ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

HILIC-UPLC-MS for Exploratory Urinary Metabolic Profiling in Toxicological Studies

View Author Information
Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K., Department of Clinical Pharmacology, Drug Metabolism and Pharmacokinetics, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K., Department of Chemistry and Laboratory of Forensic Medicine and Toxicology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124 Greece, and Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
* To whom correspondence should be addressed. E-mail: [email protected]
†Imperial College London.
∥Faculty of Medicine, Aristotle University of Thessaloniki.
‡AstraZeneca.
§Department of Chemistry, Aristotle University of Thessaloniki.
⊥Waters Corporation.
Cite this: Anal. Chem. 2011, 83, 1, 382–390
Publication Date (Web):December 13, 2010
https://doi.org/10.1021/ac102523q
Copyright © 2010 American Chemical Society

Article Views

4833

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Abstract Image

Hydrophilic interaction ultra performance liquid chromatography (HILIC-UPLC) permits the analysis of highly polar metabolites, providing complementary information to reversed-phase (RP) chromatography. HILIC-UPLC-TOF-MS was investigated for the global metabolic profiling of rat urine samples generated in an experimental hepatotoxicity study of galactosamine (galN) and the concomitant investigation of the protective effect of glycine. Within-run repeatability and stability over a large sample batch (>200 samples, 60 h run-time) was assessed through the repeat analysis of a quality control sample. Following system equilibration, excellent repeatability was observed in terms of retention time (CV < 1.7%), signal intensity (CV < 14%), and mass variability (<0.005 amu), providing a good measure of reproducibility. Classification of urinary metabolic profiles according to treatment was observed, with significant changes in specific metabolites after galN exposure, including increased urocanic acid, N-acetylglucosamine, and decreased 2-oxoglutarate. A novel finding from this HILIC-UPLC-MS approach was elevated urinary tyramine in galN-treated rats, reflecting disturbed amino acid metabolism. These results show HILIC-UPLC-MS to be a promising method for global metabolic profiling, demonstrating high within-run repeatability, even over an extended run time. Retention of polar endogenous analytes and xenobiotic metabolites was improved compared with RP studies, including galN, N-acetylglucosamine, oxoglutarate, and urocanic acid, enhancing metabolome coverage and potentially improving biomarker discovery.

Supporting Information

ARTICLE SECTIONS
Jump To

Additional information as noted in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 131 publications.

  1. Virag Sagi-Kiss, Yufeng Li, Matthew R. Carey, Sarah J. Grover, Karsten Siems, Francesca Cirulli, Alessandra Berry, Chiara Musillo, Ian D. Wilson, Elizabeth J. Want, Jacob G. Bundy. Ion-Pairing Chromatography and Amine Derivatization Provide Complementary Approaches for the Targeted LC-MS Analysis of the Polar Metabolome. Journal of Proteome Research 2022, 21 (6) , 1428-1437. https://doi.org/10.1021/acs.jproteome.2c00030
