ACS Publications. Most Trusted. Most Cited. Most Read
Monolithic Integration of Two-Dimensional Liquid Chromatography−Capillary Electrophoresis and Electrospray Ionization on a Microfluidic Device
My Activity
    Article

    Monolithic Integration of Two-Dimensional Liquid Chromatography−Capillary Electrophoresis and Electrospray Ionization on a Microfluidic Device
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
    Other Access OptionsSupporting Information (1)

    Analytical Chemistry

    Cite this: Anal. Chem. 2011, 83, 3, 842–849
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac102437z
    Published January 7, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A microfluidic device capable of two-dimensional reversed-phase liquid chromatography−capillary electrophoresis with integrated electrospray ionization (LC-CE-ESI) for mass spectrometry (MS) -based proteomic applications is described. Traditional instrumentation was used for the LC sample injection and delivery of the LC mobile phase. The glass microfabricated device incorporated a sample-trapping region and an LC channel packed with reversed-phase particles. Rapid electrokinetic injections of the LC effluent into the CE dimension were performed at a cross-channel intersection. The CE separation channel terminated at a corner of the square device, which functioned as an integrated electrospray tip. In addition to LC-CE-ESI, this device was used for LC-ESI without any instrumental modifications. To evaluate the system, LC-MS and LC-CE-MS analyses of protein digests were performed and compared.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional information as noted in text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 84 publications.

    1. Wen Li, Lingxiao Chaihu, Jialu Jiang, Bizhu Wu, Xuan Zheng, Rongrong Dai, Ye Tian, Yanyi Huang, Guanbo Wang, Yongfan Men. Microfluidic Platform for Time-Resolved Characterization of Protein Higher-Order Structures and Dynamics Using Top-Down Mass Spectrometry. Analytical Chemistry 2022, 94 (21) , 7520-7527. https://doi.org/10.1021/acs.analchem.2c00077
    2. Mengxia Cheng, Hong Shu, Ye Peng, Xiaoxiao Feng, Guoquan Yan, Lei Zhang, Jun Yao, Huimin Bao, Haojie Lu. Specific Analysis of α-2,3-Sialylated N-Glycan Linkage Isomers by Microchip Capillary Electrophoresis–Mass Spectrometry. Analytical Chemistry 2021, 93 (13) , 5537-5546. https://doi.org/10.1021/acs.analchem.1c00064
    3. Sebastian K. Piendl, David Geissler, Laura Weigelt, Detlev Belder. Multiple Heart-Cutting Two-Dimensional Chip-HPLC Combined with Deep-UV Fluorescence and Mass Spectrometric Detection. Analytical Chemistry 2020, 92 (5) , 3795-3803. https://doi.org/10.1021/acs.analchem.9b05206
    4. Zhichang Yang, Xiaojing Shen, Daoyang Chen, Liangliang Sun. Improved Nanoflow RPLC-CZE-MS/MS System with High Peak Capacity and Sensitivity for Nanogram Bottom-up Proteomics. Journal of Proteome Research 2019, 18 (11) , 4046-4054. https://doi.org/10.1021/acs.jproteome.9b00545
    5. Josef J. Heiland, David Geissler, Sebastian K. Piendl, Rico Warias, Detlev Belder. Supercritical-Fluid Chromatography On-Chip with Two-Photon-Excited-Fluorescence Detection for High-Speed Chiral Separations. Analytical Chemistry 2019, 91 (9) , 6134-6140. https://doi.org/10.1021/acs.analchem.9b00726
    6. Xilong Yuan and Richard D. Oleschuk . Advances in Microchip Liquid Chromatography. Analytical Chemistry 2018, 90 (1) , 283-301. https://doi.org/10.1021/acs.analchem.7b04329
    7. Kshitij Khatri, Joshua A. Klein, John R. Haserick, Deborah R. Leon, Catherine E. Costello, Mark E. McComb, and Joseph Zaia . Microfluidic Capillary Electrophoresis–Mass Spectrometry for Analysis of Monosaccharides, Oligosaccharides, and Glycopeptides. Analytical Chemistry 2017, 89 (12) , 6645-6655. https://doi.org/10.1021/acs.analchem.7b00875
    8. Carsten Lotter, Josef J. Heiland, Volkmar Stein, Michael Klimkait, Marco Queisser, and Detlev Belder . Evaluation of Pressure Stable Chip-to-Tube Fittings Enabling High-Speed Chip-HPLC with Mass Spectrometric Detection. Analytical Chemistry 2016, 88 (15) , 7481-7486. https://doi.org/10.1021/acs.analchem.6b01907
    9. Carsten Lotter, Josef J. Heiland, Sebastian Thurmann, Laura Mauritz, and Detlev Belder . HPLC-MS with Glass Chips Featuring Monolithically Integrated Electrospray Emitters of Different Geometries. Analytical Chemistry 2016, 88 (5) , 2856-2863. https://doi.org/10.1021/acs.analchem.5b04583
    10. Leila Ranjbar, Adam J. Gaudry, Michael C. Breadmore, and Robert A. Shellie . Online Comprehensive Two-Dimensional Ion Chromatography × Capillary Electrophoresis. Analytical Chemistry 2015, 87 (17) , 8673-8678. https://doi.org/10.1021/acs.analchem.5b01130
    11. William A. Black, Bradley B. Stocks, J. Scott Mellors, John R. Engen, and J. Michael Ramsey . Utilizing Microchip Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry. Analytical Chemistry 2015, 87 (12) , 6280-6287. https://doi.org/10.1021/acs.analchem.5b01179
    12. Sebastian Thurmann, Carsten Lotter, Josef J. Heiland, Bezhan Chankvetadze, and Detlev Belder . Chip-Based High-Performance Liquid Chromatography for High-Speed Enantioseparations. Analytical Chemistry 2015, 87 (11) , 5568-5576. https://doi.org/10.1021/acs.analchem.5b00210
    13. Andrea Beutner, Sven Kochmann, Jonas Josef Peter Mark, and Frank-Michael Matysik . Two-Dimensional Separation of Ionic Species by Hyphenation of Capillary Ion Chromatography × Capillary Electrophoresis-Mass Spectrometry. Analytical Chemistry 2015, 87 (6) , 3134-3138. https://doi.org/10.1021/ac504800d
    14. Erin A. Redman, Nicholas G. Batz, J. Scott Mellors, and J. Michael Ramsey . Integrated Microfluidic Capillary Electrophoresis-Electrospray Ionization Devices with Online MS Detection for the Separation and Characterization of Intact Monoclonal Antibody Variants. Analytical Chemistry 2015, 87 (4) , 2264-2272. https://doi.org/10.1021/ac503964j
    15. Nicholas G. Batz, J. Scott Mellors, Jean Pierre Alarie, and J. Michael Ramsey . Chemical Vapor Deposition of Aminopropyl Silanes in Microfluidic Channels for Highly Efficient Microchip Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry. Analytical Chemistry 2014, 86 (7) , 3493-3500. https://doi.org/10.1021/ac404106u
    16. Naomi L. Kuehnbaum, Aleshia Kormendi, and Philip Britz-McKibbin . Multisegment Injection-Capillary Electrophoresis-Mass Spectrometry: A High-Throughput Platform for Metabolomics with High Data Fidelity. Analytical Chemistry 2013, 85 (22) , 10664-10669. https://doi.org/10.1021/ac403171u
    17. J. Scott Mellors, William A. Black, Andrew G. Chambers, Jason A. Starkey, Nathan A. Lacher, and J. Michael Ramsey . Hybrid Capillary/Microfluidic System for Comprehensive Online Liquid Chromatography-Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry. Analytical Chemistry 2013, 85 (8) , 4100-4106. https://doi.org/10.1021/ac400205a
