ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

A Microfluidic Pipette for Single-Cell Pharmacology

View Author Information
Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Göteborg, Sweden
* To whom correspondence should be addressed. Phone: +46 31 772 6112. Fax: +46 31 772 6120. E-mail: [email protected]
Cite this: Anal. Chem. 2010, 82, 11, 4529–4536
Publication Date (Web):May 5, 2010
https://doi.org/10.1021/ac100480f
Copyright © 2010 American Chemical Society
Article Views
2858
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (3)»

Abstract

We report on a free-standing microfluidic pipette made in poly(dimethylsiloxane) having a circulating liquid tip that generates a self-confining volume in front of the outlet channels. The method is flexible and scalable as the geometry and the size of the recirculation zone is defined by pressure, channel number, and geometry. The pipette is capable of carrying out a variety of complex fluid processing operations, such as mixing, multiplexing, or gradient generation at selected cells in cell and tissue cultures. Using an uptake assay, we show that it is possible to generate dose−response curves in situ from adherent Chinese hamster ovary cells expressing proton-activated human transient receptor potential vanilloid (hTRPV1) receptors. Using confined superfusion and cell stimulation, we could activate hTRPV1 receptors in single cells, measure the response by a patch-clamp pipette, and induce membrane bleb formation by exposing selected groups of cells to formaldehyde/dithiothreitol-containing solutions, respectively. In short, the microfluidic pipette allows for complex, contamination-free multiple-compound delivery for pharmacological screening of intact adherent cells.

Supporting Information

ARTICLE SECTIONS
Jump To

Fabrication of molds, spin-coating parameters, photographs of the devices and interfaces, finite-element simulations, and specifications of single-solution and flow-switching pipettes. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 80 publications.

  1. Sandra Burgstaller, Helmut Bischof, Thomas Rauter, Tony Schmidt, Rainer Schindl, Silke Patz, Bernhard Groschup, Severin Filser, Lucas van den Boom, Philipp Sasse, Robert Lukowski, Nikolaus Plesnila, Wolfgang F. Graier, Roland Malli. Immobilization of Recombinant Fluorescent Biosensors Permits Imaging of Extracellular Ion Signals. ACS Sensors 2021, 6 (11) , 3994-4000. https://doi.org/10.1021/acssensors.1c01369
  2. Deborah Huber, Ali Oskooei, Xavier Casadevall i Solvas, Andrew deMello, Govind V. Kaigala. Hydrodynamics in Cell Studies. Chemical Reviews 2018, 118 (4) , 2042-2079. https://doi.org/10.1021/acs.chemrev.7b00317
  3. Cong-Min Huang, Ying Zhu, Di-Qiong Jin, Ryan T. Kelly, and Qun Fang . Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip. Analytical Chemistry 2017, 89 (17) , 9009-9016. https://doi.org/10.1021/acs.analchem.7b01679
  4. David P. Taylor, Ismael Zeaf, Robert D. Lovchik, and Govind V. Kaigala . Centimeter-Scale Surface Interactions Using Hydrodynamic Flow Confinements. Langmuir 2016, 32 (41) , 10537-10544. https://doi.org/10.1021/acs.langmuir.6b02983
  5. Erik T. Jansson, Maria T. Dulay, and Richard N. Zare . Monitoring Enzymatic Reactions in Real Time Using Venturi Easy Ambient Sonic-Spray Ionization Mass Spectrometry. Analytical Chemistry 2016, 88 (12) , 6195-6198. https://doi.org/10.1021/acs.analchem.6b01246
  6. Gary A. Mabbott . Teaching Electronics and Laboratory Automation Using Microcontroller Boards. Journal of Chemical Education 2014, 91 (9) , 1458-1463. https://doi.org/10.1021/ed4006216