  2. Matthew R. Lewis, Jake T. M. Pearce, Konstantina Spagou, Martin Green, Anthony C. Dona, Ada H. Y. Yuen, Mark David, David J. Berry, Katie Chappell, Verena Horneffer-van der Sluis, Rachel Shaw, Simon Lovestone, Paul Elliott, John Shockcor, John C. Lindon, Olivier Cloarec, Zoltan Takats, Elaine Holmes, and Jeremy K. Nicholson . Development and Application of Ultra-Performance Liquid Chromatography-TOF MS for Precision Large Scale Urinary Metabolic Phenotyping. Analytical Chemistry 2016, 88 (18) , 9004-9013. https://doi.org/10.1021/acs.analchem.6b01481
  3. Frances Jackson, Nancy Georgakopoulou, Manuja Kaluarachchi, Michael Kyriakides, Nicholas Andreas, Natalia Przysiezna, Matthew J. Hyde, Neena Modi, Jeremy K. Nicholson, Anisha Wijeyesekera, and Elaine Holmes . Development of a Pipeline for Exploratory Metabolic Profiling of Infant Urine. Journal of Proteome Research 2016, 15 (9) , 3432-3440. https://doi.org/10.1021/acs.jproteome.6b00234
  4. Ruben t’Kindt, Eef D. Telenga, Lucie Jorge, Antoon J. M. Van Oosterhout, Pat Sandra, Nick H. T. Ten Hacken, and Koen Sandra . Profiling over 1500 Lipids in Induced Lung Sputum and the Implications in Studying Lung Diseases. Analytical Chemistry 2015, 87 (9) , 4957-4964. https://doi.org/10.1021/acs.analchem.5b00732
  5. Panagiotis A. Vorkas, Giorgis Isaac, Muzaffar A. Anwar, Alun H. Davies, Elizabeth J. Want, Jeremy K. Nicholson, and Elaine Holmes . Untargeted UPLC-MS Profiling Pipeline to Expand Tissue Metabolome Coverage: Application to Cardiovascular Disease. Analytical Chemistry 2015, 87 (8) , 4184-4193. https://doi.org/10.1021/ac503775m
  6. Panagiotis A. Vorkas, Joseph Shalhoub, Giorgis Isaac, Elizabeth J. Want, Jeremy K. Nicholson, Elaine Holmes, and Alun H. Davies . Metabolic Phenotyping of Atherosclerotic Plaques Reveals Latent Associations between Free Cholesterol and Ceramide Metabolism in Atherogenesis. Journal of Proteome Research 2015, 14 (3) , 1389-1399. https://doi.org/10.1021/pr5009898
  7. Giuseppe Paglia, Jonathan P. Williams, Lochana Menikarachchi, J. Will Thompson, Richard Tyldesley-Worster, Skarphédinn Halldórsson, Ottar Rolfsson, Arthur Moseley, David Grant, James Langridge, Bernhard O. Palsson, and Giuseppe Astarita . Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Analytical Chemistry 2014, 86 (8) , 3985-3993. https://doi.org/10.1021/ac500405x
  8. Ai-hua Zhang, Hui Sun, Ying Han, Guang-li Yan, Ye Yuan, Gao-chen Song, Xiao-xia Yuan, Ning Xie, and Xi-jun Wang . Ultraperformance Liquid Chromatography–Mass Spectrometry Based Comprehensive Metabolomics Combined with Pattern Recognition and Network Analysis Methods for Characterization of Metabolites and Metabolic Pathways from Biological Data Sets. Analytical Chemistry 2013, 85 (15) , 7606-7612. https://doi.org/10.1021/ac401793d
  9. Hélène Blasco, Philippe Corcia, Pierre-François Pradat, Cinzia Bocca, Paul H. Gordon, Charlotte Veyrat-Durebex, Sylvie Mavel, Lydie Nadal-Desbarats, Caroline Moreau, David Devos, Christian R. Andres, and Patrick Emond . Metabolomics in Cerebrospinal Fluid of Patients with Amyotrophic Lateral Sclerosis: An Untargeted Approach via High-Resolution Mass Spectrometry. Journal of Proteome Research 2013, 12 (8) , 3746-3754. https://doi.org/10.1021/pr400376e
  10. Anthony A. O’Kane, Olivier P. Chevallier, Stewart F. Graham, Christopher T. Elliott, and Mark H. Mooney . Metabolomic Profiling of In Vivo Plasma Responses to Dioxin-Associated Dietary Contaminant Exposure in Rats: Implications for Identification of Sources of Animal and Human Exposure. Environmental Science & Technology 2013, 47 (10) , 5409-5418. https://doi.org/10.1021/es305345u