    18. Lauri Sainiemi, Tiina Sikanen, and Risto Kostiainen . Integration of Fully Microfabricated, Three-Dimensionally Sharp Electrospray Ionization Tips with Microfluidic Glass Chips. Analytical Chemistry 2012, 84 (21) , 8973-8979. https://doi.org/10.1021/ac301602b
    19. Andrew G. Chambers and J. Michael Ramsey . Microfluidic Dual Emitter Electrospray Ionization Source for Accurate Mass Measurements. Analytical Chemistry 2012, 84 (3) , 1446-1451. https://doi.org/10.1021/ac202603s
    20. Qiushui Chen, Jing Wu, Yandong Zhang, and Jin-Ming Lin . Qualitative and Quantitative Analysis of Tumor Cell Metabolism via Stable Isotope Labeling Assisted Microfluidic Chip Electrospray Ionization Mass Spectrometry. Analytical Chemistry 2012, 84 (3) , 1695-1701. https://doi.org/10.1021/ac300003k
    21. Michelle L. Kovarik, Philip C. Gach, Douglas M. Ornoff, Yuli Wang, Joseph Balowski, Lila Farrag, and Nancy L. Allbritton . Micro Total Analysis Systems for Cell Biology and Biochemical Assays. Analytical Chemistry 2012, 84 (2) , 516-540. https://doi.org/10.1021/ac202611x
    22. Jerome Workman, Jr., Barry Lavine, Ray Chrisman, and Mel Koch . Process Analytical Chemistry. Analytical Chemistry 2011, 83 (12) , 4557-4578. https://doi.org/10.1021/ac200974w
    23. Christopher Piccolo, Michael Keller, Daniel J. Czarnecki, Thomas Austin, Graham Shelver, James P. Grinias. Comparison of experimental and simulated separation performance in capillary tube-in-manifold devices. Journal of Chromatography A 2024, 1736 , 465428. https://doi.org/10.1016/j.chroma.2024.465428
    24. Takaya Miki, Sachio Yamamoto, Chenchen Liu, Kohei Torikai, Mitsuhiro Kinoshita, Nobuaki Matsumori, Takayuki Kawai. Highly sensitive two-dimensional profiling of N-linked glycans by hydrophilic interaction liquid chromatography and dual stacking capillary gel electrophoresis. Analytica Chimica Acta 2024, 1320 , 342990. https://doi.org/10.1016/j.aca.2024.342990
    25. Ziyang Guo, Yingqi Zhao, Zhao Jin, Yaran Chang, Xiayan Wang, Guangsheng Guo, Yaoyao Zhao. Monolithic 3D nanoelectrospray emitters based on a continuous fluid-assisted etching strategy for glass droplet microfluidic chip-mass spectrometry. Chemical Science 2024, 15 (20) , 7781-7788. https://doi.org/10.1039/D4SC01700E
    26. Yanting Guo, Kellye A. Cupp‐Sutton, Zhitao Zhao, Samin Anjum, Si Wu. Multidimensional separations in top–down proteomics. Analytical Science Advances 2023, 4 (5-6) , 181-203. https://doi.org/10.1002/ansa.202300016
    27. Isabel De Figueiredo, Bernard Bartenlian, Guillaume Van der Rest, Antoine Pallandre, Frédéric Halgand. Proteomics Methodologies: The Search of Protein Biomarkers Using Microfluidic Systems Coupled to Mass Spectrometry. Proteomes 2023, 11 (2) , 19. https://doi.org/10.3390/proteomes11020019
    28. Alexander J. Schmidt, Konstantin O. Zamuruyev, Michael K. LeVasseur, Stephanie Fung, Ilya M. Anishchenko, Nicholas J. Kenyon, Cristina E. Davis. Stable electrospray signal on a microfabricated glass chip with three-dimensional open edge and tiered depth geometries. Microelectronic Engineering 2023, 276 , 111997. https://doi.org/10.1016/j.mee.2023.111997
    29. Yuye Zhou, Alexander Jönsson, Drago Sticker, Guojun Zhou, Zishuo Yuan, Jörg P. Kutter, Åsa Emmer. Thiol-ene-based microfluidic chips for glycopeptide enrichment and online digestion of inflammation-related proteins osteopontin and immunoglobulin G. Analytical and Bioanalytical Chemistry 2023, 415 (6) , 1173-1185. https://doi.org/10.1007/s00216-022-04498-2
    30. Xinyang Shao, Yanyi Huang, Guanbo Wang. Microfluidic devices for protein analysis using intact and top‐down mass spectrometry. VIEW 2023, 4 (1) https://doi.org/10.1002/VIW.20220032
    31. Paige E. Sudol, Sonia Schöneich, Robert E. Synovec. Principal component analysis of comprehensive three-dimensional gas chromatography time-of-flight mass spectrometry data. Journal of Chromatography Open 2022, 2 , 100043. https://doi.org/10.1016/j.jcoa.2022.100043
    32. Alexander Stolz, Christian Neusüß. Characterisation of a new online nanoLC-CZE-MS platform and application for the glycosylation profiling of alpha-1-acid glycoprotein. Analytical and Bioanalytical Chemistry 2022, 414 (5) , 1745-1757. https://doi.org/10.1007/s00216-021-03814-6
    33. Pin-Chuan Chen, Wei-Zhe Zhang, Wei-Ru Chen, Yung-Cheng Jair, Yi-Hsin Wu, Yi-Hsin Liu, Pei-Zhen Chen, Lian-Yu Chen, Pai-Shan Chen. Engineering an integrated system with a high pressure polymeric microfluidic chip coupled to liquid chromatography-mass spectrometry (LC-MS) for the analysis of abused drugs. Sensors and Actuators B: Chemical 2022, 350 , 130888. https://doi.org/10.1016/j.snb.2021.130888
    34. Hongliang Li, Chao Guo, Qianchun Zhang, Linchun Bao, Qingfeng Zheng, Zhenpeng Guo, Yi Chen. A substantial increase of analytical throughput in capillary electrophoresis throughput by separation-interrupted sequential injections. Analytical Methods 2021, 13 (17) , 1995-2004. https://doi.org/10.1039/D1AY00223F
    35. Raphael D. Urban, Tillmann G. Fischer, Ales Charvat, Konstantin Wink, Benjamin Krafft, Stefan Ohla, Kirsten Zeitler, Bernd Abel, Detlev Belder. On-chip mass spectrometric analysis in non-polar solvents by liquid beam infrared matrix-assisted laser dispersion/ionization. Analytical and Bioanalytical Chemistry 2021, 413 (6) , 1561-1570. https://doi.org/10.1007/s00216-020-03115-4
    36. Andrea J. Peretzki, Sabine Schmidt, Elias Flachowsky, Anish Das, Renata F. Gerhardt, Detlev Belder. How electrospray potentials can disrupt droplet microfluidics and how to prevent this. Lab on a Chip 2020, 20 (23) , 4456-4465. https://doi.org/10.1039/D0LC00936A
    37. Maowei Dou, Christopher D. Chouinard, Ying Zhu, Gabe Nagy, Andrey V. Liyu, Yehia M. Ibrahim, Richard D. Smith, Ryan T. Kelly. Nanowell-mediated multidimensional separations combining nanoLC with SLIM IM-MS for rapid, high-peak-capacity proteomic analyses. Analytical and Bioanalytical Chemistry 2019, 411 (21) , 5363-5372. https://doi.org/10.1007/s00216-018-1452-5
    38. Kevin Jooß, Nico Scholz, Jens Meixner, Christian Neusüß. Heart‐cut nano‐LC–CZE–MS for the characterization of proteins on the intact level. ELECTROPHORESIS 2019, 40 (7) , 1061-1065. https://doi.org/10.1002/elps.201800411
    39. D Jonker, H W Veltkamp, R G P Sanders, S Schlautmann, K Giannasi, R M Tiggelaar, J G E Gardeniers. A factorial design approach to fracture pressure tests of microfluidic BF33 and D263T glass chips with side-port capillary connections. Journal of Micromechanics and Microengineering 2019, 29 (3) , 035011. https://doi.org/10.1088/1361-6439/aafe5b
    40. Iulia M. Lazar. Achieving Stable Electrospray Ionization Mass Spectrometry Detection from Microfluidic Chips. 2019, 225-237. https://doi.org/10.1007/978-1-4939-8964-5_15
    41. Andrea Beutner, Thomas Herl, Frank-Michael Matysik. Selectivity enhancement in capillary electrophoresis by means of two-dimensional separation or dual detection concepts. Analytica Chimica Acta 2018, 1000 https://doi.org/10.1016/j.aca.2018.11.042
    42. Sifeng Mao, Weiwei Li, Qiang Zhang, Wanling Zhang, Qiushi Huang, Jin-Ming Lin. Cell analysis on chip-mass spectrometry. TrAC Trends in Analytical Chemistry 2018, 107 , 43-59. https://doi.org/10.1016/j.trac.2018.06.019
    43. Andrea Beutner, Sebastian Karl Piendl, Stefan Wert, Frank-Michael Matysik. Methodical studies of the simultaneous determination of anions and cations by IC×CE–MS using arsenic species as model analytes. Analytical and Bioanalytical Chemistry 2018, 410 (24) , 6321-6330. https://doi.org/10.1007/s00216-018-1241-1
    44. Yun Zhang, Yan Wang, Zoran Sosic, Li Zang, Svetlana Bergelson, Wei Zhang. Identification of adeno-associated virus capsid proteins using ZipChip CE/MS. Analytical Biochemistry 2018, 555 , 22-25. https://doi.org/10.1016/j.ab.2018.06.006
    45. Stanley Chung, Jun Tian, Zhijun Tan, Jie Chen, Jongchan Lee, Michael Borys, Zheng Jian Li. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnology and Bioengineering 2018, 115 (7) , 1646-1665. https://doi.org/10.1002/bit.26587
    46. Honggu Chun. Integration of electropreconcentration and electrospray ionization in a microchip. Journal of Chromatography A 2018, 1543 , 67-72. https://doi.org/10.1016/j.chroma.2018.02.037
    47. Ling Lin, Jin-Ming Lin. Microfluidics-Mass Spectrometry for Cell Analysis. 2018, 291-311. https://doi.org/10.1007/978-981-10-5394-8_9
    48. I. Rodríguez-Ruiz, V. Babenko, S. Martínez-Rodríguez, J. A. Gavira. Protein separation under a microfluidic regime. The Analyst 2018, 143 (3) , 606-619. https://doi.org/10.1039/C7AN01568B
    49. Petr Česla, Jana Křenková. Fraction transfer process in on‐line comprehensive two‐dimensional liquid‐phase separations. Journal of Separation Science 2017, 40 (1) , 109-123. https://doi.org/10.1002/jssc.201600921
    50. Sille Štěpánová, Václav Kašička. Analysis of proteins and peptides by electromigration methods in microchips. Journal of Separation Science 2017, 40 (1) , 228-250. https://doi.org/10.1002/jssc.201600962
    51. U. Christians, J. Klawitter, J. Klepacki, J. Klawitter. The Role of Proteomics in the Study of Kidney Diseases and in the Development of Diagnostic Tools. 2017, 119-223. https://doi.org/10.1016/B978-0-12-803014-1.00004-2
    52. Leila Ranjbar, Joe P. Foley, Michael C. Breadmore. Multidimensional liquid-phase separations combining both chromatography and electrophoresis – A review. Analytica Chimica Acta 2017, 950 , 7-31. https://doi.org/10.1016/j.aca.2016.10.025
    53. Tam T.T.N. Nguyen, Nickolaj J. Petersen, Kasper D. Rand. A simple sheathless CE-MS interface with a sub-micrometer electrical contact fracture for sensitive analysis of peptide and protein samples. Analytica Chimica Acta 2016, 936 , 157-167. https://doi.org/10.1016/j.aca.2016.07.002
    54. Gerard Rozing. Recent Developments of Microchip Capillary Electrophoresis Coupled with Mass Spectrometry. 2016, 67-102. https://doi.org/10.1002/9783527693801.ch4
    55. Claudia Dietze, Claudia Hackl, Renata Gerhardt, Stephan Seim, Detlev Belder. Chip‐based electrochromatography coupled to ESI‐MS detection. ELECTROPHORESIS 2016, 37 (10) , 1345-1352. https://doi.org/10.1002/elps.201500543
    56. Sille Štěpánová, Václav Kašička. Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. Journal of Separation Science 2016, 39 (1) , 198-211. https://doi.org/10.1002/jssc.201500973
    57. Yan Deng, Liang Qiao, Natalia Gasilova, Xin-Xiang Zhang, Hubert H. Girault. Open channel-based microchip electrophoresis interfaced with mass spectrometry via electrostatic spray ionization. Chinese Chemical Letters 2016, 27 (1) , 85-87. https://doi.org/10.1016/j.cclet.2015.09.017
    58. Atsuko Naito, Jun Nagata, Hidetaka Anazawa. Two-Dimensional Chromatography. Japanese Journal of Pesticide Science 2016, 41 (2) , 245-253. https://doi.org/10.1584/jpestics.W16-24
    59. Anna Tycova, Frantisek Foret. Trends in CE ‐ MS and Applications. 2015, 629-652. https://doi.org/10.1002/9783527678129.assep039
    60. Graeme T Clark. Multidimensional separation methods. 2015, 100-114. https://doi.org/10.4155/fseb2013.14.2
    61. Xiaojun Feng, Bi-Feng Liu, Jianjun Li, Xin Liu. Advances in coupling microfluidic chips to mass spectrometry. Mass Spectrometry Reviews 2015, 34 (5) , 535-557. https://doi.org/10.1002/mas.21417
    62. James Grinias, Robert Kennedy. Evaluation of 5 μm Superficially Porous Particles for Capillary and Microfluidic LC Columns. Chromatography 2015, 2 (3) , 502-514. https://doi.org/10.3390/chromatography2030502
    63. Paul D. Rainville, James P. Murphy, Mike Tomany, Ian D. Wilson, Norman W. Smith, Christopher Evans, Jonathan Kheler, Chester Bowen, Robert S. Plumb, Jeremy K. Nicholson. An integrated ceramic, micro-fluidic device for the LC/MS/MS analysis of pharmaceuticals in plasma. The Analyst 2015, 140 (16) , 5546-5556. https://doi.org/10.1039/C5AN00646E
    64. Sebastian Thurmann, Laura Mauritz, Christian Heck, Detlev Belder. High-performance liquid chromatography on glass chips using precisely defined porous polymer monoliths as particle retaining elements. Journal of Chromatography A 2014, 1370 , 33-39. https://doi.org/10.1016/j.chroma.2014.10.008
    65. S. Thürmann, D. Belder. Phase-optimized chip-based liquid chromatography. Analytical and Bioanalytical Chemistry 2014, 406 (26) , 6599-6606. https://doi.org/10.1007/s00216-014-8087-y
    66. Xuefei Zhong, Zichuan Zhang, Shan Jiang, Lingjun Li. Recent advances in coupling capillary electrophoresis‐based separation techniques to ESI and MALDI‐MS. ELECTROPHORESIS 2014, 35 (9) , 1214-1225. https://doi.org/10.1002/elps.201300451
    67. S. Thurmann, A. Dittmar, D. Belder. A low pressure on-chip injection strategy for high-performance chip-based chromatography. Journal of Chromatography A 2014, 1340 , 59-67. https://doi.org/10.1016/j.chroma.2014.03.009
    68. Chad I. Rogers, Joseph B. Oxborrow, Ryan R. Anderson, Long-Fang Tsai, Gregory P. Nordin, Adam T. Woolley. Microfluidic valves made from polymerized polyethylene glycol diacrylate. Sensors and Actuators B: Chemical 2014, 191 , 438-444. https://doi.org/10.1016/j.snb.2013.10.008
    69. Václav Kašička. Recent developments in capillary and microchip electroseparations of peptides (2011–2013). ELECTROPHORESIS 2014, 35 (1) , 69-95. https://doi.org/10.1002/elps.201300331
    70. Xiangwei He, Qiushui Chen, Yandong Zhang, Jin-Ming Lin. Recent advances in microchip-mass spectrometry for biological analysis. TrAC Trends in Analytical Chemistry 2014, 53 , 84-97. https://doi.org/10.1016/j.trac.2013.09.013
    71. Jessica S. Creamer, Nathan J. Oborny, Susan M. Lunte. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis. Anal. Methods 2014, 6 (15) , 5427-5449. https://doi.org/10.1039/C4AY00447G
    72. Clara Ibáñez, Virginia García-Cañas, Alberto Valdés, Carolina Simó. Novel MS-based approaches and applications in food metabolomics. TrAC Trends in Analytical Chemistry 2013, 52 , 100-111. https://doi.org/10.1016/j.trac.2013.06.015
    73. Xiangtang Li, Dan Xiao, Xiao-Ming Ou, Cassandra McCullum, Yi-Ming Liu. A microchip electrophoresis-mass spectrometric platform for fast separation and identification of enantiomers employing the partial filling technique. Journal of Chromatography A 2013, 1318 , 251-256. https://doi.org/10.1016/j.chroma.2013.10.020
    74. Shu-Ling Lin, Tzuen-Yeuan Lin, Ming-Ren Fuh. Recent Developments in Microfluidic Chip-Based Separation Devices Coupled to MS for Bioanalysis. Bioanalysis 2013, 5 (20) , 2567-2580. https://doi.org/10.4155/bio.13.196
    75. Efthimia Papastavros, Cong Bi, Erika L Pfaunmiller, David S Hage. LC techniques for bioanalysis: recent trends and developments. 2013, 50-64. https://doi.org/10.4155/ebo.13.410
    76. Yong Zeng, Tanyu Wang. Quantitative microfluidic biomolecular analysis for systems biology and medicine. Analytical and Bioanalytical Chemistry 2013, 405 (17) , 5743-5758. https://doi.org/10.1007/s00216-013-6930-1
    77. Xiangtang Li, Shulin Zhao, Yi-Ming Liu. Evaluation of a microchip electrophoresis-mass spectrometry platform deploying a pressure-driven make-up flow. Journal of Chromatography A 2013, 1285 , 159-164. https://doi.org/10.1016/j.chroma.2013.02.031
    78. Dan Gao, Hongxia Liu, Yuyang Jiang, Jin-Ming Lin. Recent advances in microfluidics combined with mass spectrometry: technologies and applications. Lab on a Chip 2013, 13 (17) , 3309. https://doi.org/10.1039/c3lc50449b
    79. Peter Pruim, Peter J. Schoenmakers, Wim Th. Kok. Microfluidic Pressure Driven Liquid Chromatography of Biologically Relevant Samples. Chromatographia 2012, 75 (21-22) , 1225-1234. https://doi.org/10.1007/s10337-012-2328-z
    80. Stefan Ohla, Detlev Belder. Chip-based separation devices coupled to mass spectrometry. Current Opinion in Chemical Biology 2012, 16 (3-4) , 453-459. https://doi.org/10.1016/j.cbpa.2012.05.180
    81. Dominique J.D. Vanhoutte, Gabriel Vivó-Truyols, Peter J. Schoenmakers. Pareto-optimality study into the comparison of the separation potential of comprehensive two-dimensional liquid chromatography in the column and spatial modes. Journal of Chromatography A 2012, 1235 , 39-48. https://doi.org/10.1016/j.chroma.2012.01.059
    82. Václav Kašička. Recent developments in CE and CEC of peptides (2009–2011). ELECTROPHORESIS 2012, 33 (1) , 48-73. https://doi.org/10.1002/elps.201100419
    83. Jörg P. Kutter. Liquid phase chromatography on microchips. Journal of Chromatography A 2012, 1221 , 72-82. https://doi.org/10.1016/j.chroma.2011.10.044
    84. Lisa C. Taylor, Teresa B. Kirchner, Nickolay V. Lavrik, Michael J. Sepaniak. Surface enhanced Raman spectroscopy for microfluidic pillar arrayed separation chips. The Analyst 2012, 137 (4) , 1005-1012. https://doi.org/10.1039/C2AN16239C

    Analytical Chemistry

    Cite this: Anal. Chem. 2011, 83, 3, 842–849
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac102437z
    Published January 7, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2434

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.