  7. Kai Zhang, Xin Han, Ying Li, Sharon Yalan Li, Youli Zu, Zhiqiang Wang, and Lidong Qin . Hand-Held and Integrated Single-Cell Pipettes. Journal of the American Chemical Society 2014, 136 (31) , 10858-10861. https://doi.org/10.1021/ja5053279
  8. Dongwhi Choi and Dong Sung Kim . A Zeta (ζ)-Pipet Tip to Reduce the Spontaneously Induced Electrical Charge of a Dispensed Aqueous Droplet. Langmuir 2014, 30 (23) , 6644-6648. https://doi.org/10.1021/la5018196
  9. Julien Autebert, Aditya Kashyap, Robert D. Lovchik, Emmanuel Delamarche, and Govind V. Kaigala . Hierarchical Hydrodynamic Flow Confinement: Efficient Use and Retrieval of Chemicals for Microscale Chemistry on Surfaces. Langmuir 2014, 30 (12) , 3640-3645. https://doi.org/10.1021/la500875m
  10. Peter Nemes, Ann M. Knolhoff, Stanislav S. Rubakhin, and Jonathan V. Sweedler . Single-Cell Metabolomics: Changes in the Metabolome of Freshly Isolated and Cultured Neurons. ACS Chemical Neuroscience 2012, 3 (10) , 782-792. https://doi.org/10.1021/cn300100u
  11. Ying Zhou, Yuhong Pang, and Yanyi Huang . Openly Accessible Microfluidic Liquid Handlers for Automated High-Throughput Nanoliter Cell Culture. Analytical Chemistry 2012, 84 (5) , 2576-2584. https://doi.org/10.1021/ac203469v
  12. Michelle L. Kovarik, Philip C. Gach, Douglas M. Ornoff, Yuli Wang, Joseph Balowski, Lila Farrag, and Nancy L. Allbritton . Micro Total Analysis Systems for Cell Biology and Biochemical Assays. Analytical Chemistry 2012, 84 (2) , 516-540. https://doi.org/10.1021/ac202611x
  13. G. V. Kaigala, R. D. Lovchik, U. Drechsler, and E. Delamarche . A Vertical Microfluidic Probe. Langmuir 2011, 27 (9) , 5686-5693. https://doi.org/10.1021/la2003639
  14. Ingrid Jin Schanke, Lin Xue, Karolina Spustova, Irep Gözen. Transport among protocells via tunneling nanotubes. Nanoscale 2022, 14 (29) , 10418-10427. https://doi.org/10.1039/D2NR02290G
  15. Tianze Xie, Qiang Zhang, Weifei Zhang, Shuo Feng, Jin‐Ming Lin. Inkjet‐Patterned Microdroplets as Individual Microenvironments for Adherent Single Cell Culture. Small 2022, 18 (19) , 2107992. https://doi.org/10.1002/smll.202107992
  16. David P. Taylor, Prerit Mathur, Philippe Renaud, Govind V. Kaigala. Microscale hydrodynamic confinements: shaping liquids across length scales as a toolbox in life sciences. Lab on a Chip 2022, 22 (8) , 1415-1437. https://doi.org/10.1039/D1LC01101D
  17. Bharat Sharma, Ashutosh Sharma. Microfluidics: Recent Advances Toward Lab‐on‐Chip Applications in Bioanalysis. Advanced Engineering Materials 2022, 24 (2) , 2100738. https://doi.org/10.1002/adem.202100738
  18. Anh Tong, Quang Long Pham, Paul Abatemarco, Austin Mathew, Dhruv Gupta, Siddharth Iyer, Roman Voronov. Review of Low-Cost 3D Bioprinters: State of the Market and Observed Future Trends. SLAS Technology 2021, 26 (4) , 333-366. https://doi.org/10.1177/24726303211020297
  19. Ayoub Glia, Muhammedin Deliorman, Pavithra Sukumar, Farhad K. Janahi, Bisan Samara, Ayoola T. Brimmo, Mohammad A. Qasaimeh. Herringbone Microfluidic Probe for Multiplexed Affinity‐Capture of Prostate Circulating Tumor Cells. Advanced Materials Technologies 2021, 6 (6) , 2100053. https://doi.org/10.1002/admt.202100053
  20. Qiang Zhang, Shuo Feng, Weiwei Li, Tianze Xie, Wanling Zhang, Jin‐Ming Lin. In Situ Stable Generation of Reactive Intermediates by Open Microfluidic Probe for Subcellular Free Radical Attack and Membrane Labeling. Angewandte Chemie 2021, 133 (15) , 8564-8568. https://doi.org/10.1002/ange.202016171
