ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Top-Down Lipidomic Screens by Multivariate Analysis of High-Resolution Survey Mass Spectra

View Author Information
MPI of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany, Thermo Fisher Scientific, 28119 Bremen, Germany, and MDS Sciex, Concord, 71 Four Valley Drive, L4K 4V8 Concord, Canada
Cite this: Anal. Chem. 2007, 79, 11, 4083–4093
Publication Date (Web):May 3, 2007
https://doi.org/10.1021/ac062455y
Copyright © 2007 American Chemical Society

    Article Views

    2238

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (489 KB)
    Supporting Info (1)»

    Abstract

    Direct profiling of total lipid extracts on a hybrid LTQ Orbitrap mass spectrometer by high-resolution survey spectra clusters species of 11 major lipid classes into 7 groups, which are distinguished by their sum compositions and could be identified by accurately determined masses. Rapid acquisition of survey spectra was employed as a “top-down” screening tool that, together with the computational method of principal component analysis, revealed pronounced perturbations in the abundance of lipid precursors within the entire series of experiments. Altered lipid precursors were subsequently identified either by accurately determined masses or by in-depth MS/MS characterization that was performed on the same instrument. Hence, the sensitivity, throughput and robustness of lipidomics screens were improved without compromising the accuracy and specificity of molecular species identification. The top-down lipidomics strategy lends itself for high-throughput screens complementing ongoing functional genomics efforts.

     MPI of Molecular Cell Biology and Genetics.

     Thermo Fisher Scientific.

    §

     MDS Sciex.

    *

     Corresponding author:  (e-mail) [email protected].

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Additional information as noted in text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 165 publications.

    1. Yajie Wang, Pu Xue, Mingfeng Cao, Tianhao Yu, Stephan T. Lane, Huimin Zhao. Directed Evolution: Methodologies and Applications. Chemical Reviews 2021, 121 (20) , 12384-12444. https://doi.org/10.1021/acs.chemrev.1c00260
    2. Inger Ødum Nielsen, André Vidas Olsen, Jano Dicroce-Giacobini, Elena Papaleo, Klaus Kaae Andersen, Marja Jäättelä, Kenji Maeda, Mesut Bilgin. Comprehensive Evaluation of a Quantitative Shotgun Lipidomics Platform for Mammalian Sample Analysis on a High-Resolution Mass Spectrometer. Journal of the American Society for Mass Spectrometry 2020, 31 (4) , 894-907. https://doi.org/10.1021/jasms.9b00136
    3. Chunyan Wang, Cheng Wang, Fang Liu, Shuo Rainosek, Tucker A. Patterson, William Slikker, Jr., Xianlin Han. Lipidomics Reveals Changes in Metabolism, Indicative of Anesthetic-Induced Neurotoxicity in Developing Brains. Chemical Research in Toxicology 2018, 31 (9) , 825-835. https://doi.org/10.1021/acs.chemrestox.8b00186
    4. Liang Qiao, Xiaoqin Zhong, Emna Belghith, Yan Deng, Tzu-En Lin, Elena Tobolkina, Baohong Liu, and Hubert H. Girault . Electrostatic Spray Ionization from 384-Well Microtiter Plates for Mass Spectrometry Analysis-Based Enzyme Assay and Drug Metabolism Screening. Analytical Chemistry 2017, 89 (11) , 5983-5990. https://doi.org/10.1021/acs.analchem.7b00536
    5. Laura Goracci, Sara Tortorella, Paolo Tiberi, Roberto Maria Pellegrino, Alessandra Di Veroli, Aurora Valeri, and Gabriele Cruciani . Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics. Analytical Chemistry 2017, 89 (11) , 6257-6264. https://doi.org/10.1021/acs.analchem.7b01259
    6. Eileen Ryan and Gavin E. Reid . Chemical Derivatization and Ultrahigh Resolution and Accurate Mass Spectrometry Strategies for “Shotgun” Lipidome Analysis. Accounts of Chemical Research 2016, 49 (9) , 1596-1604. https://doi.org/10.1021/acs.accounts.6b00030
    7. Stella Rojas-Betancourt, John R. Stutzman, Frank A. Londry, Stephen J. Blanksby, and Scott A. McLuckey . Gas-Phase Chemical Separation of Phosphatidylcholine and Phosphatidylethanolamine Cations via Charge Inversion Ion/Ion Chemistry. Analytical Chemistry 2015, 87 (22) , 11255-11262. https://doi.org/10.1021/acs.analchem.5b02243
    8. Reinaldo Almeida, Josch Konstantin Pauling, Elena Sokol, Hans Kristian Hannibal-Bach, Christer S. Ejsing. Comprehensive Lipidome Analysis by Shotgun Lipidomics on a Hybrid Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer. Journal of the American Society for Mass Spectrometry 2015, 26 (1) , 133-148. https://doi.org/10.1007/s13361-014-1013-x
    9. Hulda S. Jónasdóttir, Simone Nicolardi, Willem Jonker, Rico Derks, Magnus Palmblad, Andreea Ioan-Facsinay, René Toes, Yuri E. M. van der Burgt, André M. Deelder, Oleg A. Mayboroda, and Martin Giera . Detection and Structural Elucidation of Esterified Oxylipids in Human Synovial Fluid by Electrospray Ionization-Fourier Transform Ion-Cyclotron Mass Spectrometry and Liquid Chromatography-Ion Trap-MS3: Detection of Esterified Hydroxylated Docosapentaenoic Acid Containing Phospholipids. Analytical Chemistry 2013, 85 (12) , 6003-6010. https://doi.org/10.1021/ac400826z
    10. Simon H. J. Brown, Todd W. Mitchell, Aaron J. Oakley, Huong T. Pham, Stephen J. Blanksby. Time to Face the Fats: What Can Mass Spectrometry Reveal about the Structure of Lipids and Their Interactions with Proteins?. Journal of the American Society for Mass Spectrometry 2012, 23 (9) , 1441-1449. https://doi.org/10.1007/s13361-012-0410-2
    11. Kai Schuhmann, Ronny Herzog, Dominik Schwudke, Wolfgang Metelmann-Strupat, Stefan R. Bornstein, and Andrej Shevchenko . Bottom-Up Shotgun Lipidomics by Higher Energy Collisional Dissociation on LTQ Orbitrap Mass Spectrometers. Analytical Chemistry 2011, 83 (14) , 5480-5487. https://doi.org/10.1021/ac102505f
    12. R. M. S. Cardoso, H. A. L. Filipe, F. Gomes, N. D. Moreira, W. L. C. Vaz, and M. J. Moreno. Chain Length Effect on the Binding of Amphiphiles to Serum Albumin and to POPC Bilayers. The Journal of Physical Chemistry B 2010, 114 (49) , 16337-16346. https://doi.org/10.1021/jp105163k
    13. Xianlin Han. Lipidomic Analysis of Glycerophospholipid Molecular Species in Biological Samples. 2023, 395-423. https://doi.org/10.1002/9783527836512.ch14
    14. Marcus Höring, Gerhard Liebisch. Direct Infusion (Shotgun) Electrospray Mass Spectrometry. 2023, 41-90. https://doi.org/10.1002/9783527836512.ch3
    15. Lu An, Xueqi Fu, Jing Chen, Junfeng Ma. Application of Caenorhabditis elegans in Lipid Metabolism Research. International Journal of Molecular Sciences 2023, 24 (2) , 1173. https://doi.org/10.3390/ijms24021173
    16. Sarah Kupsch, Lars F. Eggers, Dietmar Spengler, Nicolas Gisch, Torsten Goldmann, Heinz Fehrenbach, Guido Stichtenoth, Martin F. Krause, Dominik Schwudke, Andra B. Schromm. Characterization of phospholipid-modified lung surfactant in vitro and in a neonatal ARDS model reveals anti-inflammatory potential and surfactant lipidome signatures. European Journal of Pharmaceutical Sciences 2022, 175 , 106216. https://doi.org/10.1016/j.ejps.2022.106216
    17. Wenpeng Zhang, Ruijun Jian, Jing Zhao, Yikun Liu, Yu Xia. Deep-lipidotyping by mass spectrometry: recent technical advances and applications. Journal of Lipid Research 2022, 63 (7) , 100219. https://doi.org/10.1016/j.jlr.2022.100219
    18. Marta Palusińska-Szysz, Małgorzata Jurak, Nicolas Gisch, Franziska Waldow, Nicole Zehethofer, Christian Nehls, Dominik Schwudke, Piotr Koper, Andrzej Mazur. The human LL-37 peptide exerts antimicrobial activity against Legionella micdadei interacting with membrane phospholipids. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2022, 1867 (6) , 159138. https://doi.org/10.1016/j.bbalip.2022.159138
    19. Carla E. Cadena del Castillo, J. Thomas Hannich, Andres Kaech, Hirohisa Chiyoda, Jonathan Brewer, Masamitsu Fukuyama, Nils J. Færgeman, Howard Riezman, Anne Spang. Patched regulates lipid homeostasis by controlling cellular cholesterol levels. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24995-9
    20. Yumi Watanabe, Kensaku Kasuga, Takayoshi Tokutake, Kaori Kitamura, Takeshi Ikeuchi, Kazutoshi Nakamura. Alterations in Glycerolipid and Fatty Acid Metabolic Pathways in Alzheimer's Disease Identified by Urinary Metabolic Profiling: A Pilot Study. Frontiers in Neurology 2021, 12 https://doi.org/10.3389/fneur.2021.719159
    21. Tong Si, Pu Xue, Kisurb Choe, Huimin Zhao, Jonathan V. Sweedler. High‐Throughput Mass Spectrometry Complements Protein Engineering. 2021, 57-79. https://doi.org/10.1002/9783527815128.ch3
    22. Thomas Züllig, Harald C. Köfeler. HIGH RESOLUTION MASS SPECTROMETRY IN LIPIDOMICS. Mass Spectrometry Reviews 2021, 40 (3) , 162-176. https://doi.org/10.1002/mas.21627
    23. Liesa Salzer, Michael Witting. Quo Vadis Caenorhabditis elegans Metabolomics—A Review of Current Methods and Applications to Explore Metabolism in the Nematode. Metabolites 2021, 11 (5) , 284. https://doi.org/10.3390/metabo11050284
    24. Kosuke Saito. Application of comprehensive lipidomics to biomarker research on adverse drug reactions. Drug Metabolism and Pharmacokinetics 2021, 37 , 100377. https://doi.org/10.1016/j.dmpk.2020.100377
    25. Jianing Wang, Chunyan Wang, Xianlin Han. Mass Spectrometry-Based Shotgun Lipidomics for Cancer Research. 2021, 39-55. https://doi.org/10.1007/978-3-030-51652-9_3
    26. Jianing Wang, Xianlin Han. Analytical challenges of shotgun lipidomics at different resolution of measurements. TrAC Trends in Analytical Chemistry 2019, 121 , 115697. https://doi.org/10.1016/j.trac.2019.115697
    27. Wilmar Correa, Julius Brandenburg, Jochen Behrends, Lena Heinbockel, Norbert Reiling, Laura Paulowski, Dominik Schwudke, Kerstin Stephan, Guillermo Martinez-de-Tejada, Klaus Brandenburg, Thomas Gutsmann. Inactivation of Bacteria by γ-Irradiation to Investigate the Interaction with Antimicrobial Peptides. Biophysical Journal 2019, 117 (10) , 1805-1819. https://doi.org/10.1016/j.bpj.2019.10.012
    28. Changfeng Hu, Chunyan Wang, Lijiao He, Xianlin Han. Novel strategies for enhancing shotgun lipidomics for comprehensive analysis of cellular lipidomes. TrAC Trends in Analytical Chemistry 2019, 120 , 115330. https://doi.org/10.1016/j.trac.2018.11.028
    29. Denise Wolrab, Robert Jirásko, Michaela Chocholoušková, Ondřej Peterka, Michal Holčapek. Oncolipidomics: Mass spectrometric quantitation of lipids in cancer research. TrAC Trends in Analytical Chemistry 2019, 120 , 115480. https://doi.org/10.1016/j.trac.2019.04.012
    30. Jianing Wang, Chunyan Wang, Xianlin Han. Tutorial on lipidomics. Analytica Chimica Acta 2019, 1061 , 28-41. https://doi.org/10.1016/j.aca.2019.01.043
    31. Qingxia Huang, Hehua Lei, Manyuan Dong, Huiru Tang, Yulan Wang. Quantitative analysis of 10 classes of phospholipids by ultrahigh-performance liquid chromatography tandem triple-quadrupole mass spectrometry. The Analyst 2019, 144 (13) , 3980-3987. https://doi.org/10.1039/C9AN00676A
    32. Lisa Kappler, Laxmikanth Kollipara, Rainer Lehmann, Albert Sickmann. Investigating the Role of Mitochondria in Type 2 Diabetes – Lessons from Lipidomics and Proteomics Studies of Skeletal Muscle and Liver. 2019, 143-182. https://doi.org/10.1007/978-981-13-8367-0_9
    33. Sihui Wang, Fatima-Zahra Idrissi, Martin Hermansson, Alexandra Grippa, Christer S. Ejsing, Pedro Carvalho. Seipin and the membrane-shaping protein Pex30 cooperate in organelle budding from the endoplasmic reticulum. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-05278-2
    34. Paul L. Wood, John E. Cebak. Lipidomics biomarker studies: Errors, limitations, and the future. Biochemical and Biophysical Research Communications 2018, 504 (3) , 569-575. https://doi.org/10.1016/j.bbrc.2018.03.188
    35. Sarah Hofmann, Matthias Krajewski, Christina Scherer, Verena Scholz, Valerie Mordhorst, Pavel Truschow, Anja Schöbel, Rudolph Reimer, Dominik Schwudke, Eva Herker. Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2018, 1863 (9) , 1041-1056. https://doi.org/10.1016/j.bbalip.2018.06.002
    36. Bing Peng, Sascha Geue, Cristina Coman, Patrick Münzer, Dominik Kopczynski, Canan Has, Nils Hoffmann, Mailin-Christin Manke, Florian Lang, Albert Sickmann, Meinrad Gawaz, Oliver Borst, Robert Ahrends. Identification of key lipids critical for platelet activation by comprehensive analysis of the platelet lipidome. Blood 2018, 132 (5) , e1-e12. https://doi.org/10.1182/blood-2017-12-822890
    37. Raissa Lerner, Julia M. Post, Shane R. Ellis, D. R. Naomi Vos, Ron M.A. Heeren, Beat Lutz, Laura Bindila. Simultaneous lipidomic and transcriptomic profiling in mouse brain punches of acute epileptic seizure model compared to controls. Journal of Lipid Research 2018, 59 (2) , 283-297. https://doi.org/10.1194/jlr.M080093
    38. Lars F. Eggers, Dominik Schwudke. Shotgun Lipidomics Approach for Clinical Samples. 2018, 163-174. https://doi.org/10.1007/978-1-4939-7592-1_12
    39. Tanxi Cai, Fuquan Yang. Phospholipid and Phospholipidomics in Health and Diseases. 2018, 177-202. https://doi.org/10.1007/978-981-13-0620-4_11
    40. Lars F. Eggers, Julia Müller, Chakravarthy Marella, Verena Scholz, Henrik Watz, Christian Kugler, Klaus F. Rabe, Torsten Goldmann, Dominik Schwudke. Lipidomes of lung cancer and tumour-free lung tissues reveal distinct molecular signatures for cancer differentiation, age, inflammation, and pulmonary emphysema. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-11339-1
    41. Josch K. Pauling, Martin Hermansson, Jürgen Hartler, Klaus Christiansen, Sandra F. Gallego, Bing Peng, Robert Ahrends, Christer S. Ejsing, . Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLOS ONE 2017, 12 (11) , e0188394. https://doi.org/10.1371/journal.pone.0188394
    42. D. Schwudke, A. Shevchenko, N. Hoffmann, R. Ahrends. Lipidomics informatics for life-science. Journal of Biotechnology 2017, 261 , 131-136. https://doi.org/10.1016/j.jbiotec.2017.08.010
    43. Jeremy P Koelmel, Candice Z. Ulmer, Christina M. Jones, Richard A. Yost, John A. Bowden. Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2017, 1862 (8) , 766-770. https://doi.org/10.1016/j.bbalip.2017.02.016
    44. Kosuke Saito, Yasuo Ohno, Yoshiro Saito. Enrichment of resolving power improves ion-peak quantification on a lipidomics platform. Journal of Chromatography B 2017, 1055-1056 , 20-28. https://doi.org/10.1016/j.jchromb.2017.04.019
    45. Tomasz Sadowski, Christian Klose, Mathias J. Gerl, Anna Wójcik-Maciejewicz, Ronny Herzog, Kai Simons, Adam Reich, Michal A. Surma. Large-scale human skin lipidomics by quantitative, high-throughput shotgun mass spectrometry. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep43761
    46. William J. Griffiths, Yuqin Wang. Introduction and Overview of Lipidomic Strategies. 2017, 1-11. https://doi.org/10.1007/978-1-4939-6946-3_1
    47. Puja Kumari. Seaweed Lipidomics in the Era of ‘Omics’ Biology: A Contemporary Perspective. 2017, 49-97. https://doi.org/10.1007/978-3-319-62094-7_4
    48. . Mass Spectrometry‐Based Lipidomics Approaches. 2016, 53-88. https://doi.org/10.1002/9781119085263.ch3
    49. Sumitra Pati, Ben Nie, Robert D. Arnold, Brian S. Cummings. Extraction, chromatographic and mass spectrometric methods for lipid analysis. Biomedical Chromatography 2016, 30 (5) , 695-709. https://doi.org/10.1002/bmc.3683
    50. Michael Witting, Philippe Schmitt-Kopplin. The Caenorhabditis elegans lipidome. Archives of Biochemistry and Biophysics 2016, 589 , 27-37. https://doi.org/10.1016/j.abb.2015.06.003
    51. Miao Wang, Chunyan Wang, Rowland H. Han, Xianlin Han. Novel advances in shotgun lipidomics for biology and medicine. Progress in Lipid Research 2016, 61 , 83-108. https://doi.org/10.1016/j.plipres.2015.12.002
    52. Sarita Hebbar, Ishtapran Sahoo, Artur Matysik, Irene Argudo Garcia, Kathleen Amy Osborne, Cyrus Papan, Federico Torta, Pradeep Narayanaswamy, Xiu Hui Fun, Markus R Wenk, Andrej Shevchenko, Dominik Schwudke, Rachel Kraut. Ceramides And Stress Signalling Intersect With Autophagic Defects In Neurodegenerative Drosophila blue cheese (bchs) Mutants. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep15926
    53. Michal A. Surma, Ronny Herzog, Andrej Vasilj, Christian Klose, Nicolas Christinat, Delphine Morin‐Rivron, Kai Simons, Mojgan Masoodi, Julio L. Sampaio. An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids. European Journal of Lipid Science and Technology 2015, 117 (10) , 1540-1549. https://doi.org/10.1002/ejlt.201500145
    54. Pierre Dourlen, Alyson Sujkowski, Robert Wessells, Bertrand Mollereau. Fatty acid transport proteins in disease: New insights from invertebrate models. Progress in Lipid Research 2015, 60 , 30-40. https://doi.org/10.1016/j.plipres.2015.08.001
    55. Sara Munk Jensen, Martin Brandl, Alexander H. Treusch, Christer S. Ejsing. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics. Journal of Mass Spectrometry 2015, 50 (3) , 476-487. https://doi.org/10.1002/jms.3553
    56. Ana Reis, Alisa Rudnitskaya, Pajaree Chariyavilaskul, Neeraj Dhaun, Vanessa Melville, Jane Goddard, David J. Webb, Andrew R. Pitt, Corinne M. Spickett. Top-down lipidomics of low density lipoprotein reveal altered lipid profiles in advanced chronic kidney disease. Journal of Lipid Research 2015, 56 (2) , 413-422. https://doi.org/10.1194/jlr.M055624
    57. Elangovan Namasivayam, R. Kowsalya, Pavan Kumar Padarthi, K. Manigandan, Richard L. Jayaraj, Johnravindar D, Kaliaperumal Jagatheesh. Plant Lipidomics: Signalling and Analytical Strategies. 2015, 331-356. https://doi.org/10.1007/978-81-322-2172-2_11
    58. Chunxiu Hu, Jia Li, Guowang Xu. Mass Spectrometry-Based Lipidomics for Biomarker Research. 2015, 49-74. https://doi.org/10.1007/978-94-007-7696-8_36
    59. Christine Moessinger, Kristina Klizaite, Almut Steinhagen, Julia Philippou-Massier, Andrej Shevchenko, Michael Hoch, Christer S Ejsing, Christoph Thiele. Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage. BMC Cell Biology 2014, 15 (1) https://doi.org/10.1186/s12860-014-0043-3
    60. Christophe Junot, François Fenaille, Benoit Colsch, François Bécher. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrometry Reviews 2014, 33 (6) , 471-500. https://doi.org/10.1002/mas.21401
    61. Paul R.S. Baker, Aaron M. Armando, J. Larry Campbell, Oswald Quehenberger, Edward A. Dennis. Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies. Journal of Lipid Research 2014, 55 (11) , 2432-2442. https://doi.org/10.1194/jlr.D051581
    62. Miao Wang, Yingying Huang, Xianlin Han. Accurate mass searching of individual lipid species candidates from high-resolution mass spectra for shotgun lipidomics. Rapid Communications in Mass Spectrometry 2014, 28 (20) , 2201-2210. https://doi.org/10.1002/rcm.7015
    63. Mônica Siqueira Ferreira, Diogo Noin de Oliveira, Rosimeire Nunes de Oliveira, Silmara Marques Allegretti, Rodrigo Ramos Catharino. Screening the life cycle of Schistosoma mansoni using high-resolution mass spectrometry. Analytica Chimica Acta 2014, 845 , 62-69. https://doi.org/10.1016/j.aca.2014.06.013
    64. Michael Witting, Tanja Verena Maier, Steve Garvis, Philippe Schmitt-Kopplin. Optimizing a ultrahigh pressure liquid chromatography-time of flight-mass spectrometry approach using a novel sub-2μm core–shell particle for in depth lipidomic profiling of Caenorhabditis elegans. Journal of Chromatography A 2014, 1359 , 91-99. https://doi.org/10.1016/j.chroma.2014.07.021
    65. Britta Brügger. Lipidomics: Analysis of the Lipid Composition of Cells and Subcellular Organelles by Electrospray Ionization Mass Spectrometry. Annual Review of Biochemistry 2014, 83 (1) , 79-98. https://doi.org/10.1146/annurev-biochem-060713-035324
    66. Chunxiu Hu, Jia Li, Guowang Xu. Mass Spectrometry-Based Lipidomics for Biomarker Research. 2014, 1-20. https://doi.org/10.1007/978-94-007-7740-8_36-1
    67. W.J. Griffiths, Y. Wang. Lipidomics in Metabolomics. 2014, 157-164. https://doi.org/10.1016/B978-0-444-53632-7.01113-8
    68. Päivi Pöhö, Matej Oresic, Tuulia Hyötyläinen. MS-Based Lipidomics. 2014, 375-393. https://doi.org/10.1016/B978-0-444-62650-9.00014-2
    69. Kirill Tarasov, Adam Stefanko, Albert Casanovas, Michal A. Surma, Zane Berzina, Hans Kristian Hannibal-Bach, Kim Ekroos, Christer S. Ejsing. High-content screening of yeast mutant libraries by shotgun lipidomics. Mol. BioSyst. 2014, 10 (6) , 1364-1376. https://doi.org/10.1039/C3MB70599D
    70. Elena Sokol, Reinaldo Almeida, Hans Kristian Hannibal-Bach, Dorota Kotowska, Johannes Vogt, Jan Baumgart, Karsten Kristiansen, Robert Nitsch, Jens Knudsen, Christer S. Ejsing. Profiling of lipid species by normal-phase liquid chromatography, nanoelectrospray ionization, and ion trap–orbitrap mass spectrometry. Analytical Biochemistry 2013, 443 (1) , 88-96. https://doi.org/10.1016/j.ab.2013.08.020
    71. Peter Husen, Kirill Tarasov, Maciej Katafiasz, Elena Sokol, Johannes Vogt, Jan Baumgart, Robert Nitsch, Kim Ekroos, Christer S. Ejsing, . Analysis of Lipid Experiments (ALEX): A Software Framework for Analysis of High-Resolution Shotgun Lipidomics Data. PLoS ONE 2013, 8 (11) , e79736. https://doi.org/10.1371/journal.pone.0079736
    72. Ronny Herzog, Dominik Schwudke, Andrej Shevchenko. LipidXplorer: Software for Quantitative Shotgun Lipidomics Compatible with Multiple Mass Spectrometry Platforms. Current Protocols in Bioinformatics 2013, 43 (1) https://doi.org/10.1002/0471250953.bi1412s43
    73. Christian Klose, Michal A Surma, Kai Simons. Organellar lipidomics—background and perspectives. Current Opinion in Cell Biology 2013, 25 (4) , 406-413. https://doi.org/10.1016/j.ceb.2013.03.005
    74. Sin Man Lam, Guanghou Shui. Lipidomics as a Principal Tool for Advancing Biomedical Research. Journal of Genetics and Genomics 2013, 40 (8) , 375-390. https://doi.org/10.1016/j.jgg.2013.06.007
    75. Ellen D. Inutan, James Wager-Miller, Srinivas B. Narayan, Ken Mackie, Sarah Trimpin. The potential for clinical applications using a new ionization method combined with ion mobility spectrometry-mass spectrometry. International Journal for Ion Mobility Spectrometry 2013, 16 (2) , 145-159. https://doi.org/10.1007/s12127-013-0131-7
    76. Ursula Loizides-Mangold. On the future of mass-spectrometry-based lipidomics. FEBS Journal 2013, 280 (12) , 2817-2829. https://doi.org/10.1111/febs.12202
    77. Gerhard Liebisch, Juan Antonio Vizcaíno, Harald Köfeler, Martin Trötzmüller, William J. Griffiths, Gerd Schmitz, Friedrich Spener, Michael J.O. Wakelam. Shorthand notation for lipid structures derived from mass spectrometry. Journal of Lipid Research 2013, 54 (6) , 1523-1530. https://doi.org/10.1194/jlr.M033506
    78. Iwan W. Schie, Thomas Huser. Label‐Free Analysis of Cellular Biochemistry by Raman Spectroscopy and Microscopy. 2013, 941-956. https://doi.org/10.1002/cphy.c120025
    79. Yuqin Wang, Anna Meljon, Michael Ogundare, William Griffiths. Development and application of novel analytical methods in lipidomics. 2013, 49-80. https://doi.org/10.1201/b12957-3
    80. Laetitia Fouillen, Benoit Colsch, René Lessire. The Lipid World Concept of Plant Lipidomics. 2013, 331-376. https://doi.org/10.1016/B978-0-12-397922-3.00007-1
    81. Emilie Layre, D. Branch Moody. Lipidomic profiling of model organisms and the world's major pathogens. Biochimie 2013, 95 (1) , 109-115. https://doi.org/10.1016/j.biochi.2012.08.012
    82. Manivannan Subramanian, Suman Kumar Metya, Sufia Sadaf, Satish Kumar, Dominik Schwudke, Gaiti Hasan. Altered lipid homeostasis in Drosophila InsP3 receptor mutants leads to obesity and hyperphagia. Disease Models & Mechanisms 2013, 4 https://doi.org/10.1242/dmm.010017
    83. Ying Liu, Yanfeng Chen, M. Cameron Sullards. Targeted Lipidomics: Sphingolipidomics. 2012, 73-97. https://doi.org/10.1002/9783527655946.ch5
    84. Christer S. Ejsing, Peter Husen, Kirill Tarasov. Lipid Informatics: From a Mass Spectrum to Interactomics. 2012, 147-174. https://doi.org/10.1002/9783527655946.ch8
    85. Piers J. Walser, Nicholas Ariotti, Mark Howes, Charles Ferguson, Richard Webb, Dominik Schwudke, Natalya Leneva, Kwang-Jin Cho, Leanne Cooper, James Rae, Matthias Floetenmeyer, Viola M.J. Oorschot, Ulf Skoglund, Kai Simons, John F. Hancock, Robert G. Parton. Constitutive Formation of Caveolae in a Bacterium. Cell 2012, 150 (4) , 752-763. https://doi.org/10.1016/j.cell.2012.06.042
    86. Shu-Ping Hui, Toshihiro Sakurai, Futaba Ohkawa, Hiroaki Furumaki, Shigeki Jin, Hirotoshi Fuda, Seiji Takeda, Takao Kurosawa, Hitoshi Chiba. Detection and characterization of cholesteryl ester hydroperoxides in oxidized LDL and oxidized HDL by use of an Orbitrap mass spectrometer. Analytical and Bioanalytical Chemistry 2012, 404 (1) , 101-112. https://doi.org/10.1007/s00216-012-6118-0
    87. Josef Ecker. Profiling eicosanoids and phospholipids using LC-MS/MS: Principles and recent applications. Journal of Separation Science 2012, 35 (10-11) , 1227-1235. https://doi.org/10.1002/jssc.201200056
    88. Luis M. B. B. Estronca, Joao C. P. Silva, Julio L. Sampaio, Andrej Shevchenko, Paul Verkade, Alfin D. N. Vaz, Winchil L. C. Vaz, Otilia V. Vieira, . Molecular Etiology of Atherogenesis – In Vitro Induction of Lipidosis in Macrophages with a New LDL Model. PLoS ONE 2012, 7 (4) , e34822. https://doi.org/10.1371/journal.pone.0034822
    89. Xiaoli Gao, Qibin Zhang, Da Meng, Giorgis Isaac, Rui Zhao, Thomas L. Fillmore, Rosey K. Chu, Jianying Zhou, Keqi Tang, Zeping Hu, Ronald J. Moore, Richard D. Smith, Michael G. Katze, Thomas O. Metz. A reversed-phase capillary ultra-performance liquid chromatography–mass spectrometry (UPLC-MS) method for comprehensive top-down/bottom-up lipid profiling. Analytical and Bioanalytical Chemistry 2012, 402 (9) , 2923-2933. https://doi.org/10.1007/s00216-012-5773-5
    90. Harald C. Köfeler, Alexander Fauland, Gerald N. Rechberger, Martin Trötzmüller. Mass Spectrometry Based Lipidomics: An Overview of Technological Platforms. Metabolites 2012, 2 (1) , 19-38. https://doi.org/10.3390/metabo2010019
    91. Gerhard Liebisch, Max Scherer. Quantification of bioactive sphingo- and glycerophospholipid species by electrospray ionization tandem mass spectrometry in blood. Journal of Chromatography B 2012, 883-884 , 141-146. https://doi.org/10.1016/j.jchromb.2011.10.037
    92. Sophie Ayciriex, Marina Le Guédard, Nadine Camougrand, Gisèle Velours, Mario Schoene, Sebastien Leon, Valerie Wattelet-Boyer, Jean-William Dupuy, Andrej Shevchenko, Jean-Marie Schmitter, René Lessire, Jean-Jacques Bessoule, Eric Testet, . YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis. Molecular Biology of the Cell 2012, 23 (2) , 233-246. https://doi.org/10.1091/mbc.e11-07-0650
    93. Kai Schuhmann, Reinaldo Almeida, Mark Baumert, Ronny Herzog, Stefan R. Bornstein, Andrej Shevchenko. Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. Journal of Mass Spectrometry 2012, 47 (1) , 96-104. https://doi.org/10.1002/jms.2031
    94. Xue Li Guan, Markus R. Wenk. Targeted and Non-Targeted Analysis of Membrane Lipids Using Mass Spectrometry. 2012, 147-172. https://doi.org/10.1016/B978-0-12-386487-1.00008-0
    95. . References. 2012, 393-415. https://doi.org/10.1016/B978-0-9552512-4-5.50021-1
    96. Maria Carvalho, Julio L Sampaio, Wilhelm Palm, Marko Brankatschk, Suzanne Eaton, Andrej Shevchenko. Effects of diet and development on the Drosophila lipidome. Molecular Systems Biology 2012, 8 (1) https://doi.org/10.1038/msb.2012.29
    97. William W. Christie, Xianlin Han. Chromatographic analysis of sphingolipids. 2012, 125-142. https://doi.org/10.1533/9780857097866.125
    98. William W. Christie, Xianlin Han. Preparation of derivatives of fatty acids. 2012, 145-158. https://doi.org/10.1533/9780857097866.145
    99. William W. Christie, Xianlin Han. Gas chromatographic analysis of fatty acid derivatives. 2012, 159-180. https://doi.org/10.1533/9780857097866.159
    100. William W. Christie, Xianlin Han. Isolation of fatty acids and identification by spectroscopic and related techniques. 2012, 181-211. https://doi.org/10.1533/9780857097866.181
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect