ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Development of an Array of Ion-Selective Microelectrodes Aimed for the Monitoring of Extracellular Ionic Activities

View Author Information
Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, and SAMLAB, Institute of Microtechnology, University of Neuchâtel, 2002 Neuchâtel, Switzerland
Cite this: Anal. Chem. 2006, 78, 21, 7453–7460
Publication Date (Web):September 26, 2006
https://doi.org/10.1021/ac0609733
Copyright © 2006 American Chemical Society
Article Views
601
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (387 KB)

Abstract

In this study, we present the development and the characterization of a generic platform for cell culture able to monitor extracellular ionic activities (K+, NH4+) for real-time monitoring of cell-based responses, such as necrosis, apoptosis, or differentiation. The platform for cell culture is equipped with an array of 16 silicon nitride micropipet-based ion-selective microelectrodes with a diameter of either 2 or 6 μm. This array is located at the bottom of a 200-μm-wide and 350-μm-deep microwell where the cells are cultured. The characterization of the ion-selective microelectrode arrays in different standard and physiological solutions is presented. Near-Nernstian slopes were obtained for potassium- (58.6 ± 0.8 mV/pK, n = 15) and ammonium-selective microelectrodes (59.4 ± 3.9 mV/pNH4, n = 13). The calibration curves were highly reproducible and showed an average drift of 4.4 ± 2.3 mV/h (n = 10). Long-term behavior and response after immersion in physiological solutions are also presented. The lifetime of the sensors was found to be extremely long with a high recovery rate.

*

 To whom correspondence should be addressed. E-mail:  [email protected] unine.ch.

 Harvard Medical School.

 University of Neuchâtel.

Cited By


This article is cited by 29 publications.

