Potentiometric Immunoassay with Quantum Dot LabelsClick to copy article linkArticle link copied!
Abstract
Potentiometric sensors based on polymer membrane electrodes, if properly optimized, are useful for measurements at trace levels. The expected independence of the electrochemical signal of the sample size makes them extremely attractive for measurements in small volumes. Here, we report on electrodes for the potentiometric detection of cadmium ions that reach a detection limit of 6 nM and utilize a Na+-selective electrode as pseudoreference in order to facilitate measurements in 150-μL samples. A potentiometric immunoassay of mouse IgG is performed via CdSe quantum dot labels on a secondary antibody according to a sandwich immunoassay protocol in a microtiter plate format. The CdSe quantum dots are found to be easily dissolved/oxidized in a matter of minutes with hydrogen peroxide, allowing us to maintain the pH at a near-neutral value. The potentiometric protein immunoassay exhibits a log−linear response ranging from 0.15 to 4.0 pmol of IgG, with a detection limit of <10 fmol in 150-μL sample wells.
This publication is licensed for personal use by The American Chemical Society.
†
ETH Zürich.
‡
Zürcher Hochschule Winterthur.
*
To whom correspondence should be addressed. E-mail: [email protected]; [email protected]; [email protected]; [email protected].
§
Arizona State University.
‖
Purdue University.
Experimental Section
Results and Discussion
Figure 1 Left: Design of Cd2+-selective micropipet electrodes. Right: Experimental assembly for potentiometric microtiter plate measurement.
Figure 2 Calibration curves of Cd2+-selective micropipet electrodes in (A) in 150-μL microwells used in the final bioassay and (B) in large, 100-mL sample volumes. Horizontal dotted lines: lower detection limit according to IUPAC definition. Error bars are 90% confidence intervals in different microwells of the same composition, N = 8.
Figure 3 Time response for the Cd2+-ISE in a 150-μL sample well, containing the indicated H2O2 concentrations (v/v %), upon addition of 0.18 pmol of quantum dot conjugate.
Figure 4 Immunoassay protocol used in this study. (a) Antibody is immobilized on a microwell plate, (b) the plate is blocked with BSA, (c) anti-mouse IgG antigen is incubated, (d) the secondary antibody with CdSe nanoparticle labels is bound, and (e) the label is dissolved with H2O2 and the released Cd2+ is detected with the Cd2+-ISE.
Figure 5 Potentiometric monitoring of IgG concentrations via CdSe quantum dot labels in 150-μL microvials with the sandwich immunoassay (cf. Figure 4). Dotted line: Signal obtained with BSA instead of target protein (shown as control).
Conclusions
Supporting Information Available
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgment
The authors are grateful for the National Institutes of Health (EB002189) and The Swiss National Science Foundation for financial support of this research. We thank Dr. D. Wegmann for careful reading of the manuscript.
References
This article references 27 other publications.
- 1Deqaire, M.; Degrand, C.; Limoges, B. Anal. Chem.2000, 72, 5521−5528.Google ScholarThere is no corresponding record for this reference.
- 2Liu, G.; Wang, J.; Kim, J.; Jan, M. R. Anal. Chem.2004, 76, 7126−7130.Google ScholarThere is no corresponding record for this reference.
- 3Liao, K. T.; Huang, H. J. Anal. Chim. Acta2005, 538, 159−164.Google ScholarThere is no corresponding record for this reference.
- 4Chu, X.; Fu, X.; Chen, K.; Shen, G. L.; Yu, R. Q. Biosens. Bioelectron.2005, 20, 1805−1812.Google ScholarThere is no corresponding record for this reference.
- 5Wang, J. Analyst2005, 130, 421−426.Google ScholarThere is no corresponding record for this reference.
- 6Wang, J. Stripping Analysis; VCH: New York, 1985.Google ScholarThere is no corresponding record for this reference.
- 7Authier, L.; Grossiord, C.; Brossier, P.; Limoges, B. Anal. Chem.2001, 73, 4450−4456.Google ScholarThere is no corresponding record for this reference.
- 8Wang, J.; Xu, D.; Polsky, R. J. Am. Chem. Soc.2002, 124, 4208−4209.Google ScholarThere is no corresponding record for this reference.
- 9Thomas, J. H.; Kim, S. K.; Hesketh, P. J.; Halsall, H. B.; Heineman, W. R. Anal. Chem.2004, 76, 2700−2707.Google ScholarThere is no corresponding record for this reference.
- 10Wang, J.; Liu, G.; Jan, M. R. J. Am. Chem. Soc.2004, 126, 3010−3011.Google ScholarThere is no corresponding record for this reference.
- 11Wang, J.; Rongrong, X.; Baomin, T.; Wang, J.; Renschler, C. L.; White, C. A. Anal. Chim. Acta1994, 293, 43−48.Google ScholarThere is no corresponding record for this reference.
- 12Matysik, F.-M.; Werner, G. Analyst1993, 118, 1523−1526.Google ScholarThere is no corresponding record for this reference.
- 13Vandaveer, W. R.; Fritsch, I. Anal. Chem.2002, 74, 3575−3578.Google ScholarThere is no corresponding record for this reference.
- 14Ammann, D. Ion-Selective Microelectrodes; Springer-Verlag: Berlin, 1986.Google ScholarThere is no corresponding record for this reference.
- 15Bakker, E.; Pretsch, E. Anal. Chem.2002, 74, 420A−426A.Google ScholarThere is no corresponding record for this reference.
- 16Bakker, E.; Pretsch, E. Trends Anal. Chem.2005, 24, 199−207.Google ScholarThere is no corresponding record for this reference.
- 17Malon, A.; Vigassy, T.; Bakker, E.; Pretsch, E. J. Am. Chem. Soc.2006, 128, 8154−8155.Google ScholarThere is no corresponding record for this reference.
- 18Gebauer, C. R.; Rechnitz, G. A. Anal. Biochem.1982, 124, 338−348.Google ScholarThere is no corresponding record for this reference.
- 19Fonong, T.; Rechnitz, G. A. Anal. Chem.1984, 56, 2586−2590.Google ScholarThere is no corresponding record for this reference.
- 20Boitieux, J. L.; Lemay, C.; Desmet, G.; Thomas, D. Clin. Chim. Acta1981, 113, 175−182.Google ScholarThere is no corresponding record for this reference.
- 21Konicki, R.; Rudnicka, K.; Tymecki, L. Anal. Chim. Acta2006, 577, 134−139.Google ScholarThere is no corresponding record for this reference.
- 22Sheng, D.; Meyerhoff, M. E. Electroanalysis2001, 13, 276−283.Google ScholarThere is no corresponding record for this reference.
- 23Chumbimuni-Torres, K. Y.; Zong, D.; Rubinova, N.; Xiang, Y.; Pretsch, E.; Wang, J.; Bakker, E. J. Am. Chem. Soc.2006, 128, 13673−13677.Google ScholarThere is no corresponding record for this reference.
- 24Bakker, E. Anal. Chem.1997, 69, 1061−1069.Google ScholarThere is no corresponding record for this reference.
- 25Bakker, E.; Pretsch, E.; Bühlmann, P. Anal. Chem.2000, 72, 1127−1133.Google ScholarThere is no corresponding record for this reference.
- 26Wild, D. J. The Immunoassay Handbook; Elsevier: Amsterdam, 2005.Google ScholarThere is no corresponding record for this reference.
- 27Ion, A. C.; Bakker, E.; Pretsch, E. Anal. Chim. Acta2001, 440, 71−79; 2002, 452, 329.Google ScholarThere is no corresponding record for this reference.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 73 publications.
- Qi Zhang, Lingyan Li, Zhaohui Qiao, Chunyang Lei, Yingchun Fu, Qingji Xie, Shouzhuo Yao, Yanbin Li, and Yibin Ying . Electrochemical Conversion of Fe3O4 Magnetic Nanoparticles to Electroactive Prussian Blue Analogues for Self-Sacrificial Label Biosensing of Avian Influenza Virus H5N1. Analytical Chemistry 2017, 89
(22)
, 12145-12151. https://doi.org/10.1021/acs.analchem.7b02784
- Wen-Hui Zhang, Wei Ma, and Yi-Tao Long . Redox-Mediated Indirect Fluorescence Immunoassay for the Detection of Disease Biomarkers Using Dopamine-Functionalized Quantum Dots. Analytical Chemistry 2016, 88
(10)
, 5131-5136. https://doi.org/10.1021/acs.analchem.6b00048
- Xuewei Wang, Yangang Yang, Long Li, Mingshuang Sun, Haogen Yin, and Wei Qin . A Polymeric Liquid Membrane Electrode Responsive to 3,3′,5,5′-Tetramethylbenzidine Oxidation for Sensitive Peroxidase/Peroxidase Mimetic-Based Potentiometric Biosensing. Analytical Chemistry 2014, 86
(9)
, 4416-4422. https://doi.org/10.1021/ac500281r
- Jiawang Ding, Xuewei Wang, and Wei Qin . Pulsed Galvanostatic Control of a Polymeric Membrane Ion-Selective Electrode for Potentiometric Immunoassays. ACS Applied Materials & Interfaces 2013, 5
(19)
, 9488-9493. https://doi.org/10.1021/am402245f
- Sarit S. Agasti, Monty Liong, Vanessa M. Peterson, Hakho Lee, and Ralph Weissleder . Photocleavable DNA Barcode–Antibody Conjugates Allow Sensitive and Multiplexed Protein Analysis in Single Cells. Journal of the American Chemical Society 2012, 134
(45)
, 18499-18502. https://doi.org/10.1021/ja307689w
- Wei Zhang, Woo Tien Ang, Chang-Ying Xue, and Kun-Lin Yang . Minimizing Nonspecific Protein Adsorption in Liquid Crystal Immunoassays by Using Surfactants. ACS Applied Materials & Interfaces 2011, 3
(9)
, 3496-3500. https://doi.org/10.1021/am200716x
- Dongxuan Shen and Mark E. Meyerhoff. Pyrroloquinoline Quinone-Doped Polymeric Nanospheres as Sensitive Tracer for Binding Assays. Analytical Chemistry 2009, 81
(4)
, 1564-1569. https://doi.org/10.1021/ac8023153
- Jean-Pierre Veder, Roland De Marco, Graeme Clarke, Ryan Chester, Andrew Nelson, Kathryn Prince, Ernö Pretsch and Eric Bakker . Elimination of Undesirable Water Layers in Solid-Contact Polymeric Ion-Selective Electrodes. Analytical Chemistry 2008, 80
(17)
, 6731-6740. https://doi.org/10.1021/ac800823f
- Dianping Tang,, Ruo Yuan, and, Yaqin Chai. Ultrasensitive Electrochemical Immunosensor for Clinical Immunoassay Using Thionine-Doped Magnetic Gold Nanospheres as Labels and Horseradish Peroxidase as Enhancer. Analytical Chemistry 2008, 80
(5)
, 1582-1588. https://doi.org/10.1021/ac702217m
- Apon Numnuam,, Karin Y. Chumbimuni-Torres,, Yun Xiang,, Ralph Bash,, Panote Thavarungkul,, Proespichaya Kanatharana,, Ernö Pretsch,, Joseph Wang, and, Eric Bakker. Aptamer-Based Potentiometric Measurements of Proteins Using Ion-Selective Microelectrodes. Analytical Chemistry 2008, 80
(3)
, 707-712. https://doi.org/10.1021/ac701910r
- Apon Numnuam,, Karin Y. Chumbimuni-Torres,, Yun Xiang,, Ralph Bash,, Panote Thavarungkul,, Proespichaya Kanatharana,, Ernö Pretsch,, Joseph Wang, and, Eric Bakker. Potentiometric Detection of DNA Hybridization. Journal of the American Chemical Society 2008, 130
(2)
, 410-411. https://doi.org/10.1021/ja0775467
- Bongjin Jeong, Rashida Akter, Jeonghyun Oh, Dong-Gi Lee, Chang-Geun Ahn, Jong-Soon Choi, Md. Aminur Rahman. Novel electrochemical PMI marker biosensor based on quantum dot dissolution using a double-label strategy. Scientific Reports 2022, 12
(1)
https://doi.org/10.1038/s41598-022-12444-6
- Meenakshi Choudhary, Kavita Arora. Electrochemical biosensors for early detection of cancer. 2022, 123-151. https://doi.org/10.1016/B978-0-12-823424-2.00024-7
- Ali A. Ensafi, Z. Saberi, N. Kazemifard. Functionalized nanomaterial-based medical sensors for point-of-care applications: An overview. 2022, 277-308. https://doi.org/10.1016/B978-0-12-823788-5.00018-1
- Anton Popov, Benediktas Brasiunas, Asta Kausaite-Minkstimiene, Almira Ramanaviciene. Metal Nanoparticle and Quantum Dot Tags for Signal Amplification in Electrochemical Immunosensors for Biomarker Detection. Chemosensors 2021, 9
(4)
, 85. https://doi.org/10.3390/chemosensors9040085
- Monali Mukherjee, C. Nandhini, Praveena Bhatt. Colorimetric and chemiluminescence based enzyme linked apta-sorbent assay (ELASA) for ochratoxin A detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 244 , 118875. https://doi.org/10.1016/j.saa.2020.118875
- Carola Hofmann, Barbara Kaiser, Susanne Maerkl, Axel Duerkop, Antje J. Baeumner. Cationic liposomes for generic signal amplification strategies in bioassays. Analytical and Bioanalytical Chemistry 2020, 412
(14)
, 3383-3393. https://doi.org/10.1007/s00216-020-02612-w
- Jiawang Ding, Wei Qin. Recent advances in potentiometric biosensors. TrAC Trends in Analytical Chemistry 2020, 124 , 115803. https://doi.org/10.1016/j.trac.2019.115803
- Yongjin Cao, Min Zheng, Weihua Cai, Zongcai Wang. Enzyme-loaded liposome with biocatalytic precipitation for potentiometric immunoassay of thyroid-stimulating hormone in thyroid carcinoma. Chinese Chemical Letters 2020, 31
(2)
, 463-467. https://doi.org/10.1016/j.cclet.2019.06.024
- Qunfang Li, Jing Jin, Fangming Lou, Dianping Tang. Metal sulfide quantum dots-aggregated PAMAM dendrimer for cadmium ion-selective electrode-based immunoassay of alpha-fetoprotein. Science China Chemistry 2018, 61
(6)
, 750-756. https://doi.org/10.1007/s11426-017-9211-7
- Ai-Li Sun. A potentiometric immunosensor for enterovirus 71 based on bis-MPA-COOH dendrimer-doped AgCl nanospheres with a silver ion-selective electrode. The Analyst 2018, 143
(2)
, 487-492. https://doi.org/10.1039/C7AN01305A
- B. M. Lowe, C.-K. Skylaris, N. G. Green, Y. Shibuta, T. Sakata. Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge. Nanoscale 2018, 10
(18)
, 8650-8666. https://doi.org/10.1039/C8NR00776D
- Minghua Lu, Jing Ren. Polyaspartic acid-doped CaCO3 nanospheres: A novel signal-generation tag for electrochemical immunosensing with calcium ion-selective electrode. Electrochemistry Communications 2017, 84 , 10-13. https://doi.org/10.1016/j.elecom.2017.09.015
- María Pedrero, Susana Campuzano, José M. Pingarrón. Electrochemical (Bio)sensing of Clinical Markers Using Quantum Dots. Electroanalysis 2017, 29
(1)
, 24-37. https://doi.org/10.1002/elan.201600547
- Daniel Martín-Yerga, Pablo Fanjul-Bolado, David Hernández-Santos, Agustín Costa-García. Enhanced detection of quantum dots by the magnetohydrodynamic effect for electrochemical biosensing. The Analyst 2017, 142
(9)
, 1591-1600. https://doi.org/10.1039/C7AN00086C
- Mohammad Saeid Hosseini, Mohsen Kamali. Synthesis and characterization of aspartic acid-capped CdS/ZnS quantum dots in reverse micelles and its application to Hg(II) determination. Journal of Luminescence 2015, 167 , 51-58. https://doi.org/10.1016/j.jlumin.2015.06.009
- I. Yu. Goryacheva. Contemporary trends in the development of immunochemical methods for medical analysis. Journal of Analytical Chemistry 2015, 70
(8)
, 903-914. https://doi.org/10.1134/S1061934815080092
- He Li, Junli Lu, Yu Wang, Fenyun Yi, Xindong Guo. An Ultrasensitive Immunosensor for the Detection of Carcinoembryonic Antigens Utilizing a Nb-Doped Titanium Dioxide Nanocomposite Film. Nano 2015, 10
(04)
, 1550060. https://doi.org/10.1142/S1793292015500605
- Cecylia Wardak. Solid contact cadmium ion-selective electrode based on ionic liquid and carbon nanotubes. Sensors and Actuators B: Chemical 2015, 209 , 131-137. https://doi.org/10.1016/j.snb.2014.11.107
- Nan Li, Kagan Kerman. Nanomaterial-Based Dual Detection Platforms: Optics Meets Electrochemistry. 2015, 99-120. https://doi.org/10.1007/978-4-431-55190-4_6
- Nádia F. D. Silva, Júlia M. C. S. Magalhães, M. Teresa Oliva-Teles, Cristina Delerue-Matos. A potentiometric magnetic immunoassay for rapid detection of Salmonella typhimurium. Analytical Methods 2015, 7
(9)
, 4008-4011. https://doi.org/10.1039/C5AY00053J
- So Yeon Yi, UiJin Lee, Bong Hyun Chung, Juyeon Jung. A scanometric antibody probe for facile and sensitive immunoassays. Chemical Communications 2015, 51
(42)
, 8865-8867. https://doi.org/10.1039/C5CC02838H
- Marcin Drozd, Mariusz Pietrzak, Elżbieta Malinowska. Studies on voltammetric determination of cadmium in samples containing native and digested proteins. Analytica Chimica Acta 2014, 819 , 65-70. https://doi.org/10.1016/j.aca.2014.02.001
- Yongbing Lou, Yixin Zhao, Jinxi Chen, Jun-Jie Zhu. Metal ions optical sensing by semiconductor quantum dots. J. Mater. Chem. C 2014, 2
(4)
, 595-613. https://doi.org/10.1039/C3TC31937G
- Tanji Yin, Wei Qin. Applications of nanomaterials in potentiometric sensors. TrAC Trends in Analytical Chemistry 2013, 51 , 79-86. https://doi.org/10.1016/j.trac.2013.06.009
- E. S. Speranskaya, I. Yu. Goryacheva. Fluorescent quantum dots: Synthesis, modification, and application in immunoassays. Nanotechnologies in Russia 2013, 8
(11-12)
, 685-699. https://doi.org/10.1134/S1995078013060153
- Alok Prabhu, Johan Bobacka, Ari Ivaska, Kalle Levon. Investigation of Protein Binding With All Solid‐State Ion‐Selective Electrodes. Electroanalysis 2013, 25
(8)
, 1887-1894. https://doi.org/10.1002/elan.201300071
- Roya Mohammadzadeh Kakhki. Application of nanoparticles in the potentiometric ion selective electrodes. Russian Journal of Electrochemistry 2013, 49
(5)
, 458-465. https://doi.org/10.1134/S1023193513050078
- Bing Zhang, Dianping Tang, Irina Yu. Goryacheva, Reinhard Niessner, Dietmar Knopp. Anodic‐Stripping Voltammetric Immunoassay for Ultrasensitive Detection of Low‐Abundance Proteins Using Quantum Dot Aggregated Hollow Microspheres. Chemistry – A European Journal 2013, 19
(7)
, 2496-2503. https://doi.org/10.1002/chem.201203131
- Xiaomei Pei, Bing Zhang, Juan Tang, Bingqian Liu, Wenqiang Lai, Dianping Tang. Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: A review. Analytica Chimica Acta 2013, 758 , 1-18. https://doi.org/10.1016/j.aca.2012.10.060
- Haiping Huang, Jun-Jie Zhu. The electrochemical applications of quantum dots. The Analyst 2013, 138
(20)
, 5855. https://doi.org/10.1039/c3an01034a
- Muhammad J.A. Shiddiky, Prakash H. Kithva, Darby Kozak, Matt Trau. An electrochemical immunosensor to minimize the nonspecific adsorption and to improve sensitivity of protein assays in human serum. Biosensors and Bioelectronics 2012, 38
(1)
, 132-137. https://doi.org/10.1016/j.bios.2012.05.014
- Bhim Bali Prasad, Mahavir Prasad Tiwari. Molecularly Imprinted Nanomaterial‐Based Highly Sensitive and Selective Medical Devices. 2012, 339-391. https://doi.org/10.1002/9781118523025.ch12
- J.J. Zhu, H. Huang, W. Wang, G. Liang. Preparation and Analytical Applications of Quantum Dots. 2012, 169-187. https://doi.org/10.1016/B978-0-12-381373-2.00072-7
- Utisawadee Khamjumphol, Sarayut Watchasit, Chomchai Suksai, Wanwisa Janrungroatsakul, Suthasinee Boonchiangma, Thawatchai Tuntulani, Wittaya Ngeontae. New polymeric membrane cadmium(II)-selective electrodes using tripodal amine based ionophores. Analytica Chimica Acta 2011, 704
(1-2)
, 73-86. https://doi.org/10.1016/j.aca.2011.08.005
- Hongchuan Yang, Ruo Yuan, Yaqin Chai, Li Mao, Huilan Su, Wen Jiang, Min Liang. Electrochemical immunosensor for detecting carcinoembryonic antigen using hollow Pt nanospheres-labeled multiple enzyme-linked antibodies as labels for signal amplification. Biochemical Engineering Journal 2011, 56
(3)
, 116-124. https://doi.org/10.1016/j.bej.2011.04.004
- HuangXian Ju. Sensitive biosensing strategy based on functional nanomaterials. Science China Chemistry 2011, 54
(8)
, 1202-1217. https://doi.org/10.1007/s11426-011-4339-2
- Dan Fei, Songjun Li, Christian Cimorra, Yi Ge. Advanced Nanoparticles in Medical Biosensors. 2011, 37-55. https://doi.org/10.1002/9783527635160.ch2
- Hongchuan Yang, Ruo Yuan, Yaqin Chai, Ying Zhuo. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for detection of human chorionic gonadotrophin. Colloids and Surfaces B: Biointerfaces 2011, 82
(2)
, 463-469. https://doi.org/10.1016/j.colsurfb.2010.10.003
- Huangxian Ju, Xueji Zhang, Joseph Wang. Nanomaterials for Immunosensors and Immunoassays. 2011, 425-452. https://doi.org/10.1007/978-1-4419-9622-0_15
- Jing-Jing Zhang, Ting-Ting Zheng, Fang-Fang Cheng, Jun-Jie Zhu. Electrochemical sensing for caspase 3 activity and inhibition using quantum dot functionalized carbon nanotube labels. Chem. Commun. 2011, 47
(4)
, 1178-1180. https://doi.org/10.1039/C0CC03494K
- Yen-Chun Shiang, Che-An Lin, Chih-Ching Huang, Huan-Tsung Chang. Protein A-conjugated luminescent gold nanodots as a label-free assay for immunoglobulin G in plasma. The Analyst 2011, 136
(6)
, 1177. https://doi.org/10.1039/c0an00889c
- Dhanraj Rathod, Susan Warren, Kevin Keane, Denise A. Egan, Eithne Dempsey. Evaluation of a modified carbon micromesh electrode as a new substrate for electrochemical immunosensing. Analytical Methods 2011, 3
(4)
, 799. https://doi.org/10.1039/c0ay00665c
- Qiang Ma, Xingguang Su. Recent advances and applications in QDs-based sensors. The Analyst 2011, 136
(23)
, 4883. https://doi.org/10.1039/c1an15741h
- Hong Liu, Rongjie Yu, Kanfu Peng, Hongwen Zhao, Lian Li, Xiongfei Wu. A Signal‐Amplified Electrochemical Immunosensor Based on Prussian Blue and Pt Hollow Nanospheres as Matrix. Electroanalysis 2010, 22
(21)
, 2577-2586. https://doi.org/10.1002/elan.201000172
- Anees A. Ansari, Mansour Alhoshan, Mohamad S. Alsalhi, Abdull S. Aldwayyan. Prospects of Nanotechnology in Clinical Immunodiagnostics. Sensors 2010, 10
(7)
, 6535-6581. https://doi.org/10.3390/s100706535
- Guodong Liu, Xun Mao, Anant Gurung, Meenu Baloda, Yuehe Lin, Yuqing He. Nanomaterial‐Based Electrochemical Biosensors and Bioassays. 2010, 61-88. https://doi.org/10.1002/9783527632015.ch3
- Beibei Chen, Hanyong Peng, Fei Zheng, Bin Hu, Man He, Wei Zhao, Daiwen Pang. Immunoaffinity monolithic capillary microextraction coupled with ICP-MS for immunoassay with quantum dot labels. Journal of Analytical Atomic Spectrometry 2010, 25
(11)
, 1674. https://doi.org/10.1039/c003029e
- Karin Y. Chumbimuni-Torres, Jie Wu, Corbin Clawson, Michal Galik, Anne Walter, Gerd-Uwe Flechsig, Eric Bakker, Liangfang Zhang, Joseph Wang. Amplified potentiometric transduction of DNA hybridization using ion-loaded liposomes. The Analyst 2010, 135
(7)
, 1618. https://doi.org/10.1039/c0an00198h
- Karin Y. Chumbimuni‐Torres, Percy Calvo‐Marzal, Joseph Wang. Comparison Between Potentiometric and Stripping Voltammetric Detection of Trace Metals: Measurements of Cadmium and Lead in the Presence of Thalium, Indium, and Tin. Electroanalysis 2009, 21
(17-18)
, 1939-1943. https://doi.org/10.1002/elan.200904613
- Marta Bally, Janos Vörös. Nanoscale Labels: Nanoparticles and Liposomes in The Development of High-Performance Biosensors. Nanomedicine 2009, 4
(4)
, 447-467. https://doi.org/10.2217/nnm.09.16
- Jinfen Wang, Ruo Yuan, Yaqin Chai, Bing Yin, Yang Xu, Shu Guan. An Amperometric Immunosensor Based on Layer‐by‐Layer Assembly of
L
‐Cysteine and Nanosized Prussian Blue on Gold Electrode for Determination of Human Chorionic Gonadotrophin. Electroanalysis 2009, 21
(6)
, 707-714. https://doi.org/10.1002/elan.200804468
- Nathan J. Wittenberg, Christy L. Haynes. Using nanoparticles to push the limits of detection. WIREs Nanomedicine and Nanobiotechnology 2009, 1
(2)
, 237-254. https://doi.org/10.1002/wnan.19
- Roland De Marco, Elaine Jee, Kathryn Prince, Ernö Pretsch, Eric Bakker. Synthesis and characterization of high-integrity solid-contact polymeric ion sensors. Journal of Solid State Electrochemistry 2009, 13
(1)
, 137-148. https://doi.org/10.1007/s10008-008-0600-9
- Hui Yang, Ji Ji, Yun Liu, Jilie Kong, Baohong Liu. An aptamer-based biosensor for sensitive thrombin detection. Electrochemistry Communications 2009, 11
(1)
, 38-40. https://doi.org/10.1016/j.elecom.2008.10.024
- Júlia Szűcs, Ernö Pretsch, Róbert E. Gyurcsányi. Potentiometric enzyme immunoassay using miniaturized anion-selective electrodes for detection. The Analyst 2009, 134
(8)
, 1601. https://doi.org/10.1039/b904321g
- Guijian Guan, Bianhua Liu, Zhenyang Wang, Zhongping Zhang. Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors. Sensors 2008, 8
(12)
, 8291-8320. https://doi.org/10.3390/s8128291
- Eric Bakker, Ernö Pretsch. Nanoscale potentiometry. TrAC Trends in Analytical Chemistry 2008, 27
(7)
, 612-618. https://doi.org/10.1016/j.trac.2008.04.007
- Alfredo de la Escosura-Muñiz, Adriano Ambrosi, Arben Merkoçi. Electrochemical analysis with nanoparticle-based biosystems. TrAC Trends in Analytical Chemistry 2008, 27
(7)
, 568-584. https://doi.org/10.1016/j.trac.2008.05.008
- You Wang, Hui Xu, Jianming Zhang, Guang Li. Electrochemical Sensors for Clinic Analysis. Sensors 2008, 8
(4)
, 2043-2081. https://doi.org/10.3390/s8042043
- Christina M. McGraw, Tanja Radu, Aleksandar Radu, Dermot Diamond. Evaluation of Liquid‐ and Solid‐Contact, Pb
2+
‐Selective Polymer‐Membrane Electrodes for Soil Analysis. Electroanalysis 2008, 20
(3)
, 340-346. https://doi.org/10.1002/elan.200704068
- Roland De Marco, Jean-Pierre Veder, Graeme Clarke, Andrew Nelson, Kathryn Prince, Ernö Pretsch, Eric Bakker. Evidence of a water layer in solid-contact polymeric ion sensors. Phys. Chem. Chem. Phys. 2008, 10
(1)
, 73-76. https://doi.org/10.1039/B714248J
- Robert Koncki. Recent developments in potentiometric biosensors for biomedical analysis. Analytica Chimica Acta 2007, 599
(1)
, 7-15. https://doi.org/10.1016/j.aca.2007.08.003
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Figure 1 Left: Design of Cd2+-selective micropipet electrodes. Right: Experimental assembly for potentiometric microtiter plate measurement.
Figure 2 Calibration curves of Cd2+-selective micropipet electrodes in (A) in 150-μL microwells used in the final bioassay and (B) in large, 100-mL sample volumes. Horizontal dotted lines: lower detection limit according to IUPAC definition. Error bars are 90% confidence intervals in different microwells of the same composition, N = 8.
Figure 3 Time response for the Cd2+-ISE in a 150-μL sample well, containing the indicated H2O2 concentrations (v/v %), upon addition of 0.18 pmol of quantum dot conjugate.
Figure 4 Immunoassay protocol used in this study. (a) Antibody is immobilized on a microwell plate, (b) the plate is blocked with BSA, (c) anti-mouse IgG antigen is incubated, (d) the secondary antibody with CdSe nanoparticle labels is bound, and (e) the label is dissolved with H2O2 and the released Cd2+ is detected with the Cd2+-ISE.
Figure 5 Potentiometric monitoring of IgG concentrations via CdSe quantum dot labels in 150-μL microvials with the sandwich immunoassay (cf. Figure 4). Dotted line: Signal obtained with BSA instead of target protein (shown as control).
References
This article references 27 other publications.
- 1Deqaire, M.; Degrand, C.; Limoges, B. Anal. Chem.2000, 72, 5521−5528.There is no corresponding record for this reference.
- 2Liu, G.; Wang, J.; Kim, J.; Jan, M. R. Anal. Chem.2004, 76, 7126−7130.There is no corresponding record for this reference.
- 3Liao, K. T.; Huang, H. J. Anal. Chim. Acta2005, 538, 159−164.There is no corresponding record for this reference.
- 4Chu, X.; Fu, X.; Chen, K.; Shen, G. L.; Yu, R. Q. Biosens. Bioelectron.2005, 20, 1805−1812.There is no corresponding record for this reference.
- 5Wang, J. Analyst2005, 130, 421−426.There is no corresponding record for this reference.
- 6Wang, J. Stripping Analysis; VCH: New York, 1985.There is no corresponding record for this reference.
- 7Authier, L.; Grossiord, C.; Brossier, P.; Limoges, B. Anal. Chem.2001, 73, 4450−4456.There is no corresponding record for this reference.
- 8Wang, J.; Xu, D.; Polsky, R. J. Am. Chem. Soc.2002, 124, 4208−4209.There is no corresponding record for this reference.
- 9Thomas, J. H.; Kim, S. K.; Hesketh, P. J.; Halsall, H. B.; Heineman, W. R. Anal. Chem.2004, 76, 2700−2707.There is no corresponding record for this reference.
- 10Wang, J.; Liu, G.; Jan, M. R. J. Am. Chem. Soc.2004, 126, 3010−3011.There is no corresponding record for this reference.
- 11Wang, J.; Rongrong, X.; Baomin, T.; Wang, J.; Renschler, C. L.; White, C. A. Anal. Chim. Acta1994, 293, 43−48.There is no corresponding record for this reference.
- 12Matysik, F.-M.; Werner, G. Analyst1993, 118, 1523−1526.There is no corresponding record for this reference.
- 13Vandaveer, W. R.; Fritsch, I. Anal. Chem.2002, 74, 3575−3578.There is no corresponding record for this reference.
- 14Ammann, D. Ion-Selective Microelectrodes; Springer-Verlag: Berlin, 1986.There is no corresponding record for this reference.
- 15Bakker, E.; Pretsch, E. Anal. Chem.2002, 74, 420A−426A.There is no corresponding record for this reference.
- 16Bakker, E.; Pretsch, E. Trends Anal. Chem.2005, 24, 199−207.There is no corresponding record for this reference.
- 17Malon, A.; Vigassy, T.; Bakker, E.; Pretsch, E. J. Am. Chem. Soc.2006, 128, 8154−8155.There is no corresponding record for this reference.
- 18Gebauer, C. R.; Rechnitz, G. A. Anal. Biochem.1982, 124, 338−348.There is no corresponding record for this reference.
- 19Fonong, T.; Rechnitz, G. A. Anal. Chem.1984, 56, 2586−2590.There is no corresponding record for this reference.
- 20Boitieux, J. L.; Lemay, C.; Desmet, G.; Thomas, D. Clin. Chim. Acta1981, 113, 175−182.There is no corresponding record for this reference.
- 21Konicki, R.; Rudnicka, K.; Tymecki, L. Anal. Chim. Acta2006, 577, 134−139.There is no corresponding record for this reference.
- 22Sheng, D.; Meyerhoff, M. E. Electroanalysis2001, 13, 276−283.There is no corresponding record for this reference.
- 23Chumbimuni-Torres, K. Y.; Zong, D.; Rubinova, N.; Xiang, Y.; Pretsch, E.; Wang, J.; Bakker, E. J. Am. Chem. Soc.2006, 128, 13673−13677.There is no corresponding record for this reference.
- 24Bakker, E. Anal. Chem.1997, 69, 1061−1069.There is no corresponding record for this reference.
- 25Bakker, E.; Pretsch, E.; Bühlmann, P. Anal. Chem.2000, 72, 1127−1133.There is no corresponding record for this reference.
- 26Wild, D. J. The Immunoassay Handbook; Elsevier: Amsterdam, 2005.There is no corresponding record for this reference.
- 27Ion, A. C.; Bakker, E.; Pretsch, E. Anal. Chim. Acta2001, 440, 71−79; 2002, 452, 329.There is no corresponding record for this reference.
Supporting Information
Supporting Information Available
Click to copy section linkSection link copied!Additional information as noted in text. This material is available free of charge via the Internet at http://pubs.acs.org.Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.