  21. Qiang Zhang, Shuo Feng, Weiwei Li, Tianze Xie, Wanling Zhang, Jin‐Ming Lin. In Situ Stable Generation of Reactive Intermediates by Open Microfluidic Probe for Subcellular Free Radical Attack and Membrane Labeling. Angewandte Chemie International Edition 2021, 60 (15) , 8483-8487. https://doi.org/10.1002/anie.202016171
  22. Gavin D. M. Jeffries, Shijun Xu, Tatsiana Lobovkina, Vladimir Kirejev, Florian Tusseau, Christoffer Gyllensten, Avadhesh Kumar Singh, Paul Karila, Lydia Moll, Owe Orwar. 3D micro-organisation printing of mammalian cells to generate biological tissues. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-74191-w
  23. Cristina Perpiñá-Viciano, Ali Işbilir, Aurélien Zarca, Birgit Caspar, Laura E. Kilpatrick, Stephen J. Hill, Martine J. Smit, Martin J. Lohse, Carsten Hoffmann. Kinetic Analysis of the Early Signaling Steps of the Human Chemokine Receptor CXCR4. Molecular Pharmacology 2020, 98 (2) , 72-87. https://doi.org/10.1124/mol.119.118448
  24. David P. Taylor, Govind V. Kaigala. Reconfigurable microfluidics: real-time shaping of virtual channels through hydrodynamic forces. Lab on a Chip 2020, 20 (10) , 1720-1728. https://doi.org/10.1039/D0LC00197J
  25. Yang Lin, Yuan Gao, Mengren Wu, Ran Zhou, Daayun Chung, Gabriela Caraveo, Jie Xu. Acoustofluidic stick-and-play micropump built on foil for single-cell trapping. Lab on a Chip 2019, 19 (18) , 3045-3053. https://doi.org/10.1039/C9LC00484J
  26. Aditya Kashyap, Anna Fomitcheva Khartchenko, Pushpak Pati, Maria Gabrani, Peter Schraml, Govind V. Kaigala. Quantitative microimmunohistochemistry for the grading of immunostains on tumour tissues. Nature Biomedical Engineering 2019, 3 (6) , 478-490. https://doi.org/10.1038/s41551-019-0386-3
  27. Neil Convery, Nikolaj Gadegaard. 30 years of microfluidics. Micro and Nano Engineering 2019, 2 , 76-91. https://doi.org/10.1016/j.mne.2019.01.003
  28. Sifeng Mao, Qiang Zhang, Wu Liu, Qiushi Huang, Mashooq Khan, Wanling Zhang, Caihou Lin, Katsumi Uchiyama, Jin-Ming Lin. Chemical operations on a living single cell by open microfluidics for wound repair studies and organelle transport analysis. Chemical Science 2019, 10 (7) , 2081-2087. https://doi.org/10.1039/C8SC05104F
  29. Sifeng Mao, Jin-Ming Lin. Microfluidic Chip-Based Live Single-Cell Probes. 2019,,, 217-255. https://doi.org/10.1007/978-981-32-9729-6_9
  30. Aldo Jesorka, Inga Põldsalu, Irep Gözen. Microfluidic technology for investigation of protein function in single adherent cells. 2019,,, 145-172. https://doi.org/10.1016/bs.mie.2019.07.038
  31. Shane C. Wright, Maria Consuelo Alonso Cañizal, Tobias Benkel, Katharina Simon, Christian Le Gouill, Pierre Matricon, Yoon Namkung, Viktoria Lukasheva, Gabriele M. König, Stéphane A. Laporte, Jens Carlsson, Evi Kostenis, Michel Bouvier, Gunnar Schulte, Carsten Hoffmann. FZD 5 is a Gα q -coupled receptor that exhibits the functional hallmarks of prototypical GPCRs. Science Signaling 2018, 11 (559) https://doi.org/10.1126/scisignal.aar5536
  32. Srabani Kar, Mohan Loganathan, Koyel Dey, Pallavi Shinde, Hwan-You Chang, Moeto Nagai, Tuhin Subhra Santra. Single-cell electroporation: current trends, applications and future prospects. Journal of Micromechanics and Microengineering 2018, 28 (12) , 123002. https://doi.org/10.1088/1361-6439/aae5ae
  33. Sifeng Mao, Yong Zhang, Qiang Zhang, Jin-Ming Lin, Katsumi Uchiyama. Local surface modification at precise position using a chemical pen. Talanta 2018, 187 , 246-251. https://doi.org/10.1016/j.talanta.2018.05.044
  34. Ali Oskooei, Govind Kaigala. Analyte-localization device for point-of-use processing of sub-millimetre areas on surfaces. Sensors and Actuators B: Chemical 2018, 258 , 961-969. https://doi.org/10.1016/j.snb.2017.11.130
  35. Zain Hayat, . High-Throughput Optofluidic Acquisition of Microdroplets in Microfluidic Systems. Micromachines 2018, 9 (4) , 183. https://doi.org/10.3390/mi9040183
  36. Emmanuel Delamarche, Robert D. Lovchik, Julien F. Cors, Govind V. Kaigala. Hydrodynamic Flow Confinement Using a Microfluidic Probe. 2018,,, 1-19. https://doi.org/10.1002/9783527696789.ch1
  37. Irep Gözen, Gavin Jeffries, Tatsiana Lobovkina, Emanuele Celauro, Mehrnaz Shaali, Baharan Ali Doosti, Aldo Jesorka. Single-Cell Analysis with the BioPen. 2018,,, 187-219. https://doi.org/10.1002/9783527696789.ch10
  38. Aniruddh Sarkar, Lidan Wu, Jongyoon Han. Microfluidic Probes for Single-Cell Proteomic Analysis. 2018,,, 221-248. https://doi.org/10.1002/9783527696789.ch11
  39. Julien F. Cors, Julien Autebert, Aditya Kashyap, David P. Taylor, Robert D. Lovchik, Emmanuel Delamarche, Govind V. Kaigala. Hierarchical Hydrodynamic Flow Confinement (hHFC) and Recirculation for Performing Microscale Chemistry on Surfaces. 2018,,, 21-45. https://doi.org/10.1002/9783527696789.ch2
  40. Choongbae Park, Kevin V. Christ, Kevin T. Turner. Design of Hydrodynamically Confined Microflow Devices with Numerical Modeling: Controlling Flow Envelope, Pressure, and Shear Stress. 2018,,, 47-61. https://doi.org/10.1002/9783527696789.ch3
  41. Robert D. Lovchik, David P. Taylor, Emmanuel Delamarche, Govind V. Kaigala. Hydrodynamic Flow Confinement-Assisted Immunohistochemistry from Micrometer to Millimeter Scale. 2018,,, 101-114. https://doi.org/10.1002/9783527696789.ch6
  42. Aditya Kashyap, Deborah Huber, Julien Autebert, Govind V. Kaigala. Local Nucleic Acid Analysis of Adherent Cells. 2018,,, 115-137. https://doi.org/10.1002/9783527696789.ch7
  43. Aldo Jesorka, Irep Gözen. The Multifunctional Pipette. 2018,,, 155-185. https://doi.org/10.1002/9783527696789.ch9
  44. Roland Thuenauer, Simon Nicklaus, Marco Frensch, Kevin Troendle, Josef Madl, Winfried Römer. A microfluidic biochip for locally confined stimulation of cells within an epithelial monolayer. RSC Advances 2018, 8 (14) , 7839-7846. https://doi.org/10.1039/C7RA11943G
  45. M. Zhang, J. Huang, X. Qian, S. Mi, X. Wang. Controllable picoliter pipetting using hydrophobic microfluidic valves. Review of Scientific Instruments 2017, 88 (6) , 065001. https://doi.org/10.1063/1.4984126
  46. Ali Oskooei, Govind V. Kaigala. Deep-Reaching Hydrodynamic Flow Confinement: Micrometer-Scale Liquid Localization for Open Substrates With Topographical Variations. IEEE Transactions on Biomedical Engineering 2017, 64 (6) , 1261-1269. https://doi.org/10.1109/TBME.2016.2597297
  47. Raja Vadivelu, Harshad Kamble, Muhammad Shiddiky, Nam-Trung Nguyen. Microfluidic Technology for the Generation of Cell Spheroids and Their Applications. Micromachines 2017, 8 (4) , 94. https://doi.org/10.3390/mi8040094
  48. Bennett J. Waxse, Prabuddha Sengupta, Geoffrey G. Hesketh, Jennifer Lippincott-Schwartz, Folma Buss. Myosin VI facilitates connexin 43 gap junction accretion. Journal of Cell Science 2017, 130 (5) , 827-840. https://doi.org/10.1242/jcs.199083
  49. Ayoola T. Brimmo, Mohammad A. Qasaimeh. Stagnation point flows in analytical chemistry and life sciences. RSC Advances 2017, 7 (81) , 51206-51232. https://doi.org/10.1039/C7RA11155J
  50. Sifeng Mao, Chiho Sato, Yuma Suzuki, Jianmin Yang, Hulie Zeng, Hizuru Nakajima, Ming Yang, Jin-Ming Lin, Katsumi Uchiyama. Microchemical Pen: An Open Microreactor for Region-Selective Surface Modification. ChemPhysChem 2016, 17 (20) , 3155-3159. https://doi.org/10.1002/cphc.201600857
  51. Aditya Kashyap, Julien Autebert, Emmanuel Delamarche, Govind V. Kaigala. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep29579
  52. J. F. Cors, A. Stucki, G. V. Kaigala. Hydrodynamic thermal confinement: creating thermo-chemical microenvironments on surfaces. Chemical Communications 2016, 52 (88) , 13035-13038. https://doi.org/10.1039/C6CC08018A
  53. Mohammadali Safavieh, Mohammad A. Qasaimeh, Ali Vakil, David Juncker, Thomas Gervais. Two-Aperture Microfluidic Probes as Flow Dipoles: Theory and Applications. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep11943
  54. Beata Kolesinska, Klaus Eyer, Tom Robinson, Petra S. Dittrich, Albert K. Beck, Dieter Seebach, Peter Walde. Interaction of β3/β2-Peptides, Consisting of Val-Ala-Leu Segments, with POPC Giant Unilamellar Vesicles (GUVs) and White Blood Cancer Cells (U937) - A New Type of Cell-Penetrating Peptides, and a Surprising Chain-Length Dependence of Their Vesicle- and Ce. Chemistry & Biodiversity 2015, 12 (5) , 697-732. https://doi.org/10.1002/cbdv.201500085
  55. Bingpu Zhou, Wei Xu, Cong Wang, Yeungyeung Chau, Xiping Zeng, Xi-Xiang Zhang, Rong Shen, Weijia Wen. Generation of tunable and pulsatile concentration gradients via microfluidic network. Microfluidics and Nanofluidics 2015, 18 (2) , 175-184. https://doi.org/10.1007/s10404-014-1432-9
  56. Aikeremu Ahemaiti, Holger Wigström, Alar Ainla, Gavin D.M. Jeffries, Owe Orwar, Aldo Jesorka, Kent Jardemark. Spatial characterization of a multifunctional pipette for drug delivery in hippocampal brain slices. Journal of Neuroscience Methods 2015, 241 , 132-136. https://doi.org/10.1016/j.jneumeth.2014.12.017
  57. Shotaro Yoshida, Daniela Serien, Fumiaki Tomoike, Hiroaki Onoe, Shoji Takeuchi. Fabrication of 3D Cellular Tissue Utilizing MEMS Technologies. 2015,,, 177-202. https://doi.org/10.1007/978-4-431-55297-0_10
  58. Po-Hsun Huang, Chung Yu Chan, Peng Li, Nitesh Nama, Yuliang Xie, Cheng-Hsin Wei, Yuchao Chen, Daniel Ahmed, Tony Jun Huang. A spatiotemporally controllable chemical gradient generator via acoustically oscillating sharp-edge structures. Lab on a Chip 2015, 15 (21) , 4166-4176. https://doi.org/10.1039/C5LC00868A
  59. Aniruddh Sarkar, Sarah Kolitz, Douglas A. Lauffenburger, Jongyoon Han. Microfluidic probe for single-cell analysis in adherent tissue culture. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms4421
  60. J. F. Cors, R. D. Lovchik, E. Delamarche, G. V. Kaigala. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens. Review of Scientific Instruments 2014, 85 (3) , 034301. https://doi.org/10.1063/1.4866976
  61. Dongwhi Choi, Horim Lee, Do Jin Im, In Seok Kang, Geunbae Lim, Dong Sung Kim, Kwan Hyoung Kang. Spontaneous electrical charging of droplets by conventional pipetting. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep02037
  62. Aikeremu Ahemaiti, Alar Ainla, Gavin D.M. Jeffries, Holger Wigström, Owe Orwar, Aldo Jesorka, Kent Jardemark. A multifunctional pipette for localized drug administration to brain slices. Journal of Neuroscience Methods 2013, 219 (2) , 292-296. https://doi.org/10.1016/j.jneumeth.2013.08.012
  63. Mohammad A. Qasaimeh, Sébastien G. Ricoult, David Juncker. Microfluidic probes for use in life sciences and medicine. Lab Chip 2013, 13 (1) , 40-50. https://doi.org/10.1039/C2LC40898H
  64. Daniel Ahmed, Chung Yu Chan, Sz-Chin Steven Lin, Hari S. Muddana, Nitesh Nama, Stephen J. Benkovic, Tony Jun Huang. Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. Lab Chip 2013, 13 (3) , 328-331. https://doi.org/10.1039/C2LC40923B
  65. Erik T Jansson, Carolina L Trkulja, Aikeremu Ahemaiti, Maria Millingen, Gavin DM Jeffries, Kent Jardemark, Owe Orwar. Effect of Cholesterol Depletion on the Pore Dilation of TRPV1. Molecular Pain 2013, 9 , 1744-8069-9-1. https://doi.org/10.1186/1744-8069-9-1
  66. Raphaël Trouillon, Maria I. Svensson, E. Carina Berglund, Ann-Sofie Cans, Andrew G. Ewing. Highlights of selected recent electrochemical measurements in living systems. Electrochimica Acta 2012, 84 , 84-95. https://doi.org/10.1016/j.electacta.2012.04.164
  67. Govind V. Kaigala, Robert D. Lovchik, Emmanuel Delamarche. Microfluidics in the “Open Space” for Performing Localized Chemistry on Biological Interfaces. Angewandte Chemie International Edition 2012, 51 (45) , 11224-11240. https://doi.org/10.1002/anie.201201798
  68. Alar Ainla, Gavin Jeffries, Aldo Jesorka. Hydrodynamic Flow Confinement Technology in Microfluidic Perfusion Devices. Micromachines 2012, 3 (2) , 442-461. https://doi.org/10.3390/mi3020442
  69. Waseem Khan Raja. Development path and current status of the NANIVID: a new device for cancer cell studies. Journal of Micro/Nanolithography, MEMS, and MOEMS 2012, 11 (1) , 013013. https://doi.org/10.1117/1.JMM.11.1.013013
  70. Yong Luo, Chang Liu, Yueyang Qu, Ning Fang. Towards single-cell analysis for pharmacokinetics. Bioanalysis 2012, 4 (4) , 453-463. https://doi.org/10.4155/bio.11.325
  71. Andrew M. Collins. Physical Techniques. 2012,,, 205-253. https://doi.org/10.1016/B978-0-08-097172-8.00005-9
  72. Chang-Yu Chen, Andrew M. Wo, De-Shien Jong. A microfluidic concentration generator for dose-response assays on ion channel pharmacology. Lab on a Chip 2012, 12 (4) , 794. https://doi.org/10.1039/c1lc20548j
  73. Alar Ainla, Gavin D. M. Jeffries, Ralf Brune, Owe Orwar, Aldo Jesorka. A multifunctional pipette. Lab on a Chip 2012, 12 (7) , 1255. https://doi.org/10.1039/c2lc20906c
  74. Alar Ainla, Shijun Xu, Nicolas Sanchez, Gavin D. M. Jeffries, Aldo Jesorka. Single-cell electroporation using a multifunctional pipette. Lab on a Chip 2012, 12 (22) , 4605. https://doi.org/10.1039/c2lc40563f
  75. L. Costa, A. Terekhov, D. Rajput, W. Hofmeister, D. Jowhar, G. Wright, C. Janetopoulos. Femtosecond laser machined microfluidic devices for imaging of cells during chemotaxis. Journal of Laser Applications 2011, 23 (4) , 042001. https://doi.org/10.2351/1.3614405
  76. C Patrick Collier, Michael L Simpson. Micro/nanofabricated environments for synthetic biology. Current Opinion in Biotechnology 2011, 22 (4) , 516-526. https://doi.org/10.1016/j.copbio.2011.05.002
  77. Kevin V. Christ, Kevin T. Turner. Design of hydrodynamically confined microfluidics: controlling flow envelope and pressure. Lab on a Chip 2011, 11 (8) , 1491. https://doi.org/10.1039/c0lc00416b
  78. Yujie Tanye Tang, Jichul Kim, Héctor E. López-Valdés, K. C. Brennan, Y. Sungtaek Ju. Development and characterization of a microfluidic chamber incorporating fluid ports with active suction for localized chemical stimulation of brain slices. Lab on a Chip 2011, 11 (13) , 2247. https://doi.org/10.1039/c1lc20197b
  79. Céline Billerit, Ilona Wegrzyn, Gavin D. M. Jeffries, Paul Dommersnes, Owe Orwar, Aldo Jesorka. Heat-induced formation of single giant unilamellar vesicles. Soft Matter 2011, 7 (20) , 9751. https://doi.org/10.1039/c1sm05444a
  80. Waseem Khan Raja, Bojana Gligorijevic, Jeff Wyckoff, John S. Condeelis, James Castracane. A new chemotaxis device for cell migration studies. Integrative Biology 2010, 2 (11-12) , 696. https://doi.org/10.1039/c0ib00044b

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE