2015, 407 (14) , 3899-3910. https://doi.org/10.1007/s00216-014-8413-4
    50. Bing Zhao, Yu Xu, Yue Fang, Liyan Wang, Qigang Deng. Synthesis and fluorescence properties of phenanthro[9,10-d]imidazole derivative for Ag+ in aqueous media. Tetrahedron Letters 2015, 56 (19) , 2460-2465. https://doi.org/10.1016/j.tetlet.2015.03.094
    51. Abbas Afkhami, Ali Shirzadmehr, Tayyebeh Madrakian, Hasan Bagheri. New nano-composite potentiometric sensor composed of graphene nanosheets/thionine/molecular wire for nanomolar detection of silver ion in various real samples. Talanta 2015, 131 , 548-555. https://doi.org/10.1016/j.talanta.2014.08.004
    52. Wei Shi, Xinhua Sun, Shiyu Zhao, Zhengfeng Xie. N-Unsubstituted-1,2,3-triazole-tethered, AIEE type conjugated polymer as a ratiometric fluorescence probe for silver ions. New Journal of Chemistry 2015, 39 (11) , 8552-8559. https://doi.org/10.1039/C5NJ01209K
    53. Suvendu Samanta, Sudipto Das, Papu Biswas. Synthesis of 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz) capped silver nanoparticles using 3,6-di(pyridin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine as reducing agent: Application in naked eye sensing of Cu2+, Ni2+ and Ag+ ions in aqueous solution and paper platform. Sensors and Actuators B: Chemical 2014, 202 , 23-30. https://doi.org/10.1016/j.snb.2014.05.036
    54. Günter Mistlberger, Gastón A. Crespo, Eric Bakker. Ionophore-Based Optical Sensors. Annual Review of Analytical Chemistry 2014, 7 (1) , 483-512. https://doi.org/10.1146/annurev-anchem-071213-020307
    55. Chenye Yang, Tingting Liu, Yanmei Xu, Yu Qin. Fluorescent ion optodes based on calixarene functionized boron dipyrromethene chromoionophore for simultaneous measurement of multi-electrolytes in biological samples. Sensors and Actuators B: Chemical 2014, 192 , 423-428. https://doi.org/10.1016/j.snb.2013.11.015
    56. Thangaraj Anand, Gandhi Sivaraman, Palpandi Anandh, Duraisamy Chellappa, Subbaiah Govindarajan. Colorimetric and turn-on fluorescence detection of Ag(I) ion. Tetrahedron Letters 2014, 55 (3) , 671-675. https://doi.org/10.1016/j.tetlet.2013.11.104
    57. Anna Kisiel, Katarzyna Kłucińska, Zuzanna Głębicka, Marianna Gniadek, Krzysztof Maksymiuk, Agata Michalska. Alternating polymer micelle nanospheres for optical sensing. The Analyst 2014, 139 (10) , 2515. https://doi.org/10.1039/c3an02344c
    58. Mohammad Hossein Mashhadizadeh, Soleyman Ramezani, Abbas Shockravi, Mahmood Kamali. Comparative study of carbon paste electrodes modified by new pentaaza macrocyclic ligands and gold nanoparticles embedded in three-dimensional sol–gel network for determination of trace amounts of Ag(I). Journal of Inclusion Phenomena and Macrocyclic Chemistry 2013, 76 (3-4) , 283-291. https://doi.org/10.1007/s10847-012-0197-6
    59. Hazem M. Abu-Shawish, Salman M. Saadeh, Hany M. Dalloul, Bassam Najri, Hassan Al Athamna. Modified carbon paste electrode for potentiometric determination of silver(I) ions in burning cream and radiological films. Sensors and Actuators B: Chemical 2013, 182 , 374-381. https://doi.org/10.1016/j.snb.2013.03.018
    60. G. A. Ibañez, G. M. Escandar. Fluorescence and Phosphorescence Chemical Sensors Applied to Water Samples. 2013, 45-64. https://doi.org/10.1007/978-3-642-37006-9_3
    61. Jing Zhao, Qi Fan, Sha Zhu, Aiping Duan, Yongmei Yin, Genxi Li. Ultra-sensitive detection of Ag+ ions based on Ag+-assisted isothermal exponential degradation reaction. Biosensors and Bioelectronics 2013, 39 (1) , 183-186. https://doi.org/10.1016/j.bios.2012.07.073
    62. Guiqing Wen, Chenyin Lin, Meilin Tang, Gaosha Liu, Aihui Liang, Zhiliang Jiang. A highly sensitive aptamer method for Ag + sensing using resonance Rayleigh scattering as the detection technique and a modified nanogold probe. RSC Adv. 2013, 3 (6) , 1941-1946. https://doi.org/10.1039/C2RA22542E
    63. Qing Yang, Fan Li, Yan Huang, Hui Xu, Linsheng Tang, Lihua Wang, Chunhai Fan. Highly sensitive and selective detection of silver(i) in aqueous solution with silver(i)-specific DNA and Sybr green I. The Analyst 2013, 138 (7) , 2057. https://doi.org/10.1039/c3an36496h
    64. Zhi Liang Jiang, Chen Yin Lin, Ai Hui Liang. An Aptamer-Modified Nanogold Method for the Determination of Trace Ag+ Using Resonance Rayleigh Scattering as Detection Technique. Advanced Materials Research 2013, 647 , 618-622. https://doi.org/10.4028/www.scientific.net/AMR.647.618
    65. Maria J. Ruedas-Rama, Jamie D. Walters, Angel Orte, Elizabeth A.H. Hall. Fluorescent nanoparticles for intracellular sensing: A review. Analytica Chimica Acta 2012, 751 , 1-23. https://doi.org/10.1016/j.aca.2012.09.025
    66. Ting Zhang, Yaqin Chai, Ruo Yuan, Junxiang Guo. Potentiometric detection of silver (I) ion based on carbon paste electrode modified with diazo-thiophenol-functionalized nanoporous silica gel. Materials Science and Engineering: C 2012, 32 (5) , 1179-1183. https://doi.org/10.1016/j.msec.2012.03.005
    67. Sen Liu, Jingqi Tian, Lei Wang, Xuping Sun. Highly sensitive and selective colorimetric detection of Ag(I) ion using 3,3′,5,5′,-tetramethylbenzidine (TMB) as an indicator. Sensors and Actuators B: Chemical 2012, 165 (1) , 44-47. https://doi.org/10.1016/j.snb.2012.02.002
    68. Philippe Bühlmann, Li D. Chen. Ion‐Selective Electrodes With Ionophore‐Doped Sensing Membranes. 2012https://doi.org/10.1002/9780470661345.smc097
    69. Ting Zhang, Yaqin Chai, Ruo Yuan, Junxiang Guo. Nanostructured multi-walled carbon nanotubes derivate based on carbon paste electrode for potentiometric detection of Ag+ ions. Analytical Methods 2012, 4 (2) , 454. https://doi.org/10.1039/c2ay05668b
    70. Gholam Hossein Rounaghi, Arezoo Ghaemi. A Silver (I) Selective PVC Membrane Electrode Based on 1,13-Bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane as an Ionophore. Journal of The Electrochemical Society 2012, 159 (4) , F97-F102. https://doi.org/10.1149/2.113204jes
    71. Xingxing Liu, Wang Li, Qinpeng Shen, Zhou Nie, Manli Guo, Yitao Han, Wei Liu, Shouzhuo Yao. The Ag+–G interaction inhibits the electrocatalytic oxidation of guanine – A novel mechanism for Ag+ detection. Talanta 2011, 85 (3) , 1603-1608. https://doi.org/10.1016/j.talanta.2011.06.061
    72. Lei Wang, Jingqi Tian, Hailong Li, Yingwei Zhang, Xuping Sun. A novel single-labeled fluorescent oligonucleotide probe for silver( i ) ion detection based on the inherent quenching ability of deoxyguanosines. The Analyst 2011, 136 (5) , 891-893. https://doi.org/10.1039/C0AN00669F
    73. Dhassida Sooksawat, Wanlapa Aeungmaitrepirom, Wittaya Ngeontae, Thawatchai Tuntulani. Logic gates from ion-selective bulk optodes. New J. Chem. 2011, 35 (2) , 345-352. https://doi.org/10.1039/C0NJ00620C
    74. Hailong Li, Junfeng Zhai, Xuping Sun. Highly sensitive and selective detection of silver(i) ion using nano-C60 as an effective fluorescent sensing platform. The Analyst 2011, 136 (10) , 2040. https://doi.org/10.1039/c1an15050b
    75. J. Athilakshmi, Dillip Kumar Chand. Hexazamacrocycle assisted sensing of silver ion through facile synthesis of silver nanoparticles. Tetrahedron Letters 2010, 51 (51) , 6760-6762. https://doi.org/10.1016/j.tetlet.2010.10.091
    76. Xiaojiang Xie, Xue Li, Yifan Ge, Yu Qin, Hong-Yuan Chen. Rhodamine-based ratiometric fluorescent ion-selective bulk optodes. Sensors and Actuators B: Chemical 2010, 151 (1) , 71-76. https://doi.org/10.1016/j.snb.2010.09.050
    77. Chun-Yan Li, Fen Xu, Yong-Fei Li. A fluorescent chemosensor for silver ions based on porphyrin compound with high selectivity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2010, 76 (2) , 197-201. https://doi.org/10.1016/j.saa.2010.03.012
    78. Sergey M. Borisov, Torsten Mayr, Günter Mistlberger, Ingo Klimant. Dye-Doped Polymeric Particles for Sensing and Imaging. 2010, 193-228. https://doi.org/10.1007/978-3-642-04701-5_6
    79. Daniel J. White, Alex P. Mazzolini, Paul R. Stoddart. First-approximation simulation of dopant diffusion in nanostructured silica optical fibres. Photonics and Nanostructures - Fundamentals and Applications 2008, 6 (2) , 167-177. https://doi.org/10.1016/j.photonics.2008.08.002
    80. Kerstin Waich, Torsten Mayr, Ingo Klimant. Fluorescence sensors for trace monitoring of dissolved ammonia. Talanta 2008, 77 (1) , 66-72. https://doi.org/10.1016/j.talanta.2008.05.058
    81. Xiaojie Liu, Yu Qin. Ion-Exchange Reaction of Silver(I) and Copper(II) in Optical Sensors Based on Thiaglutaric Diamide. Analytical Sciences 2008, 24 (9) , 1151-1156. https://doi.org/10.2116/analsci.24.1151
    82. R. Daniel Johnson, Vasilis G. Gavalas, Sylvia Daunert, Leonidas G. Bachas. Microfluidic ion-sensing devices. Analytica Chimica Acta 2008, 613 (1) , 20-30. https://doi.org/10.1016/j.aca.2008.02.041
    83. Katarzyna Wygladacz, Yu Qin, Wojciech Wroblewski, Eric Bakker. Phosphate-selective fluorescent sensing microspheres based on uranyl salophene ionophores. Analytica Chimica Acta 2008, 614 (1) , 77-84. https://doi.org/10.1016/j.aca.2008.02.069
    84. C. H. Liu, Z. D. Zhou, X. Yu, B. Q. Lv, J. F. Mao, D. Xiao. Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles. Inorganic Materials 2008, 44 (3) , 291-295. https://doi.org/10.1134/S002016850803014X
    85. . Synthesis and Binding Properties of 1,3,5-Tris(2-arylthiomethyl)mesitylene: A Selective Ag (I) Ionophore. Bulletin of the Korean Chemical Society 2008, 417-421. https://doi.org/10.5012/bkcs.2008.29.2.417
    86. Olga Korostynska, Khalil Arshak, Edric Gill, Arousian Arshak. State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China. Sensors 2007, 7 (12) , 3027-3042. https://doi.org/10.3390/s7123027
    87. Wittaya Ngeontae, Chao Xu, Nan Ye, Katarzyna Wygladacz, Wanlapa Aeungmaitrepirom, Thawatchai Tuntulani, Eric Bakker. Polymerized Nile Blue derivatives for plasticizer-free fluorescent ion optode microsphere sensors. Analytica Chimica Acta 2007, 599 (1) , 124-133. https://doi.org/10.1016/j.aca.2007.07.058
    88. Nan Ye, Katarzyna Wygladacz, Eric Bakker. Absorbance characterization of microsphere-based ion-selective optodes. Analytica Chimica Acta 2007, 596 (2) , 195-200. https://doi.org/10.1016/j.aca.2007.06.015
    89. O.-S. Kwon, H.-S. Kim. Fluorescent Sensing Properties of Benzo-18-crown-6 Ethers Containing Thiazoles. Supramolecular Chemistry 2007, 19 (4-5) , 277-281. https://doi.org/10.1080/10610270701416497
    90. Radka Mikelova, Jiri Baloun, Jitka Petrlova, Vojtech Adam, Ladislav Havel, Jiri Petrek, Ales Horna, Rene Kizek. Electrochemical determination of Ag-ions in environment waters and their action on plant embryos. Bioelectrochemistry 2007, 70 (2) , 508-518. https://doi.org/10.1016/j.bioelechem.2006.12.001
    91. K. Wygladacz, N. Ye, C. Xu, R. W. Retter, M. Bell, A. Hilgenbrink, E. Bakker. Uniform Polymeric Hollow Microcapsules with Controlled Doping Levels Fabricated under Nonreactive Conditions. Advanced Materials 2007, 19 (8) , 1059-1063. https://doi.org/10.1002/adma.200602160
    92. Mar Puyol, Cristina Encinas, Laia Rivera, Serguei Miltsov, Julian Alonso. Nortricarbocyanine dyes as suitable long wavelength pH indicators for chemical sensing. Sensors and Actuators B: Chemical 2007, 122 (1) , 53-59. https://doi.org/10.1016/j.snb.2006.05.003
    93. Aleksandar Radu, Shane Peper, Eric Bakker, Dermot Diamond. Guidelines for Improving the Lower Detection Limit of Ion‐Selective Electrodes: A Systematic Approach. Electroanalysis 2007, 19 (2-3) , 144-154. https://doi.org/10.1002/elan.200603741
    94. Aleksandar Radu, Dermot Diamond. Chapter 2 Ion-selective electrodes in trace level analysis of heavy metals: Potentiometry for the XXI century. 2007, 25-52. https://doi.org/10.1016/S0166-526X(06)49002-4
    95. Aleksandar Radu, Shane Peper, Dermot Diamond. Procedure 2 Determination of cesium in natural waters using polymer-based ion-selective electrodes. 2007, e13-e20. https://doi.org/10.1016/S0166-526X(06)49045-0
    96. Katarzyna Wygladacz, Eric Bakker. Fluorescent microsphere fiber optic microsensor array for direct iodide detection at low picomolar concentrations. The Analyst 2007, 132 (3) , 268. https://doi.org/10.1039/b614562k
    97. Aleksandar Radu, Shane Peper, Chad Gonczy, Wolfgang Runde, Dermot Diamond. Trace‐Level Determination of Cs + Using Membrane‐Based Ion‐Selective Electrodes. Electroanalysis 2006, 18 (13-14) , 1379-1388. https://doi.org/10.1002/elan.200603542
    98. Zsófia Szigeti, Adam Malon, Tamás Vigassy, Viktor Csokai, Alajos Grün, Katarzyna Wygladacz, Nan Ye, Chao Xu, Vincent J. Chebny, István Bitter, Rajendra Rathore, Eric Bakker, Ernö Pretsch. Novel potentiometric and optical silver ion-selective sensors with subnanomolar detection limits. Analytica Chimica Acta 2006, 572 (1) , 1-10. https://doi.org/10.1016/j.aca.2006.05.009
    99. Xiao-Bing Zhang, Zhi-Xiang Han, Zheng-Hui Fang, Guo-Li Shen, Ru-Qin Yu. 5,10,15-Tris(pentafluorophenyl)corrole as highly selective neutral carrier for a silver ion-sensitive electrode. Analytica Chimica Acta 2006, 562 (2) , 210-215. https://doi.org/10.1016/j.aca.2006.01.056
    100. Ajit Sadana. Detection of Environmental Contaminants by Biosensors. 2006, 161-197. https://doi.org/10.1016/B978-044452784-4/50009-5