  1. Maral P. S. Mousavi, Mohamed K. Abd El-Rahman, Amr M. Mahmoud, Rania M. Abdelsalam, Philippe Bühlmann. In Situ Sensing of the Neurotransmitter Acetylcholine in a Dynamic Range of 1 nM to 1 mM. ACS Sensors 2018, 3 (12) , 2581-2589. https://doi.org/10.1021/acssensors.8b00950
  2. Xuewei Wang, Dengfeng Yue, Enguang Lv, Lei Wu, and Wei Qin . Reporter-Free Potentiometric Sensing of Boronic Acids and Their Reactions by Using Quaternary Ammonium Salt-Functionalized Polymeric Liquid Membranes. Analytical Chemistry 2014, 86 (4) , 1927-1931. https://doi.org/10.1021/ac500028v
  3. Jun Yan, Valber A. Pedrosa, Aleksandr L. Simonian and Alexander Revzin . Immobilizing Enzymes onto Electrode Arrays by Hydrogel Photolithography to Fabricate Multi-Analyte Electrochemical Biosensors. ACS Applied Materials & Interfaces 2010, 2 (3) , 748-755. https://doi.org/10.1021/am9007819
  4. Hyo-Ryoung Lim, Soon Min Lee, Sehyun Park, Chanyeong Choi, Hojoong Kim, Jihoon Kim, Musa Mahmood, Yongkuk Lee, Jong-Hoon Kim, Woon-Hong Yeo. Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes. Biosensors and Bioelectronics 2022, 210 , 114329. https://doi.org/10.1016/j.bios.2022.114329
  5. Turan AKDAĞ, Saadet KADER, Hüseyin DOST, Ali ÜNLÜ. Comparison of the Results of Sodium, Potassium, and Chlorine Measured Through Ion Selective Electrode (ISE) Method in Different Devices. Genel Tıp Dergisi 2022, 32 (2) , 92-96. https://doi.org/10.54005/geneltip.1038123
  6. Sanggil Han, Shunsuke Yamamoto, Anastasios G. Polyravas, George G. Malliaras. Microfabricated Ion‐Selective Transistors with Fast and Super‐Nernstian Response. Advanced Materials 2020, 32 (48) , 2004790. https://doi.org/10.1002/adma.202004790
  7. Yuzhou Shao, Yibin Ying, Jianfeng Ping. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chemical Society Reviews 2020, 49 (13) , 4405-4465. https://doi.org/10.1039/C9CS00587K
  8. Maria R. Depaoli, Helmut Bischof, Emrah Eroglu, Sandra Burgstaller, Jeta Ramadani-Muja, Thomas Rauter, Maximilian Schinagl, Markus Waldeck-Weiermair, Jesse C. Hay, Wolfgang F. Graier, Roland Malli. Live cell imaging of signaling and metabolic activities. Pharmacology & Therapeutics 2019, 202 , 98-119. https://doi.org/10.1016/j.pharmthera.2019.06.003
  9. Ana Moya, Xavi Illa, Ignacio Gimenez, Yoskaly Lazo-Fernandez, Rosa Villa, Abdelhamid Errachid, Gemma Gabriel. Miniaturized multiparametric flexible platform for the simultaneous monitoring of ionic: Application in real urine. Sensors and Actuators B: Chemical 2018, 255 , 2861-2870. https://doi.org/10.1016/j.snb.2017.09.104
  10. S. Anastasova, P. Kassanos, Guang-Zhong Yang. Electrochemical Sensor Designs for Biomedical Implants. 2018,,, 19-98. https://doi.org/10.1007/978-3-319-69748-2_2
  11. Kusumita Dutta, Siddhartha Panda. Interference Analysis for Electrochemical Heavy Metal Ion Sensors in Terms of Stripping Current, Barrier Width and Adsorption. Journal of The Electrochemical Society 2018, 165 (13) , B644-B650. https://doi.org/10.1149/2.1071813jes
  12. S. Catarino, R. Lima, G. Minas. Smart devices. 2017,,, 331-369. https://doi.org/10.1016/B978-0-08-100741-9.00012-7
  13. B. P. CRULHAS, C. M. CASTRO, V. A. PEDROSA. FABRICATION, CHARACTERIZATION, AND FUNCTIONALIZATION OF GOLD ELECTRODES WITH POLY(ETHYLENE GLYCOL) FOR BIOSENSING APPLICATIONS. 2015,,, 1433-1441. https://doi.org/10.5151/chemeng-cobeq2014-1012-21665-160517
  14. Danny O’Hare. Biosensors and Sensor Systems. 2014,,, 55-115. https://doi.org/10.1007/978-1-4471-6374-9_2
  15. L.T. Duarte, C. Jutten. Design of Smart Ion-Selective Electrode Arrays Based on Source Separation through Nonlinear Independent Component Analysis. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 2014, 69 (2) , 293-306. https://doi.org/10.2516/ogst/2013194
  16. Xuewei Wang, Wei Qin. Tetra( p- tolyl)borate-Functionalized Solvent Polymeric Membrane: A Facile and Sensitive Sensing Platform for Peroxidase and Peroxidase Mimetics. Chemistry - A European Journal 2013, 19 (30) , 9979-9986. https://doi.org/10.1002/chem.201300284
  17. Anita Šalić, Ana Tušek, Bruno Zelić. Application of microreactors in medicine and biomedicine. Journal of Applied Biomedicine 2012, 10 (3) , 137-153. https://doi.org/10.2478/v10136-012-0011-1
  18. Sangyun Park, Hee Chan Kim, Taek Dong Chung. Electrochemical analysis based on nanoporous structures. The Analyst 2012, 137 (17) , 3891. https://doi.org/10.1039/c2an35294j
  19. Xicai Yue, Emmanuel M. Drakakis. Monitoring of Stem Cell Culture Process Using Electrochemical Biosensors. 2011,,, 301-323. https://doi.org/10.1002/9781118016497.ch11
  20. Je Hyun Bae, Taek Dong Chung. Conductometric discrimination of electro-inactive metal ions using nanoporous electrodes. Electrochimica Acta 2011, 56 (5) , 1947-1954. https://doi.org/10.1016/j.electacta.2010.12.006
  21. Xicai Yue, Emmanuel M. Drakakis, Athanasios Mantalaris, Anthony Cass. Generation of spatio-temporal concentration profiles for cell culture systems: A case study in ammonia. Measurement 2010, 43 (9) , 1207-1216. https://doi.org/10.1016/j.measurement.2010.05.012
  22. Daniel C. Rieck, Bingwen Liu, Bong-Jae Park, David F. Moffett, David A. Kidwell, Gary J. Cheng, Bernard J. Van Wie. Functionalization of micro- and nano-apertures with chromate-selective solvent polymeric membrane. Analytica Chimica Acta 2010, 659 (1-2) , 243-250. https://doi.org/10.1016/j.aca.2009.11.030
  23. Séverine Le Gac, Albert van den Berg. Single cells as experimentation units in lab-on-a-chip devices. Trends in Biotechnology 2010, 28 (2) , 55-62. https://doi.org/10.1016/j.tibtech.2009.10.005
  24. Leonardo Tomazeli Duarte, Christian Jutten, SaÏd Moussaoui. A Bayesian Nonlinear Source Separation Method for Smart Ion-Selective Electrode Arrays. IEEE Sensors Journal 2009, 9 (12) , 1763-1771. https://doi.org/10.1109/JSEN.2009.2030707
  25. Xing-Jiu Huang, Aoife M. O'Mahony, Richard G. Compton. Microelectrode Arrays for Electrochemistry: Approaches to Fabrication. Small 2009, 5 (7) , 776-788. https://doi.org/10.1002/smll.200801593
  26. Renata Toczyłowska-Mamińska, Patrycja Ciosek, Katarzyna Ciok, Wojciech Wróblewski. Development of a miniaturised electrochemical cell integrated on epoxy-glass laminate. Microchimica Acta 2008, 163 (1-2) , 89-95. https://doi.org/10.1007/s00604-008-0959-4
  27. Eric Bakker, Ernö Pretsch. Nanoscale potentiometry. TrAC Trends in Analytical Chemistry 2008, 27 (7) , 612-618. https://doi.org/10.1016/j.trac.2008.04.007
  28. Silvia Generelli, Renaud Jacquemart, Nico F. de Rooij, Mario Jolicoeur, Milena Koudelka-Hep, Olivier T. Guenat. Potentiometric platform for the quantification of cellular potassium efflux. Lab on a Chip 2008, 8 (7) , 1210. https://doi.org/10.1039/b801042k
  29. Aeraj ul Haque, Mohammad Rameez Chatni, Gang Li, David Marshall Porterfield. Biochips and other microtechnologies for physiomics. Expert Review of Proteomics 2007, 4 (4) , 553-563. https://doi.org/10.1586/14789450.4.4.553

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE