ACS Publications. Most Trusted. Most Cited. Most Read
A New Competitive Fluorescence Assay for the Detection of Patulin Toxin
My Activity
    Article

    A New Competitive Fluorescence Assay for the Detection of Patulin Toxin
    Click to copy article linkArticle link copied!

    View Author Information
    Institutes of Protein Biochemistry and of Genetics & Biophysics, CNR, and Department of Organic Chemistry, University of Naples, Naples, Italy
    Other Access Options

    Analytical Chemistry

    Cite this: Anal. Chem. 2007, 79, 2, 751–757
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac0618526
    Published December 10, 2006
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Patulin is a toxic secondary metabolite of a number of fungal species belonging to the genera Penicillum and Aspergillus. It has been mainly isolated from apples and apple products contaminated with the common storage-rot fungus of apples, Penicillum expansum, but it has also been extracted from rotten fruits, moldy feeds, and stored cheese. Human exposure to patulin can lead to serious health problems, and according to a long-term investigation in rats, the World Health Organization has set a tolerable weekly intake of 7 ppb body weight. The content of patulin in foods has been restricted to 50 ppb in many countries. Conventional analytical detection methods involve chromatographic analyses, such as HPLC, GC, and, more recently, techniques such as LC/MS and GC/MS. However, extensive protocols of sample cleanup are required prior to the analysis, and to accomplish it, expensive analytical instrumentation is necessary. An immunochemical analytical method, based on highly specific antigen−antibody interactions, would be desirable, offering several advantages compared to conventional techniques, i.e., low cost per sample, high selectivity, high sensitivity, and high throughput. In this paper, the synthesis of two new derivatives of patulin is described, along with their conjugation to the bovine serum albumin for the production of polyclonal antibodies. Finally, a fluorescence competitive immunoassay was developed for the on-line detection of patulin.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Institute of Protein Biochemistry, CNR.

     Institute of Genetics & Biophysics, CNR.

    §

     University of Naples.

    *

     To whom correspondence should be addressed. Phone:  +39-0816132250. Fax:  +39-0816132277. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 60 publications.

    1. Hadyn Duncan, Consuelo Agulló, Josep V. Mercader, Antonio Abad-Somovilla, Antonio Abad-Fuentes. Harnessing the Intrinsic Chemical Reactivity of the Mycotoxin Patulin for Immunosensing. Analytical Chemistry 2024, 96 (30) , 12370-12377. https://doi.org/10.1021/acs.analchem.4c01631
    2. Stefano Di Giovanni, Vittorio Zambrini, Antonio Varriale, Sabato D’Auria. Sweet Sensor for the Detection of Aflatoxin M1 in Whole Milk. ACS Omega 2019, 4 (7) , 12803-12807. https://doi.org/10.1021/acsomega.9b01300
    3. Qingwen Huang, Zhihui Zhao, Dongxia Nie, Keqiu Jiang, Wenbo Guo, Kai Fan, Zhiqi Zhang, Jiajia Meng, Yongjiang Wu, Zheng Han. Molecularly Imprinted Poly(thionine)-Based Electrochemical Sensing Platform for Fast and Selective Ultratrace Determination of Patulin. Analytical Chemistry 2019, 91 (6) , 4116-4123. https://doi.org/10.1021/acs.analchem.8b05791
    4. Kai Zhang, Jon W. Wong, Huy Mai, and Mary W. Trucksess . Dopant-Assisted Atmospheric Pressure Photoionization of Patulin in Apple Juice and Apple-Based Food with Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry 2014, 62 (18) , 4112-4118. https://doi.org/10.1021/jf5006726
    5. António Inês, Fernanda Cosme. Biosensors for Detecting Food Contaminants—An Overview. Processes 2025, 13 (2) , 380. https://doi.org/10.3390/pr13020380
    6. Feng Wang, Lukai Ma, Qin Wang, Bruce D. Hammock, Gengsheng Xiao, Ruijing Liu. Evaluation of the Immune Response of Patulin by Proteomics. Biosensors 2024, 14 (7) , 322. https://doi.org/10.3390/bios14070322
    7. Rahim Khan, Farooq Anwar, Farinazleen Mohamad Ghazali. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024, 10 (8) , e28361. https://doi.org/10.1016/j.heliyon.2024.e28361
    8. Netice Küçük, Şevval Kaya, Samet Şahin, Mustafa Oğuzhan Çağlayan. Structural switching aptamer-based electrochemical sensor for mycotoxin patulin detection. Toxicon 2024, 239 , 107583. https://doi.org/10.1016/j.toxicon.2023.107583
    9. Shi Xiang, Jingxian Li, Muling Shi, Hongfen Yang, Ren Cai, Weihong Tan. A novel ECL aptasensor for ultra-highly sensitive detection of patulin based on terbium organic gels as Co-reaction accelerator in a 3, 4, 9, 10-perylenetetracarboxylic acid/K2S2O8 system. Sensors and Actuators B: Chemical 2023, 394 , 134365. https://doi.org/10.1016/j.snb.2023.134365
    10. Shallu Samyal, Anjali Sharma. Mycotoxins: Structure, Biosynthesis, Health Effects, and Their Biological Detoxification. 2023, 479-508. https://doi.org/10.1007/978-981-19-9103-5_18
    11. Duygu Çimen, Nilay Bereli, Adil Denizli. Patulin Imprinted Nanoparticles Decorated Surface Plasmon Resonance Chips for Patulin Detection. Photonic Sensors 2022, 12 (2) , 117-129. https://doi.org/10.1007/s13320-021-0638-1
    12. Tatiana A. Matveyeva, Ruslan M. Sarimov, Alexander V. Simakin, Maxim E. Astashev, Dmitriy E. Burmistrov, Vasily N. Lednev, Pavel A. Sdvizhenskii, Mikhail Ya. Grishin, Sergey M. Pershin, Narek O. Chilingaryan, Natalya A. Semenova, Alexey S. Dorokhov, Sergey V. Gudkov. Using Fluorescence Spectroscopy to Detect Rot in Fruit and Vegetable Crops. Applied Sciences 2022, 12 (7) , 3391. https://doi.org/10.3390/app12073391
    13. Gesiane da Silva Lima, Gabriel Franco dos Santos, Ruver Rodrigues Feitosa Ramalho, Deborah Victoria Alves de Aguiar, Jussara Valente Roque, Lanaia Itala Louzeiro Maciel, Rosineide Costa Simas, Igor Pereira, Boniek Gontijo Vaz. Laser ablation electrospray ionization mass spectrometry imaging as a new tool for accessing patulin diffusion in mold-infected fruits. Food Chemistry 2022, 373 , 131490. https://doi.org/10.1016/j.foodchem.2021.131490
    14. Yanru Wang, Cui Zhang, Jianlong Wang, Dietmar Knopp. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins 2022, 14 (2) , 73. https://doi.org/10.3390/toxins14020073
    15. Hadyn Duncan, Josep V. Mercader, Consuelo Agulló, Marcos Gil-Sepulcre, Antonio Abad-Somovilla, Antonio Abad-Fuentes. Chemical strategies for triggering the immune response to the mycotoxin patulin. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-02916-6
    16. Dipendra Kumar Mahato, Madhu Kamle, Bharti Sharma, Shikha Pandhi, Sheetal Devi, Kajal Dhawan, Raman Selvakumar, Diwakar Mishra, Arvind Kumar, Shalini Arora, Namita Ashish Singh, Pradeep Kumar. Patulin in food: A mycotoxin concern for human health and its management strategies. Toxicon 2021, 198 , 12-23. https://doi.org/10.1016/j.toxicon.2021.04.027
    17. Zuzana Bytesnikova, Vojtech Adam, Lukas Richtera. Graphene oxide as a novel tool for mycotoxin removal. Food Control 2021, 121 , 107611. https://doi.org/10.1016/j.foodcont.2020.107611
    18. Hiyam El Kojok, Nada El Darra, Mahmoud Khalil, Alessandro Capo, Angela Pennacchio, Maria Staiano, Alessandra Camarca, Sabato D’Auria, Antonio Varriale. Fluorescence polarization assay to detect the presence of traces of ciprofloxacin. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-61395-3
    19. Shruti Shukla, Yuvaraj Haldorai, Imran Khan, Sung-Min Kang, Cheol Hwan Kwak, Sonu Gandhi, Vivek K. Bajpai, Yun Suk Huh, Young-Kyu Han. Bioreceptor-free, sensitive and rapid electrochemical detection of patulin fungal toxin, using a reduced graphene oxide@SnO2 nanocomposite. Materials Science and Engineering: C 2020, 113 , 110916. https://doi.org/10.1016/j.msec.2020.110916
    20. Reem Khan, Tauqir A. Sherazi, Gaelle Catanante, Sidra Rasheed, Jean Louis Marty, Akhtar Hayat. Switchable fluorescence sensor toward PAT via CA-MWCNTs quenched aptamer-tagged carboxyfluorescein. Food Chemistry 2020, 312 , 126048. https://doi.org/10.1016/j.foodchem.2019.126048
    21. Yuanyuan Zhu, Long Wu, Heng Yan, Zhicheng Lu, Wenmin Yin, Heyou Han. Enzyme induced molecularly imprinted polymer on SERS substrate for ultrasensitive detection of patulin. Analytica Chimica Acta 2020, 1101 , 111-119. https://doi.org/10.1016/j.aca.2019.12.030
    22. Yan Kang, Hai-Xin Gu, Xin Zhang. A self-referenced method for determination of patulin by surface-enhanced Raman scattering using gold nanobipyramids as the substrate. Analytical Methods 2019, 11 (40) , 5142-5149. https://doi.org/10.1039/C9AY01366K
    23. Minjuan Zhao, Hua Shao, Yahui He, Hui Li, Mengmeng Yan, Zejun Jiang, Jing Wang, A.M. Abd El-Aty, Ahmet Hacımüftüoğlu, Feiyan Yan, Yanli Wang, Yongxin She. The determination of patulin from food samples using dual-dummy molecularly imprinted solid-phase extraction coupled with LC-MS/MS. Journal of Chromatography B 2019, 1125 , 121714. https://doi.org/10.1016/j.jchromb.2019.121714
    24. Arnau Vidal, Salma Ouhibi, Ridha Ghali, Abderrazek Hedhili, Sarah De Saeger, Marthe De Boevre. The mycotoxin patulin: An updated short review on occurrence, toxicity and analytical challenges. Food and Chemical Toxicology 2019, 129 , 249-256. https://doi.org/10.1016/j.fct.2019.04.048
    25. Ceren Bayraç, Gülnur Camızcı. Adsorptive removal of patulin from apple juice via sulfhydryl-terminated magnetic bead-based separation. Journal of Hazardous Materials 2019, 366 , 413-422. https://doi.org/10.1016/j.jhazmat.2018.12.001
    26. Nunzio Cennamo, Luigi Zeni, Ezio Ricca, Rachele Isticato, Vincenzo Manuel Marzullo, Alessandro Capo, Maria Staiano, Sabato D’Auria, Antonio Varriale. Detection of naphthalene in sea-water by a label-free plasmonic optical fiber biosensor. Talanta 2019, 194 , 289-297. https://doi.org/10.1016/j.talanta.2018.10.051
    27. Chuanlai Xu, Hua Kuang, Liguang Xu. Mycotoxin Immunoassay in Food. 2019, 15-52. https://doi.org/10.1007/978-981-13-9034-0_2
    28. Liang Ma, Ting Guo, Shuli Pan, Yuhao Zhang. A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification. Microchimica Acta 2018, 185 (10) https://doi.org/10.1007/s00604-018-3023-z
    29. Nafiseh Bagheri, Alireza Khataee, Biuck Habibi, Javad Hassanzadeh. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 2018, 179 , 710-718. https://doi.org/10.1016/j.talanta.2017.12.009
    30. Li Li, Shuai Ren, Manyu Shao, Sarah De Saeger, Suquan Song, Liping Yan. A competitive immunoassay for zearalenone with integrated poly(dimethysiloxane) based microarray assay. Analytical Methods 2018, 10 (33) , 4036-4043. https://doi.org/10.1039/C8AY01307A
    31. Wengang Zhang, Yong Han, Xiumei Chen, Xueli Luo, Jianlong Wang, Tianli Yue, Zhonghong Li. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chemistry 2017, 232 , 145-154. https://doi.org/10.1016/j.foodchem.2017.03.156
    32. Xianjiang Li, Hongmei Li, Xiaomin Li, Qinghe Zhang. Determination of trace patulin in apple-based food matrices. Food Chemistry 2017, 233 , 290-301. https://doi.org/10.1016/j.foodchem.2017.04.117
    33. Yutang Wang, Yanjie Wen, Yong-Chien Ling. Graphene Oxide-Based Magnetic Solid Phase Extraction Combined with High Performance Liquid Chromatography for Determination of Patulin in Apple Juice. Food Analytical Methods 2017, 10 (1) , 210-218. https://doi.org/10.1007/s12161-016-0570-y
    34. N.F. Starodub, K.E. Shavanova, N.F. Shpyrka, M.M. Mel'nichenko, R.V. Viter, R.V. Viter. Nanostructured Materials as Biosensor Transducers: Achievements and Future Developments. 2016, 439-494. https://doi.org/10.1002/9781119314196.ch10
    35. Antonio Varriale, Vincenzo Manuel Marzullo, Stefano Di Giovanni, Andrea Scala, Alessandro Capo, Adelia Majoli, Angela Pennacchio, Maria Staiano, Sabato D’Auria. On the possibility of ephedrine detection: time-resolved fluorescence resonance energy transfer (FRET)-based approach. Analytical and Bioanalytical Chemistry 2016, 408 (23) , 6329-6336. https://doi.org/10.1007/s00216-016-9738-y
    36. Shyam Narayan Jha, Pranita Jaiswal, Manpreet Kaur Grewal, Mansha Gupta, Rishi Bhardwaj. Detection of Adulterants and Contaminants in Liquid Foods—A Review. Critical Reviews in Food Science and Nutrition 2016, 56 (10) , 1662-1684. https://doi.org/10.1080/10408398.2013.798257
    37. Yasuyuki Tomita, Yuji Morita, Hiroaki Suga, Daisuke Fujiwara. DNA Module Platform for Developing Colorimetric Aptamer Sensors. BioTechniques 2016, 60 (6) , 285-292. https://doi.org/10.2144/000114425
    38. Zhaowei Zhang, Weihua Hu, Qi Zhang, Peiwu Li, Changming Li. Competitive Immunoassays Using Antigen Microarrays. 2016, 237-247. https://doi.org/10.1007/978-1-4939-3136-1_17
    39. Anna Pennacchio, Antonio Varriale, Andrea Scala, Vincenzo Manuel Marzullo, Maria Staiano, Sabato D’Auria. A novel fluorescence polarization assay for determination of penicillin G in milk. Food Chemistry 2016, 190 , 381-385. https://doi.org/10.1016/j.foodchem.2015.05.127
    40. Muthusamy Chandrasekaran, Ali Bahkali. Enzymes as Analytical Tools for the Assessment of Food Quality, Food Safety, and Monitoring of Food Processing. 2015, 67-98. https://doi.org/10.1201/b19408-5
    41. Diana Bueno, Georges Istamboulie, Roberto Muñoz, Jean Louis Marty. Determination of Mycotoxins in Food: A Review of Bioanalytical to Analytical Methods. Applied Spectroscopy Reviews 2015, 50 (9) , 728-774. https://doi.org/10.1080/05704928.2015.1072092
    42. Chris M. Maragos, Mark Busman, Liang Ma, John Bobell. Quantification of patulin in fruit leathers by ultra-high-performance liquid chromatography-photodiode array (UPLC-PDA). Food Additives & Contaminants: Part A 2015, 32 (7) , 1164-1174. https://doi.org/10.1080/19440049.2015.1036383
    43. Anna Pennacchio, Antonio Varriale, Maria Grazia Esposito, Maria Staiano, Sabato D’Auria. A near-infrared fluorescence assay method to detect patulin in food. Analytical Biochemistry 2015, 481 , 55-59. https://doi.org/10.1016/j.ab.2015.04.027
    44. Riccardo Funari, Bartolomeo Della Ventura, Raffaele Carrieri, Luigi Morra, Ernesto Lahoz, Felice Gesuele, Carlo Altucci, Raffaele Velotta. Detection of parathion and patulin by quartz-crystal microbalance functionalized by the photonics immobilization technique. Biosensors and Bioelectronics 2015, 67 , 224-229. https://doi.org/10.1016/j.bios.2014.08.020
    45. V. Scognamiglio, F. Arduini, G. Palleschi, G. Rea. Biosensing technology for sustainable food safety. TrAC Trends in Analytical Chemistry 2014, 62 , 1-10. https://doi.org/10.1016/j.trac.2014.07.007
    46. Weihua Hu, Hongming Chen, Huanhuan Zhang, Guangli He, Xin Li, Xiaoxing Zhang, Yang Liu, Chang Ming Li. Sensitive detection of multiple mycotoxins by SPRi with gold nanoparticles as signal amplification tags. Journal of Colloid and Interface Science 2014, 431 , 71-76. https://doi.org/10.1016/j.jcis.2014.06.007
    47. Anna Pennacchio, Giuseppe Ruggiero, Maria Staiano, Gennaro Piccialli, Giorgia Oliviero, Aneta Lewkowicz, Anna Synak, Piotr Bojarski, Sabato D’Auria. A surface plasmon resonance based biochip for the detection of patulin toxin. Optical Materials 2014, 36 (10) , 1670-1675. https://doi.org/10.1016/j.optmat.2013.12.045
    48. N. F. Starodub, K. E. Shavanova, N. F. Slyshyk, M. D. Melnychuk. Cerium oxide ISFETs based immune biosensor for the patulin control. 2014, 356-360. https://doi.org/10.1109/ELNANO.2014.6873451
    49. Weihua Hu, Xin Li, Guangli He, Zhaowei Zhang, Xinting Zheng, Peiwu Li, Chang Ming Li. Sensitive competitive immunoassay of multiple mycotoxins with non-fouling antigen microarray. Biosensors and Bioelectronics 2013, 50 , 338-344. https://doi.org/10.1016/j.bios.2013.06.037
    50. Hua NIU, Lei FENG, Zhirui NIU, Na ZHU, Hongkun ZHU, Yaqin WANG. Determination of patulin in juice by ultra performance liquid chromatography-tandem mass spectrometry. Chinese Journal of Chromatography 2013, 30 (9) , 957-961. https://doi.org/10.3724/SP.J.1123.2012.04026
    51. Yuchun Zhou, Weijun Kong, Yan Li, Antonio F. Logrieco, Jun Xu, Meihua Yang. A new solid‐phase extraction and HPLC method for determination of patulin in apple products and hawthorn juice in C hina. Journal of Separation Science 2012, 35 (5-6) , 641-649. https://doi.org/10.1002/jssc.201100919
    52. Antonio Varriale, Maria Staiano, Vincenzo M. Marzullo, Maria Strianese, Stefano Di Giovannni, Giuseppe Ruggiero, Alberto Secchi, Massimiliano Dispenza, Anna Maria Fiorello, Sabato D'Auria. A surface plasmon resonance-based biochip to reveal traces of ephedrine. Analytical Methods 2012, 4 (7) , 1940. https://doi.org/10.1039/c2ay25231g
    53. Stefano Di Giovanni, Antonio Varriale, Vincenzo Manuel Marzullo, Giuseppe Ruggiero, Maria Staiano, Alberto Secchi, Luigi Pierno, Anna Maria Fiorello, Sabato D'Auria. Determination of benzyl methyl ketone – a commonly used precursor in amphetamine manufacture. Analytical Methods 2012, 4 (11) , 3558. https://doi.org/10.1039/c2ay25772f
    54. Dayun Zhao, Jingfu Jia, Xuelei Yu, Xiangjun Sun. Preparation and characterization of a molecularly imprinted polymer by grafting on silica supports: a selective sorbent for patulin toxin. Analytical and Bioanalytical Chemistry 2011, 401 (7) , 2259-2273. https://doi.org/10.1007/s00216-011-5282-y
    55. Eszter Horváth, Gábor Papp, József Belágyi, Zoltán Gazdag, Csaba Vágvölgyi, Miklós Pesti. In vivo direct patulin-induced fluidization of the plasma membrane of fission yeast Schizosaccharomyces pombe. Food and Chemical Toxicology 2010, 48 (7) , 1898-1904. https://doi.org/10.1016/j.fct.2010.04.031
    56. A. E. Urusov, A. V. Zherdev, B. B. Dzantiev. Immunochemical methods of mycotoxin analysis (review). Applied Biochemistry and Microbiology 2010, 46 (3) , 253-266. https://doi.org/10.1134/S0003683810030038
    57. Avishay-Abraham Stark. Molecular Mechanism of Detection of Aflatoxins and Other Mycotoxins. 2009, 21-37. https://doi.org/10.1007/978-3-642-00725-5_2
    58. Irena Kralj Cigić, Helena Prosen. An Overview of Conventional and Emerging Analytical Methods for the Determination of Mycotoxins. International Journal of Molecular Sciences 2009, 10 (1) , 62-115. https://doi.org/10.3390/ijms10010062
    59. Hana M. Gashlan. Biochemical Studies of Patulin on Liver Functions in Male Albino Mice. Journal of Applied Animal Research 2008, 34 (1) , 93-96. https://doi.org/10.1080/09712119.2008.9706947
    60. P. Songsermsakul, E. Razzazi-Fazeli. A Review of Recent Trends in Applications of Liquid Chromatography-Mass Spectrometry for Determination of Mycotoxins. Journal of Liquid Chromatography & Related Technologies 2008, 31 (11-12) , 1641-1686. https://doi.org/10.1080/10826070802126395

    Analytical Chemistry

    Cite this: Anal. Chem. 2007, 79, 2, 751–757
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac0618526
    Published December 10, 2006
    Copyright © 2007 American Chemical Society

    Article Views

    1708

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.