ACS Publications. Most Trusted. Most Cited. Most Read
Ambient Mass Spectrometry with a Handheld Mass Spectrometer at High Pressure
My Activity
    Article

    Ambient Mass Spectrometry with a Handheld Mass Spectrometer at High Pressure
    Click to copy article linkArticle link copied!

    View Author Information
    Chemistry Department, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907
    Other Access Options

    Analytical Chemistry

    Cite this: Anal. Chem. 2007, 79, 20, 7734–7739
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac071114x
    Published September 15, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The first coupling of atmospheric pressure ionization methods, electrospray ionization (ESI) and desorption electrospray ionization (DESI), to a miniature hand-held mass spectrometer is reported. The instrument employs a rectilinear ion trap (RIT) mass analyzer and is battery-operated, hand-portable, and rugged (total system:  10 kg, 0.014 m3, 75 W power consumption). The mass spectrometer was fitted with an atmospheric inlet, consisting of a 10 cm × 127 μm inner diameter stainless steel capillary tube which was used to introduce gas into the vacuum chamber at 13 mL/min. The operating pressure was 15 mTorr. Ions, generated by the atmospheric pressure ion source, were directed by the inlet along the axis of the ion trap, entering through an aperture in the dc-biased end plate, which was also operated as an ion gate. ESI and DESI sources were used to generate ions; ESI-MS analysis of an aqueous mixture of drugs yielded detection limits in the low parts-per-billion range. Signal response was linear over more than 3 orders of magnitude. Tandem mass spectrometry experiments were used to identify components of this mixture. ESI was also applied to the analysis of peptides and in this case multiply charged species were observed for compounds of molecular weight up to 1200 Da. Cocaine samples deposited or already present on different surfaces, including currency, were rapidly analyzed in situ by DESI. A geometry-independent version of the DESI ion source was also coupled to the miniature mass spectrometer. These results demonstrate that atmospheric pressure ionization can be implemented on simple portable mass spectrometry systems.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 107 publications.

    1. Nicolás M. Morato, R. Graham Cooks. Desorption Electrospray Ionization Mass Spectrometry: 20 Years. Accounts of Chemical Research 2023, 56 (18) , 2526-2536. https://doi.org/10.1021/acs.accounts.3c00382
    2. Shuang Wang, Weimin Wang, Hong Li, Yuming Xing, Keyong Hou, Haiyang Li. Rapid On-Site Detection of Illegal Drugs in Complex Matrix by Thermal Desorption Acetone-Assisted Photoionization Miniature Ion Trap Mass Spectrometer. Analytical Chemistry 2019, 91 (6) , 3845-3851. https://doi.org/10.1021/acs.analchem.8b04168
    3. Quan Yu, Qian Zhang, Xinqiong Lu, Xiang Qian, Kai Ni, and Xiaohao Wang . Developing a Vacuum Electrospray Source To Implement Efficient Atmospheric Sampling for Miniature Ion Trap Mass Spectrometer. Analytical Chemistry 2017, 89 (23) , 12938-12944. https://doi.org/10.1021/acs.analchem.7b03797
    4. Yeni P. Yung, Raveendra Wickramasinghe, Anu Vaikkinen, Tiina J. Kauppila, Igor V. Veryovkin, and Luke Hanley . Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry. Analytical Chemistry 2017, 89 (14) , 7297-7301. https://doi.org/10.1021/acs.analchem.7b01745
    5. Dalton T. Snyder, Christopher J. Pulliam, Zheng Ouyang, and R. Graham Cooks . Miniature and Fieldable Mass Spectrometers: Recent Advances. Analytical Chemistry 2016, 88 (1) , 2-29. https://doi.org/10.1021/acs.analchem.5b03070
    6. Xiao Wang, Xiaoyu Zhou, and Zheng Ouyang . Direct Analysis of Nonvolatile Chemical Compounds on Surfaces Using a Hand-Held Mass Spectrometer with Synchronized Discharge Ionization Function. Analytical Chemistry 2016, 88 (1) , 826-831. https://doi.org/10.1021/acs.analchem.5b03356
    7. Muyi He, Zhenhua Xue, Yinna Zhang, Zejian Huang, Xiang Fang, Feng Qu, Zheng Ouyang, and Wei Xu . Development and Characterizations of a Miniature Capillary Electrophoresis Mass Spectrometry System. Analytical Chemistry 2015, 87 (4) , 2236-2241. https://doi.org/10.1021/ac504868w
    8. Chien-Hsun Chen, Tsung-Chi Chen, Xiaoyu Zhou, Robert Kline-Schoder, Paul Sorensen, R. Graham Cooks, Zheng Ouyang. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems. Journal of the American Society for Mass Spectrometry 2015, 26 (2) , 240-247. https://doi.org/10.1007/s13361-014-1026-5
    9. Spencer Chadderdon, LeGrand Shumway, Andrew Powell, Ailin Li, Daniel E. Austin, Aaron R. Hawkins, Richard H. Selfridge, Stephen M. Schultz. Ion Trap Electric Field Characterization Using Slab Coupled Optical Fiber Sensors. Journal of the American Society for Mass Spectrometry 2014, 25 (9) , 1622-1627. https://doi.org/10.1007/s13361-014-0938-4
    10. Yu Xiao, Zhengzhi Ding, Chongsheng Xu, Xinhua Dai, Xiang Fang, and Chuan-Fan Ding . Novel Linear Ion Trap Mass Analyzer Built with Triangular Electrodes. Analytical Chemistry 2014, 86 (12) , 5733-5739. https://doi.org/10.1021/ac404209a
    11. Yu Xiao, Yanqiu Chu, Xing Ling, Zhengzhi Ding, Chongsheng Xu, Li Ding, Chuan-Fan Ding. Multiple Mass Analysis Using an Ion Trap Array (ITA) Mass Analyzer. Journal of the American Society for Mass Spectrometry 2013, 24 (9) , 1420-1427. https://doi.org/10.1007/s13361-013-0679-9
    12. Shun Kumano, Masuyuki Sugiyama, Masuyoshi Yamada, Kazushige Nishimura, Hideki Hasegawa, Hidetoshi Morokuma, Hiroyuki Inoue, and Yuichiro Hashimoto . Development of a Portable Mass Spectrometer Characterized by Discontinuous Sample Gas Introduction, a Low-Pressure Dielectric Barrier Discharge Ionization Source, and a Vacuumed Headspace Technique. Analytical Chemistry 2013, 85 (10) , 5033-5039. https://doi.org/10.1021/ac4002904
    13. Alexander Misharin, Konstantin Novoselov, Victor Laiko, and Vladimir M. Doroshenko . Development and Characterization of a Field-Deployable Ion-Trap Mass Spectrometer with an Atmospheric Pressure Interface. Analytical Chemistry 2012, 84 (22) , 10105-10112. https://doi.org/10.1021/ac302496n
    14. Nathaniel L. Sanders, Sameer Kothari, Guangming Huang, Gary Salazar and R. Graham Cooks. Detection of Explosives as Negative Ions Directly from Surfaces Using a Miniature Mass Spectrometer. Analytical Chemistry 2010, 82 (12) , 5313-5316. https://doi.org/10.1021/ac1008157
    15. Andrew Malcolm, Steven Wright, Richard R. A. Syms, Neil Dash, Marc-André Schwab and Alan Finlay . Miniature Mass Spectrometer Systems Based on a Microengineered Quadrupole Filter. Analytical Chemistry 2010, 82 (5) , 1751-1758. https://doi.org/10.1021/ac902349k
    16. Huanwen Chen, Gerardo Gamez, Renato Zenobi. What can we learn from ambient ionization techniques?. Journal of the American Society for Mass Spectrometry 2009, 20 (11) , 1947-1963. https://doi.org/10.1016/j.jasms.2009.07.025
    17. Hua Chen, Zhining Xia, Stig Pedersen-Bjergaard, Bo Svensmark and Frants R. Lauritsen. Analysis of Semivolatile Pharmaceuticals and Pollutants in Organic Micro Extracts Using Hot Cell Membrane Inlet Mass Spectrometry. Analytical Chemistry 2009, 81 (10) , 4010-4014. https://doi.org/10.1021/ac900437t
    18. Zheng Ouyang, Robert J. Noll and R. Graham Cooks. Handheld Miniature Ion Trap Mass Spectrometers. Analytical Chemistry 2009, 81 (7) , 2421-2425. https://doi.org/10.1021/ac900292w
    19. J. Mitchell Wells, Michael J. Roth, Adam D. Keil, John W. Grossenbacher, Dina R. Justes, Garth E. Patterson, Dennis J. Barket. Implementation of DART and DESI ionization on a fieldable mass spectrometer. Journal of the American Society for Mass Spectrometry 2008, 19 (10) , 1419-1424. https://doi.org/10.1016/j.jasms.2008.06.028
    20. Laura Luosujärvi, Ville Arvola, Markus Haapala, Jaroslav Pól, Ville Saarela, Sami Franssila, Tapio Kotiaho, Risto Kostiainen and Tiina J. Kauppila. Desorption and Ionization Mechanisms in Desorption Atmospheric Pressure Photoionization. Analytical Chemistry 2008, 80 (19) , 7460-7466. https://doi.org/10.1021/ac801186x
    21. Liang Gao, Andy Sugiarto, Jason D. Harper, R. Graham Cooks and Zheng Ouyang. Design and Characterization of a Multisource Hand-Held Tandem Mass Spectrometer. Analytical Chemistry 2008, 80 (19) , 7198-7205. https://doi.org/10.1021/ac801275x
    22. Liang Gao, R. Graham Cooks and Zheng Ouyang . Breaking the Pumping Speed Barrier in Mass Spectrometry: Discontinuous Atmospheric Pressure Interface. Analytical Chemistry 2008, 80 (11) , 4026-4032. https://doi.org/10.1021/ac800014v
    23. Thiago M.G. Cardoso, Kemilly M.P. Pinheiro, Diego P. Siqueira, Wendell K.T. Coltro. On-site analytical techniques for forensic chemistry. 2025, 495-510. https://doi.org/10.1016/B978-0-443-13907-9.00020-6
    24. Yupeng Cheng, Youjiang Liu, Zhangxu Wu, Chen Shen, Shan Li, Han Wang, Chilai Chen. Concept and simulation of a novel dual-layer linear ion trap mass analyzer for micro-electromechanical systems mass spectrometry. European Journal of Mass Spectrometry 2024, 30 (3-4) , 150-160. https://doi.org/10.1177/14690667241251792
    25. Weimin Wang, Chuting Xu, Zhe Li, Chaohui Qiu, Fuxing Xu, Chuan-Fan Ding. Development of dual-photoionization ion trap mass spectrometry and its application for direct analysis of VOCs in fruit aroma. Talanta 2024, 271 , 125673. https://doi.org/10.1016/j.talanta.2024.125673
    26. Marcos Tascon, German Augusto Gómez-Ríos. Direct sample preparation mass spectrometry analysis. 2023, 127-149. https://doi.org/10.1016/B978-0-12-822234-8.00004-4
    27. Jing Wang, Madison E. Pursell, Amanda DeVor, Olanrewaju Awoyemi, Stephen J. Valentine, Peng Li. Portable mass spectrometry system: instrumentation, applications, and path to ‘omics analysis. PROTEOMICS 2022, 22 (23-24) https://doi.org/10.1002/pmic.202200112
    28. Siyu Liu, Qian Xu, Yiling Li, Wei Xu, Yanbing Zhai. Coupling handheld liquid microjunction-surface sampling probe (hLMJ-SSP) to the miniature mass spectrometer for automated and in-situ surface analysis. Talanta 2022, 242 , 123090. https://doi.org/10.1016/j.talanta.2021.123090
    29. Chengan Guo, Zhaoyin Diao, Jianli Liu, Baokun Yang, Jian Zhang. Quantification and evaluation of ion transmission efficiency in two‐stage vacuum chamber miniature mass spectrometer. Journal of Mass Spectrometry 2022, 57 (3) https://doi.org/10.1002/jms.4816
    30. Ashley R. Stelmack, William L. Fatigante, Shahnaz Mukta, Phoebe C. Clowser, Jessica M. Holtz, Christopher C. Mulligan. Assessing the environmental ruggedness of paper spray ionization (PSI) coupled to a portable mass spectrometer operated under field conditions. International Journal of Mass Spectrometry 2022, 472 , 116776. https://doi.org/10.1016/j.ijms.2021.116776
    31. Kenyon Evans‐Nguyen, Ashley R. Stelmack, Phoebe C. Clowser, Jessica M. Holtz, Christopher C. Mulligan. FIELDABLE MASS SPECTROMETRY FOR FORENSIC SCIENCE, HOMELAND SECURITY, AND DEFENSE APPLICATIONS. Mass Spectrometry Reviews 2021, 40 (5) , 628-646. https://doi.org/10.1002/mas.21646
    32. Maureen Oliva, Dong Zhang, Paola Prada-Tiedemann, Gerardo Gamez. Laser assisted sampling vs direct desorption flowing atmospheric pressure afterglow mass spectrometry of complex polymer samples: Forensic implications for pressure sensitive tape chemical analysis. Talanta 2021, 231 , 122333. https://doi.org/10.1016/j.talanta.2021.122333
    33. Brian T. Buckley, Rachel Buckley, Cathleen L. Doherty. Moving toward a Handheld “Plasma” Spectrometer for Elemental Analysis, Putting the Power of the Atom (Ion) in the Palm of Your Hand. Molecules 2021, 26 (16) , 4761. https://doi.org/10.3390/molecules26164761
    34. Goran Mitulović. Introductory Chapter: A Tool for Aided Advanced Diagnostics and Deep View into Biological Sample. 2021https://doi.org/10.5772/intechopen.97617
    35. Scott A. Borden, Jan Palaty, Veronica Termopoli, Giorgio Famiglini, Achille Cappiello, Chris G. Gill, Pierangela Palma. MASS SPECTROMETRY ANALYSIS OF DRUGS OF ABUSE: CHALLENGES AND EMERGING STRATEGIES. Mass Spectrometry Reviews 2020, 39 (5-6) , 703-744. https://doi.org/10.1002/mas.21624
    36. A. Lorena Picone, Carlos O. Della Védova, Rosana M. Romano. Study on the detection of cocaine in Argentinian banknotes by SERS. Vibrational Spectroscopy 2020, 110 , 103136. https://doi.org/10.1016/j.vibspec.2020.103136
    37. Jung-Lee Lin, Ming-Lee Chu, Chung-Hsuan Chen. A portable multiple ionization source biological mass spectrometer. The Analyst 2020, 145 (10) , 3495-3504. https://doi.org/10.1039/D0AN00126K
    38. Maryam Yousefi‐Taemeh, Demian R. Ifa. Analysis of tetrahydrocannabinol derivative from cannabis‐infused chocolate by QuEChERS‐thin layer chromatography‐desorption electrospray ionization mass spectrometry. Journal of Mass Spectrometry 2019, 54 (10) , 834-842. https://doi.org/10.1002/jms.4436
    39. Kristen L. Fowble, Rabi A. Musah. Simultaneous imaging of latent fingermarks and detection of analytes of forensic relevance by laser ablation direct analysis in real time imaging-mass spectrometry (LADI-MS). Forensic Chemistry 2019, 15 , 100173. https://doi.org/10.1016/j.forc.2019.100173
    40. Karina F.F. Costa, Guilherme D. Brand, Tatiane S. Grobério, Jez W.B. Braga, Jorge J. Zacca. Document ink dye age estimation by direct injection-mass spectrometry and correlation analysis. Microchemical Journal 2019, 147 , 1123-1132. https://doi.org/10.1016/j.microc.2019.04.034
    41. Xiang-Yu GUO, Xue-Mei HUANG, Jun-Feng ZHAI, Hua BAI, Xiao-Xu LI, Xiao-Xiao MA, Qiang MA. Research Advances in Ambient Ionization and Miniature Mass Spectrometry. Chinese Journal of Analytical Chemistry 2019, 47 (3) , 335-346. https://doi.org/10.1016/S1872-2040(19)61145-X
    42. Chun-Yi Chen, Lin-Kai Weng, Kuan-Hong Chen, Fuu Sheu, Che-Hsin Lin. Symmetric Atmospheric Plasma Source Integrated With Electrospray Ionization for Ambient Mass Spectrometry Detections. IEEE Transactions on Plasma Science 2019, 47 (2) , 1114-1120. https://doi.org/10.1109/TPS.2018.2877653
    43. Vijay V. Parsi Sreenivas, Andreas Winkler, Stefan Harazim, Oliver G. Schmidt. Ultraviolet transmittance of SU-8 photoresist and its importance in multi-wavelength photolithography. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2018, 36 (5) https://doi.org/10.1116/1.5033996
    44. Serena Vickers, Matthew Bernier, Stephen Zambrzycki, Facundo M Fernandez, Paul N Newton, Céline Caillet. Field detection devices for screening the quality of medicines: a systematic review. BMJ Global Health 2018, 3 (4) , e000725. https://doi.org/10.1136/bmjgh-2018-000725
    45. Patrick Fedick, William Fatigante, Zachary Lawton, Adam O’Leary, Seth. Hall, Ryan Bain, Stephen Ayrton, Joseph Ludwig, Christopher Mulligan. A Low-Cost, Simplified Platform of Interchangeable, Ambient Ionization Sources for Rapid, Forensic Evidence Screening on Portable Mass Spectrometric Instrumentation. Instruments 2018, 2 (2) , 5. https://doi.org/10.3390/instruments2020005
    46. Kyle B. Lynch, Apeng Chen, Shaorong Liu. Miniaturized high-performance liquid chromatography instrumentation. Talanta 2018, 177 , 94-103. https://doi.org/10.1016/j.talanta.2017.09.016
    47. Dalton T. Snyder, Christopher J. Pulliam, R. Graham Cooks. Extending the mass range of a miniature ion trap mass spectrometer using the inverse Mathieu q scan. International Journal of Mass Spectrometry 2017, 422 , 154-161. https://doi.org/10.1016/j.ijms.2016.10.022
    48. Mahado Ismail, Mark Baumert, Derek Stevenson, John Watts, Roger Webb, Catia Costa, Fiona Robinson, Melanie Bailey. A diagnostic test for cocaine and benzoylecgonine in urine and oral fluid using portable mass spectrometry. Analytical Methods 2017, 9 (12) , 1839-1847. https://doi.org/10.1039/C6AY02006B
    49. Klara Dégardin, Aurélie Guillemain, Yves Roggo. Comprehensive Study of a Handheld Raman Spectrometer for the Analysis of Counterfeits of Solid-Dosage Form Medicines. Journal of Spectroscopy 2017, 2017 , 1-13. https://doi.org/10.1155/2017/3154035
    50. 昕宇 司. The Application of Syringe Spray in the Detection of Chemical-Biological Toxic Agent. Advances in Analytical Chemistry 2017, 07 (02) , 79-86. https://doi.org/10.12677/AAC.2017.72011
    51. Xinming Huo, Fei Tang, Xiaohua Zhang, Jin Chen, Yan Zhang, Cheng’an Guo, Xiaohao Wang. Novel control modes to improve the performance of rectilinear ion trap mass spectrometer with dual pressure chambers. Review of Scientific Instruments 2016, 87 (10) https://doi.org/10.1063/1.4963711
    52. Zhiqiang Zhu, Tao Jiang, Xiaohong Xiong, Wei Zou. A microwave plasma torch quadrupole mass spectrometer for monitoring trace levels of lead and cadmium in water. Rapid Communications in Mass Spectrometry 2016, 30 (S1) , 44-50. https://doi.org/10.1002/rcm.7636
    53. Zhenhua Xue, Yan Chen, Muyi He, Xingchuang Xiong, Xiang Fang, Yonggang Zhao, Wei Xu. Development of a miniature mass spectrometer with in-source desolvation. International Journal of Mass Spectrometry 2016, 397-398 , 1-5. https://doi.org/10.1016/j.ijms.2015.12.008
    54. Christina R Ferreira, Karen E Yannell, Alan K Jarmusch, Valentina Pirro, Zheng Ouyang, R Graham Cooks. Ambient Ionization Mass Spectrometry for Point-of-Care Diagnostics and Other Clinical Measurements. Clinical Chemistry 2016, 62 (1) , 99-110. https://doi.org/10.1373/clinchem.2014.237164
    55. D. T. Usmanov, L. C. Chen, Z. Yu, S. Yamabe, S. Sakaki, K. Hiraoka. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source. Journal of Mass Spectrometry 2015, 50 (4) , 651-661. https://doi.org/10.1002/jms.3552
    56. Adam E. O'Leary, Herbert Oberacher, Seth E. Hall, Christopher C. Mulligan. Combining a portable, tandem mass spectrometer with automated library searching – an important step towards streamlined, on-site identification of forensic evidence. Analytical Methods 2015, 7 (8) , 3331-3339. https://doi.org/10.1039/C4AY02778G
    57. Shun Kumano, Masuyuki Sugiyama, Masuyoshi Yamada, Kazushige Nishimura, Hideki Hasegawa, Hidetoshi Morokuma, Hiroyuki Inoue, Yuichiro Hashimoto. Probe Heating Method for the Analysis of Solid Samples Using a Portable Mass Spectrometer. Mass Spectrometry 2015, 4 (1) , A0038-A0038. https://doi.org/10.5702/massspectrometry.A0038
    58. Joshua S. Wiley, Zoltan Takats, Zheng Ouyang, R. Graham Cooks. Desorption Electrospray Mass Spectrometry. 2014, 307-333. https://doi.org/10.1039/9781782628026-00307
    59. Natasha Stojanovska, Mark Tahtouh, Tamsin Kelly, Alison Beavis, Shanlin Fu. Presumptive analysis of 4-methylmethcathinone (mephedrone) using Desorption Electrospray Ionisation - Mass Spectrometry (DESI-MS). Australian Journal of Forensic Sciences 2014, 46 (4) , 411-423. https://doi.org/10.1080/00450618.2013.879206
    60. Christian Berchtold, Marija Bosilkovska, Youssef Daali, Bernhard Walder, Renato Zenobi. Real‐time monitoring of exhaled drugs by mass spectrometry. Mass Spectrometry Reviews 2014, 33 (5) , 394-413. https://doi.org/10.1002/mas.21393
    61. Yuan Tian, Jessica Higgs, Ailin Li, Brandon Barney, Daniel E. Austin. How far can ion trap miniaturization go? Parameter scaling and space‐charge limits for very small cylindrical ion traps. Journal of Mass Spectrometry 2014, 49 (3) , 233-240. https://doi.org/10.1002/jms.3343
    62. Jordan F. Betz, Wei W. Yu, Yi Cheng, Ian M. White, Gary W. Rubloff. Simple SERS substrates: powerful, portable, and full of potential. Phys. Chem. Chem. Phys. 2014, 16 (6) , 2224-2239. https://doi.org/10.1039/C3CP53560F
    63. Alan K. Jarmusch, R. Graham Cooks. Emerging capabilities of mass spectrometry for natural products. Nat. Prod. Rep. 2014, 31 (6) , 730-738. https://doi.org/10.1039/C3NP70121B
    64. Melina Heller, Luciano Vitali, Mariana A. Siqueira, Alysson V. F. Sako, Marcel Piovezan, Gustavo A. Micke. Capillary Electrophoresis with UV Detection to Determine Cocaine on Circulated Banknotes. ISRN Analytical Chemistry 2013, 2013 , 1-7. https://doi.org/10.1155/2013/489705
    65. Boris Brkić, Stamatios Giannoukos, Neil France, Aurika Janulyte, Yves Zerega, Stephen Taylor. Modeling of an ion source lens system for sensitivity enhancement in a non-scanning linear ion trap. International Journal of Mass Spectrometry 2013, 353 , 36-41. https://doi.org/10.1016/j.ijms.2013.04.028
    66. R. Kenneth Marcus, Carolyn Q. Burdette, Benjamin T. Manard, Lynn X. Zhang. Ambient desorption/ionization mass spectrometry using a liquid sampling–atmospheric glow discharge (LS-APGD) ionization source. Analytical and Bioanalytical Chemistry 2013, 405 (25) , 8171-8184. https://doi.org/10.1007/s00216-013-7216-3
    67. . References. 2013, 239-262. https://doi.org/10.1201/b15509-11
    68. Don Duy Nguyen, Cheng-Hsuan Wu, Wilna J. Moree, Anne Lamsa, Marnix H. Medema, Xiling Zhao, Ronnie G. Gavilan, Marystella Aparicio, Librada Atencio, Chanaye Jackson, Javier Ballesteros, Joel Sanchez, Jeramie D. Watrous, Vanessa V. Phelan, Corine van de Wiel, Roland D. Kersten, Samina Mehnaz, René De Mot, Elizabeth A. Shank, Pep Charusanti, Harish Nagarajan, Brendan M. Duggan, Bradley S. Moore, Nuno Bandeira, Bernhard Ø. Palsson, Kit Pogliano, Marcelino Gutiérrez, Pieter C. Dorrestein. MS/MS networking guided analysis of molecule and gene cluster families. Proceedings of the National Academy of Sciences 2013, 110 (28) https://doi.org/10.1073/pnas.1303471110
    69. Md. Obaidur Rahman, Mridul Kanti Mandal, Yasuo Shida, Satoshi Ninomiya, Lee Chuin Chen, Hiroshi Nonami, Kenzo Hiraoka. Development of sheath‐flow probe electrospray ionization (SF‐PESI). Journal of Mass Spectrometry 2013, 48 (7) , 823-829. https://doi.org/10.1002/jms.3226
    70. Marie Morelato, Alison Beavis, Paul Kirkbride, Claude Roux. Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS). Forensic Science International 2013, 226 (1-3) , 10-21. https://doi.org/10.1016/j.forsciint.2013.01.011
    71. Li-Ping Li, Bao-Sheng Feng, Jian-Wang Yang, Cui-Lan Chang, Yu Bai, Hu-Wei Liu. Applications of ambient mass spectrometry in high-throughput screening. The Analyst 2013, 138 (11) , 3097. https://doi.org/10.1039/c3an00119a
    72. Leonard T. Demoranville, Tim M. Brewer. Ambient pressure thermal desorption ionization mass spectrometry for the analysis of substances of forensic interest. The Analyst 2013, 138 (18) , 5332. https://doi.org/10.1039/c3an00726j
    73. Thomas P. Forbes, Tim M. Brewer, Greg Gillen. Desorption electro-flow focusing ionization of explosives and narcotics for ambient pressure mass spectrometry. The Analyst 2013, 138 (19) , 5665. https://doi.org/10.1039/c3an01164j
    74. Kyle E. Vircks, Christopher C. Mulligan. Rapid screening of synthetic cathinones as trace residues and in authentic seizures using a portable mass spectrometer equipped with desorption electrospray ionization. Rapid Communications in Mass Spectrometry 2012, 26 (23) , 2665-2672. https://doi.org/10.1002/rcm.6390
    75. Michael S. Bereman. A Perspective on the Evolving Field of Ambient Ionization Mass Spectrometry. 2012, 1-31. https://doi.org/10.1002/9780470921920.edm093
    76. Christian Janfelt, Rune Græsbøll, Frants R. Lauritsen. Portable electrospray ionization mass spectrometry (ESI-MS) for analysis of contaminants in the field. International Journal of Environmental Analytical Chemistry 2012, 92 (4) , 397-404. https://doi.org/10.1080/03067319.2011.561341
    77. Martin R.L. Paine, Philip J. Barker, Stephen J. Blanksby. Paint Spray Mass Spectrometry for the Detection of Additives from Polymers on Conducting Surfaces. Mass Spectrometry Letters 2012, 3 (1) , 25-28. https://doi.org/10.5478/MSL.2012.3.1.025
    78. L.D. Miranda, R.J. Bell, R.T. Short, F.H.W. van Amerom, R.H. Byrne. The influence of hydrostatic pressure on gas diffusion in polymer and nano-composite membranes: Application to membrane inlet mass spectrometry. Journal of Membrane Science 2011, 385-386 , 49-56. https://doi.org/10.1016/j.memsci.2011.09.009
    79. Andrew Malcolm, Steven Wright, Richard R. A. Syms, Richard W. Moseley, Shane O'Prey, Neil Dash, Albert Pegus, Edward Crichton, Guodong Hong, Andrew S. Holmes, Alan Finlay, Peter Edwards, Simon E. Hamilton, Christopher J. Welch. A miniature mass spectrometer for liquid chromatography applications. Rapid Communications in Mass Spectrometry 2011, 25 (21) , 3281-3288. https://doi.org/10.1002/rcm.5230
    80. Ying Peng, Daniel E. Austin. New approaches to miniaturizing ion trap mass analyzers. TrAC Trends in Analytical Chemistry 2011, 30 (10) , 1560-1567. https://doi.org/10.1016/j.trac.2011.07.003
    81. Ewa Sokol, Robert J. Noll, R. Graham Cooks, Luther W. Beegle, Hugh I. Kim, Isik Kanik. Miniature mass spectrometer equipped with electrospray and desorption electrospray ionization for direct analysis of organics from solids and solutions. International Journal of Mass Spectrometry 2011, 306 (2-3) , 187-195. https://doi.org/10.1016/j.ijms.2010.10.019
    82. Paul Hendricks, Jason Duncan, Robert J. Noll, Zheng Ouyang, R. Graham Cooks. Performance of a low voltage ion trap. International Journal of Mass Spectrometry 2011, 305 (1) , 69-73. https://doi.org/10.1016/j.ijms.2011.05.009
    83. Paul V. Johnson, Robert Hodyss, Keqi Tang, William B. Brinckerhoff, Richard D. Smith. The laser ablation ion funnel: Sampling for in situ mass spectrometry on Mars. Planetary and Space Science 2011, 59 (5-6) , 387-393. https://doi.org/10.1016/j.pss.2011.01.004
    84. Santosh Soparawalla, Fatkhulla K. Tadjimukhamedov, Joshua S. Wiley, Zheng Ouyang, R. Graham Cooks. In situ analysis of agrochemical residues on fruit using ambient ionization on a handheld mass spectrometer. The Analyst 2011, 136 (21) , 4392. https://doi.org/10.1039/c1an15493a
    85. Scott Smith, Christopher Mulligan, Qingyu Song, Robert Noll, R Cooks, Zheng Ouyang. Ion Traps for Miniature, Multiplexed, and Soft-Landing Technologies. 2010, 169-247. https://doi.org/10.1201/9781420083729-c2
    86. F. M. Green, T. L. Salter, P. Stokes, I. S. Gilmore, G. O'Connor. Ambient mass spectrometry: advances and applications in forensics. Surface and Interface Analysis 2010, 42 (5) , 347-357. https://doi.org/10.1002/sia.3131
    87. Nathaniel L. Sanders, Ewa Sokol, Richard H. Perry, Guangming Huang, Robert J. Noll, Jason S. Duncan, R. Graham Cooks. Hand-Held Mass Spectrometer for Environmentally Relevant Analytes Using a Variety of Sampling and Ionization Methods. European Journal of Mass Spectrometry 2010, 16 (1) , 11-20. https://doi.org/10.1255/ejms.1036
    88. Qingyu Song, Wei Xu, Scott A. Smith, Liang Gao, William J. Chappell, R. Graham Cooks, Zheng Ouyang. Ion trap mass analysis at high pressure: an experimental characterization. Journal of Mass Spectrometry 2010, 45 (1) , 26-34. https://doi.org/10.1002/jms.1684
    89. Guangming Huang, Wei Xu, Michelle A. Visbal-Onufrak, Zheng Ouyang, R. Graham Cooks. Direct analysis of melamine in complex matrices using a handheld mass spectrometer. The Analyst 2010, 135 (4) , 705-711. https://doi.org/10.1039/B923427F
    90. Jonell N. Smith, Adam Keil, Jane Likens, Robert J. Noll, R. Graham Cooks. Facility monitoring of toxic industrial compounds in air using an automated, fieldable, miniature mass spectrometer. The Analyst 2010, 135 (5) , 994. https://doi.org/10.1039/b921162d
    91. Smitha S. Varghese, Yonggang Zhu, Timothy J. Davis, Stephen C. Trowell. FRET for lab-on-a-chip devices — current trends and future prospects. Lab on a Chip 2010, 10 (11) , 1355. https://doi.org/10.1039/b924271f
    92. Geert Van Biesen, Justin M. Wiseman, Jessica Li, Christina S. Bottaro. Desorption electrospray ionization-mass spectrometry for the detection of analytes extracted by thin-film molecularly imprinted polymers. The Analyst 2010, 135 (9) , 2237. https://doi.org/10.1039/c0an00331j
    93. L.D. Miranda, R.T. Short, F.H.W. van Amerom, R.J. Bell, R.H. Byrne. Direct coupling of a carbon nanotube membrane to a mass spectrometer: Contrasting nanotube and capillary tube introduction systems. Journal of Membrane Science 2009, 344 (1-2) , 26-31. https://doi.org/10.1016/j.memsci.2009.07.037
    94. J. Fox, R. Saini, K. Tsui, G. Verbeck. Microelectromechanical system assembled ion optics: An advance to miniaturization and assembly of electron and ion optics. Review of Scientific Instruments 2009, 80 (9) https://doi.org/10.1063/1.3222980
    95. Demian R. Ifa, Ayanna U. Jackson, Giuseppe Paglia, R. Graham Cooks. Forensic applications of ambient ionization mass spectrometry. Analytical and Bioanalytical Chemistry 2009, 394 (8) , 1995-2008. https://doi.org/10.1007/s00216-009-2659-2
    96. Zheng Ouyang, R. Graham Cooks. Miniature Mass Spectrometers. Annual Review of Analytical Chemistry 2009, 2 (1) , 187-214. https://doi.org/10.1146/annurev-anchem-060908-155229
    97. Ayanna U. Jackson, Alessandra Tata, Chunping Wu, Richard H. Perry, George Haas, Leslie West, R. Graham Cooks. Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry. The Analyst 2009, 134 (5) , 867. https://doi.org/10.1039/b823511b
    98. Nathan A. Hagan, Timothy J. Cornish, Robert S. Pilato, Kelly A. Van Houten, Miquel D. Antoine, Timothy P. Lippa, Alan F. Becknell, Plamen A. Demirev. Detection and identification of immobilized low-volatility organophosphates by desorption ionization mass spectrometry. International Journal of Mass Spectrometry 2008, 278 (2-3) , 158-165. https://doi.org/10.1016/j.ijms.2008.04.009
    99. Christian Janfelt, Nari Talaty, Christopher C. Mulligan, Adam Keil, Zheng Ouyang, R. Graham Cooks. Mass spectra of proteins and other biomolecules recorded using a handheld instrument. International Journal of Mass Spectrometry 2008, 278 (2-3) , 166-169. https://doi.org/10.1016/j.ijms.2008.04.022
    100. Farid E Ahmed. Utility of mass spectrometry for proteome ana lysis: part I. Conceptual and experimental approaches. Expert Review of Proteomics 2008, 5 (6) , 841-864. https://doi.org/10.1586/14789450.5.6.841
    Load all citations

    Analytical Chemistry

    Cite this: Anal. Chem. 2007, 79, 20, 7734–7739
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac071114x
    Published September 15, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    2643

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.