  11. Stewart F. Graham, Olivier P. Chevallier, Dominic Roberts, Christian Hölscher, Christopher T. Elliott, and Brian D. Green . Investigation of the Human Brain Metabolome to Identify Potential Markers for Early Diagnosis and Therapeutic Targets of Alzheimer’s Disease. Analytical Chemistry 2013, 85 (3) , 1803-1811. https://doi.org/10.1021/ac303163f
  12. Thomas L. Chester . Recent Developments in High-Performance Liquid Chromatography Stationary Phases. Analytical Chemistry 2013, 85 (2) , 579-589. https://doi.org/10.1021/ac303180y
  13. Jasmina Saric, Elizabeth J. Want, Urs Duthaler, Matthew Lewis, Jennifer Keiser, John P. Shockcor, Gordon A. Ross, Jeremy K. Nicholson, Elaine Holmes, and Marina F. M. Tavares . Systematic Evaluation of Extraction Methods for Multiplatform-Based Metabotyping: Application to the Fasciola hepatica Metabolome. Analytical Chemistry 2012, 84 (16) , 6963-6972. https://doi.org/10.1021/ac300586m
  14. Muireann Coen, Françoise Goldfain-Blanc, Gaëlle Rolland-Valognes, Bernard Walther, Donald G. Robertson, Elaine Holmes, John C. Lindon, and Jeremy K. Nicholson . Pharmacometabonomic Investigation of Dynamic Metabolic Phenotypes Associated with Variability in Response to Galactosamine Hepatotoxicity. Journal of Proteome Research 2012, 11 (4) , 2427-2440. https://doi.org/10.1021/pr201161f
  15. Xijun Wang, Bo Yang, Hui Sun, and Aihua Zhang . Pattern Recognition Approaches and Computational Systems Tools for Ultra Performance Liquid Chromatography–Mass Spectrometry-Based Comprehensive Metabolomic Profiling and Pathways Analysis of Biological Data Sets. Analytical Chemistry 2012, 84 (1) , 428-439. https://doi.org/10.1021/ac202828r
  16. Helen Gika, Georgios Theodoridis, Robert S Plumb, Ian D Wilson. Metabolic phenotyping (metabonomics/metabolomics) by liquid chromatography-mass spectrometry. 2023, 403-429. https://doi.org/10.1016/B978-0-323-99969-4.00019-X
  17. Bart’s Jongers, An Hotterbeekx, Kenny Bielen, Philippe Vervliet, Jan Boddaert, Christine Lammens, Erik Fransen, Geert Baggerman, Adrian Covaci, Herman Goossens, Surbhi Malhotra-Kumar, Philippe G Jorens, Samir Kumar-Singh. Identification of Potential Urinary Metabolite Biomarkers of Pseudomonas aeruginosa Ventilator-Associated Pneumonia. Biomarker Insights 2022, 17 , 117727192210991. https://doi.org/10.1177/11772719221099131
  18. Yuanyuan Xu, Yuan Gao, Zhong Chen, Guochun Zhao, Jiming Liu, Xin Wang, Shilun Gao, Duanguang Zhang, Liming Jia. Metabolomics analysis of the soapberry (Sapindus mukorossi Gaertn.) pericarp during fruit development and ripening based on UHPLC-HRMS. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-91143-0
  19. Ole Lagatie, Emmanuel Njumbe Ediage, Dirk Van Roosbroeck, Stijn Van Asten, Ann Verheyen, Linda Batsa Debrah, Alex Debrah, Maurice R. Odiere, Ruben T’Kindt, Emmie Dumont, Koen Sandra, Lieve Dillen, Tom Verhaeghe, Rob Vreeken, Filip Cuyckens, Lieven J. Stuyver, . Multimodal biomarker discovery for active Onchocerca volvulus infection. PLOS Neglected Tropical Diseases 2021, 15 (11) , e0009999. https://doi.org/10.1371/journal.pntd.0009999
  20. Yin Zhang, Heru Zhao, Bin Liu, Haiyang Shu, Lulu Zhang, Mei Bao, Wenjun Yi, Yong Tan, Xinyu Ji, Chi Zhang, Ning Zhao, Guoming Pang, Dan He, Yuexi Wang, Li Li, Jianfeng Yi, Cheng Lu. Human serum metabolomic analysis reveals progression for high blood pressure in type 2 diabetes mellitus. BMJ Open Diabetes Research & Care 2021, 9 (1) , e002337. https://doi.org/10.1136/bmjdrc-2021-002337
  21. Artemis Lioupi, Maria Marinaki, Christina Virgiliou, Helen Gika, Ian Wilson, Georgios Theodoridis. State-of-the-art in LC–MS Approaches for Probing the Polar Metabolome. 2021, 1-26. https://doi.org/10.1039/9781839163524-00001
  22. Billy J. Molloy, Adam King, Lauren G. Mullin, Lee A. Gethings, Robert Riley, Robert S. Plumb, Ian D. Wilson. Rapid determination of the pharmacokinetics and metabolic fate of gefitinib in the mouse using a combination of UPLC/MS/MS, UPLC/QToF/MS, and ion mobility (IM)-enabled UPLC/QToF/MS. Xenobiotica 2021, 51 (4) , 434-446. https://doi.org/10.1080/00498254.2020.1859643
  23. Xiaoli Wang, Qiaoyu He, Qian Chen, Beibei Xue, Jia Wang, Tao Wang, Hong Liu, Xiaopeng Chen. Network pharmacology combined with metabolomics to study the mechanism of Shenyan Kangfu Tablets in the treatment of diabetic nephropathy. Journal of Ethnopharmacology 2021, 270 , 113817. https://doi.org/10.1016/j.jep.2021.113817
  24. Scarlett Puebla-Barragan, Justin Renaud, Mark Sumarah, Gregor Reid. Malodorous biogenic amines in Escherichia coli-caused urinary tract infections in women—a metabolomics approach. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-66662-x
  25. Yoric Gagnebin, David A. Jaques, Serge Rudaz, Sophie de Seigneux, Julien Boccard, Belén Ponte. Exploring blood alterations in chronic kidney disease and haemodialysis using metabolomics. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-76524-1
  26. Anne Bannuscher, Bryan Hellack, Aileen Bahl, Julie Laloy, Hildegard Herman, Miruna S. Stan, Anca Dinischiotu, Anna Giusti, Benjamin-Christoph Krause, Jutta Tentschert, Marcel Roșu, Cornel Balta, Anca Hermenean, Martin Wiemann, Andreas Luch, Andrea Haase. Metabolomics profiling to investigate nanomaterial toxicity in vitro and in vivo. Nanotoxicology 2020, 14 (6) , 807-826. https://doi.org/10.1080/17435390.2020.1764123
  27. Yan Jin, Dasom Jung, Ke Li, Keunbae Park, Jeongmi Lee. Mixing of menthol-based hydrophobic deep eutectic solvents as a novel method to tune their properties. Journal of Molecular Liquids 2020, 301 , 112416. https://doi.org/10.1016/j.molliq.2019.112416
  28. Georgios A. Theodoridis, Helen G. Gika, Robert Plumb, Ian D. Wilson. Liquid chromatographic methods combined with mass spectrometry in metabolomics. 2020, 149-169. https://doi.org/10.1016/B978-0-12-818607-7.00009-8
  29. Claudia Seidl, David S. Bell, Dwight R. Stoll. A study of the re-equilibration of hydrophilic interaction columns with a focus on viability for use in two-dimensional liquid chromatography. Journal of Chromatography A 2019, 1604 , 460484. https://doi.org/10.1016/j.chroma.2019.460484
  30. Helen Gika, Christina Virgiliou, Georgios Theodoridis, Robert S. Plumb, Ian D. Wilson. Untargeted LC/MS-based metabolic phenotyping (metabonomics/metabolomics): The state of the art. Journal of Chromatography B 2019, 1117 , 136-147. https://doi.org/10.1016/j.jchromb.2019.04.009
  31. Abul K. Mallik, Sudhina Guragain, Mohammed Mizanur Rahman, Makoto Takafuji, Hirotaka Ihara. L-Lysine-derived highly selective stationary phases for hydrophilic interaction chromatography: Effect of chain length on selectivity, efficiency, resolution, and asymmetry. Separation Science Plus 2019, 2 (2) , 42-50. https://doi.org/10.1002/sscp.201800148
  32. Adam M. King, Lauren G. Mullin, Ian D. Wilson, Muireann Coen, Paul D. Rainville, Robert S. Plumb, Lee A. Gethings, Garth Maker, Robert Trengove. Development of a rapid profiling method for the analysis of polar analytes in urine using HILIC–MS and ion mobility enabled HILIC–MS. Metabolomics 2019, 15 (2) https://doi.org/10.1007/s11306-019-1474-9
  33. Zhenhua Zhu, Chenkai Chen, Yue Zhu, Erxin Shang, Ming Zhao, Sheng Guo, Jianming Guo, Dawei Qian, Zhishu Tang, Hui Yan, Jinao Duan. Exploratory Cortex Metabolic Profiling Revealed the Sedative Effect of Amber in Pentylenetetrazole-Induced Epilepsy-Like Mice. Molecules 2019, 24 (3) , 460. https://doi.org/10.3390/molecules24030460
  34. Tohru Ikegami. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. Journal of Separation Science 2019, 42 (1) , 130-213. https://doi.org/10.1002/jssc.201801074
  35. Toby Athersuch. Metabonomics. 2019, 147-181. https://doi.org/10.1007/978-3-319-89321-1_6
  36. James C. Heaton, Norman W. Smith, David V. McCalley. Retention characteristics of some antibiotic and anti-retroviral compounds in hydrophilic interaction chromatography using isocratic elution, and gradient elution with repeatable partial equilibration. Analytica Chimica Acta 2019, 1045 , 141-151. https://doi.org/10.1016/j.aca.2018.08.051
  37. Yuan-Yuan GU, Lang SHI, Dan-Dan ZHANG, Xin HUANG, Da-Zhong CHEN. Metabonomics delineates allergic reactions induced by Shuang-huang-lian injection in rats using ultra performance liquid chromatography-mass spectrometry. Chinese Journal of Natural Medicines 2018, 16 (8) , 628-640. https://doi.org/10.1016/S1875-5364(18)30101-8
  38. David V. McCalley. A study of column equilibration time in hydrophilic interaction chromatography. Journal of Chromatography A 2018, 1554 , 61-70. https://doi.org/10.1016/j.chroma.2018.04.016
  39. Yeji Sung, Konstantina Spagou, Marina Kafeza, Michael Kyriakides, Brahman Dharmarajah, Joseph Shalhoub, Jose A. Diaz, Thomas W. Wakefield, Elaine Holmes, Alun H. Davies. Deep Vein Thrombosis Exhibits Characteristic Serum and Vein Wall Metabolic Phenotypes in the Inferior Vena Cava Ligation Mouse Model. European Journal of Vascular and Endovascular Surgery 2018, 55 (5) , 703-713. https://doi.org/10.1016/j.ejvs.2018.01.027
  40. Michal Douša. 1H-Tetrazole-5-amine Immobilized on Substituted Polymer Gel/Silica as a New Stationary Phase for Hydrophilic Interaction Chromatography. Chromatographia 2018, 81 (2) , 349-357. https://doi.org/10.1007/s10337-017-3452-6
  41. Elizabeth J. Want. LC-MS Untargeted Analysis. 2018, 99-116. https://doi.org/10.1007/978-1-4939-7643-0_7
  42. Chelsea L. Gibson, Simona G. Codreanu, Alexandra C. Schrimpe-Rutledge, Cassandra L. Retzlaff, Jane Wright, Doug P. Mortlock, Stacy D. Sherrod, John A. McLean, Randy D. Blakely. Global untargeted serum metabolomic analyses nominate metabolic pathways responsive to loss of expression of the orphan metallo β-lactamase, MBLAC1. Molecular Omics 2018, 14 (3) , 142-155. https://doi.org/10.1039/C7MO00022G
  43. Muzaffar A. Anwar, Kyrillos N. Adesina-Georgiadis, K. Spagou, P. A. Vorkas, J. V. Li, Joseph Shalhoub, Elaine Holmes, Alun H. Davies. A comprehensive characterisation of the metabolic profile of varicose veins; implications in elaborating plausible cellular pathways for disease pathogenesis. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-02529-y
  44. Yana Sandlers. The future perspective: metabolomics in laboratory medicine for inborn errors of metabolism. Translational Research 2017, 189 , 65-75. https://doi.org/10.1016/j.trsl.2017.06.005
  45. Kristin Fløgstad Degnes, Hans Fredrik Nyvold Kvitvang, Hanne Haslene-Hox, Inga Marie Aasen. Changes in the Profiles of Metabolites Originating from Protein Degradation During Ripening of Dry Cured Ham. Food and Bioprocess Technology 2017, 10 (6) , 1122-1130. https://doi.org/10.1007/s11947-017-1894-3
  46. Lei Sun, Jianxun Liu, Mingqian Sun, Li Lin, Lan Miao, Zhengyan Ge, Bin Yang. Comprehensive metabonomic analysis of heart tissue from isoproterenol-induced myocardial infarction rat based on reversed-phase and hydrophilic interaction chromatography coupled to mass spectrometry. Journal of Separation Science 2017, 40 (10) , 2198-2206. https://doi.org/10.1002/jssc.201601013
  47. Daniel Carrizo, Olivier P. Chevallier, Jayne V. Woodside, Sarah F. Brennan, Marie M. Cantwell, Geraldine Cuskelly, Christopher T. Elliott. Untargeted metabolomic analysis of human serum samples associated with different levels of red meat consumption: A possible indicator of type 2 diabetes?. Food Chemistry 2017, 221 , 214-221. https://doi.org/10.1016/j.foodchem.2016.10.056
  48. Kelly M. Hines, Josi Herron, Libin Xu. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. Journal of Lipid Research 2017, 58 (4) , 809-819. https://doi.org/10.1194/jlr.D074724
  49. Jente Boelaert, Frédéric Lynen, Griet Glorieux, Eva Schepers, Nathalie Neirynck, Raymond Vanholder. Metabolic profiling of human plasma and urine in chronic kidney disease by hydrophilic interaction liquid chromatography coupled with time-of-flight mass spectrometry: a pilot study. Analytical and Bioanalytical Chemistry 2017, 409 (8) , 2201-2211. https://doi.org/10.1007/s00216-016-0165-x
  50. Daniel Carrizo, Olivier P. Chevallier, Jayne V. Woodside, Sarah F. Brennan, Marie M. Cantwell, Geraldine Cuskelly, Christopher T. Elliott. Untargeted metabolomic analysis of human serum samples associated with exposure levels of Persistent organic pollutants indicate important perturbations in Sphingolipids and Glycerophospholipids levels. Chemosphere 2017, 168 , 731-738. https://doi.org/10.1016/j.chemosphere.2016.11.001
  51. Joel G. Putnam, Justine E. Nelson, Eric M. Leis, Richard A. Erickson, Terrance D. Hubert, Jon J. Amberg. Using silver and bighead carp cell lines for the identification of a unique metabolite fingerprint from thiram-specific chemical exposure. Chemosphere 2017, 168 , 1477-1485. https://doi.org/10.1016/j.chemosphere.2016.11.046
  52. Aline Soriano Lopes, Elisa Castañeda Santa Cruz, Alessandra Sussulini, Aline Klassen. Metabolomic Strategies Involving Mass Spectrometry Combined with Liquid and Gas Chromatography. 2017, 77-98. https://doi.org/10.1007/978-3-319-47656-8_4
  53. Helen Gika, Georgios Theodoridis, Paul Rainville, Robert S. Plumb, Ian D. Wilson. Metabolic phenotyping (metabonomics/metabolomics) by liquid chromatography-mass spectrometry. 2017, 245-265. https://doi.org/10.1016/B978-0-12-805392-8.00009-8
  54. Konstantin Chingin, Yunfeng Cai, Vitaliy Chagovets, Alexey Kononikhin, Natalia Starodubtseva, Vladimir Frankevich, Huanwen Chen. Preconcentration of organic solutes in urine by bubble bursting. Metabolomics 2016, 12 (11) https://doi.org/10.1007/s11306-016-1122-6
  55. Mingqian Sun, Lei Sun, Lan Miao, Li Lin, Shuo Huang, Bin Yang, Jianhua Fu, Zhengyan Ge, Long Jin, Jianxun Liu. Metabonomics Study of Heart Homogenates from Myocardial Infarction Rats Using Liquid Chromatography/Time of Flight Mass Spectrometry. Chromatographia 2016, 79 (19-20) , 1309-1316. https://doi.org/10.1007/s10337-016-3136-7
  56. Dao-Quan Tang, Ll Zou, Xiao-Xing Yin, Choon Nam Ong. HILIC-MS for metabolomics: An attractive and complementary approach to RPLC-MS. Mass Spectrometry Reviews 2016, 35 (5) , 574-600. https://doi.org/10.1002/mas.21445
  57. Brice Fermier, Hélène Blasco, Emmanuel Godat, Cinzia Bocca, Joseph Moënne-Loccoz, Patrick Emond, Christian Andres, Marc Laffon, Martine Ferrandière. Specific Metabolome Profile of Exhaled Breath Condensate in Patients with Shock and Respiratory Failure: A Pilot Study. Metabolites 2016, 6 (3) , 26. https://doi.org/10.3390/metabo6030026
  58. Xiaobao Xu, Beibei Gao, Qijie Guan, Dandan Zhang, Xianhua Ye, Liang Zhou, Guoxin Tong, Hong Li, Lin Zhang, Jingkui Tian, Jinyu Huang. Metabolomic profile for the early detection of coronary artery disease by using UPLC-QTOF/MS. Journal of Pharmaceutical and Biomedical Analysis 2016, 129 , 34-42. https://doi.org/10.1016/j.jpba.2016.06.040
  59. Jörg Schumacher. Native and Synthetic Gene Regulation to Nitrogen Limitation Stress. 2016, 234-246. https://doi.org/10.1002/9781119004813.ch20
  60. Panagiotis Arapitsas, Anna Della Corte, Helen Gika, Luca Narduzzi, Fulvio Mattivi, Georgios Theodoridis. Studying the effect of storage conditions on the metabolite content of red wine using HILIC LC–MS based metabolomics. Food Chemistry 2016, 197 , 1331-1340. https://doi.org/10.1016/j.foodchem.2015.09.084
  61. Meng-Ying LV, Jian-Bo SUN, Min WANG, Hong-Yan FAN, Zun-Jian ZHANG, Feng-Guo XU. Comparative analysis of volatile oils in the stems and roots of Ephedra sinica via GC-MS-based plant metabolomics. Chinese Journal of Natural Medicines 2016, 14 (2) , 133-140. https://doi.org/10.1016/S1875-5364(16)60006-7
  62. Jeremy R. Everett, John C. Lindon, Jeremy K. Nicholson. Pharmacometabonomics and Predictive Metabonomics. 2016, 137-165. https://doi.org/10.1016/B978-0-12-800344-2.00006-9
  63. Toby Athersuch. Metabolome analyses in exposome studies: Profiling methods for a vast chemical space. Archives of Biochemistry and Biophysics 2016, 589 , 177-186. https://doi.org/10.1016/j.abb.2015.10.007
  64. Waner Hou, Danmin Zhong, Peiting Zhang, Yemeng Li, Manna Lin, Guanghui Liu, Meicun Yao, Qiongfeng Liao, Zhiyong Xie. A strategy for the targeted metabolomics analysis of 11 gut microbiota-host co-metabolites in rat serum, urine and feces by ultra high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 2016, 1429 , 207-217. https://doi.org/10.1016/j.chroma.2015.12.031
  65. Fumio Matsuda. Technical Challenges in Mass Spectrometry-Based Metabolomics. Mass Spectrometry 2016, 5 (2) , S0052-S0052. https://doi.org/10.5702/massspectrometry.S0052
  66. James C. Heaton, David V. McCalley. Some factors that can lead to poor peak shape in hydrophilic interaction chromatography, and possibilities for their remediation. Journal of Chromatography A 2016, 1427 , 37-44. https://doi.org/10.1016/j.chroma.2015.10.056
  67. Panagiotis A. Vorkas, Giorgis Isaac, Anders Holmgren, Elizabeth J. Want, John P. Shockcor, Elaine Holmes, Michael Y. Henein. Perturbations in fatty acid metabolism and apoptosis are manifested in calcific coronary artery disease: An exploratory lipidomic study. International Journal of Cardiology 2015, 197 , 192-199. https://doi.org/10.1016/j.ijcard.2015.06.048
  68. Juliet Kinyua, Adrian Covaci, Walid Maho, Ann-Kathrin McCall, Hugo Neels, Alexander L. N. van Nuijs. Sewage-based epidemiology in monitoring the use of new psychoactive substances: Validation and application of an analytical method using LC-MS/MS. Drug Testing and Analysis 2015, 7 (9) , 812-818. https://doi.org/10.1002/dta.1777
  69. Filippos Michopoulos, Helen Gika, Dimitrios Palachanis, Georgios Theodoridis, Ian D. Wilson. Solid phase extraction methodology for UPLC-MS based metabolic profiling of urine samples. ELECTROPHORESIS 2015, 36 (18) , 2170-2178. https://doi.org/10.1002/elps.201500101
  70. Christina Virgiliou, Ioannis Sampsonidis, Helen G. Gika, Nikolaos Raikos, Georgios A. Theodoridis. Development and validation of a HILIC-MS/MS multitargeted method for metabolomics applications. ELECTROPHORESIS 2015, 36 (18) , 2215-2225. https://doi.org/10.1002/elps.201500208
  71. Zhixiang Yan, Ru Yan. Increase the accessibility and scale of targeted metabolomics: Construction of a human urinary metabolome-wide multiple reaction monitoring library using directly-coupled reversed-phase and hydrophilic interaction chromatography. Analytica Chimica Acta 2015, 894 , 65-75. https://doi.org/10.1016/j.aca.2015.08.056
  72. Ibon Martínez-Arranz, Rebeca Mayo, Miriam Pérez-Cormenzana, Itziar Mincholé, Lorena Salazar, Cristina Alonso, José M. Mato. Enhancing metabolomics research through data mining. Journal of Proteomics 2015, 127 , 275-288. https://doi.org/10.1016/j.jprot.2015.01.019
  73. Toby J. Athersuch, Hector C. Keun. Metabolic profiling in human exposome studies. Mutagenesis 2015, 122 , gev060. https://doi.org/10.1093/mutage/gev060
  74. Drupad K. Trivedi, Ray K. Iles. Shotgun metabolomic profiles in maternal urine identify potential mass spectral markers of abnormal fetal biochemistry - dihydrouracil and progesterone in the metabolism of Down syndrome. Biomedical Chromatography 2015, 29 (8) , 1173-1183. https://doi.org/10.1002/bmc.3404
  75. Ioannis Sampsonidis, Michael Witting, Wendelin Koch, Christina Virgiliou, Helen G. Gika, Philippe Schmitt-Kopplin, Georgios A. Theodoridis. Computational analysis and ratiometric comparison approaches aimed to assist column selection in hydrophilic interaction liquid chromatography–tandem mass spectrometry targeted metabolomics. Journal of Chromatography A 2015, 1406 , 145-155. https://doi.org/10.1016/j.chroma.2015.06.008
  76. Kévin Contrepois, Lihua Jiang, Michael Snyder. Optimized Analytical Procedures for the Untargeted Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction (HILIC) and Reverse-Phase Liquid Chromatography (RPLC)–Mass Spectrometry*. Molecular & Cellular Proteomics 2015, 14 (6) , 1684-1695. https://doi.org/10.1074/mcp.M114.046508
  77. Zhaoxia Miao, Mengxia Jin, Xia Liu, Wei Guo, Xiangju Jin, Hongyue Liu, Yinghong Wang. The application of HPLC and microprobe NMR spectroscopy in the identification of metabolites in complex biological matrices. Analytical and Bioanalytical Chemistry 2015, 407 (12) , 3405-3416. https://doi.org/10.1007/s00216-015-8556-y
  78. Delisha Stewart, Suraj Dhungana, Robert Clark, Wimal Pathmasiri, Susan McRitchie, Susan Sumner. Omics Technologies Used in Systems Biology. 2015, 57-83. https://doi.org/10.1016/B978-0-12-801564-3.00004-3
  79. Muzaffar A. Anwar, Panagiotis A. Vorkas, Jia V. Li, Joseph Shalhoub, Elizabeth J. Want, Alun H. Davies, Elaine Holmes. Optimization of metabolite extraction of human vein tissue for ultra performance liquid chromatography-mass spectrometry and nuclear magnetic resonance-based untargeted metabolic profiling. The Analyst 2015, 140 (22) , 7586-7597. https://doi.org/10.1039/C5AN01041A
  80. Pengcheng Wang, Qiuhong Wang, Bingyou Yang, Shan Zhao, Haixue Kuang. The Progress of Metabolomics Study in Traditional Chinese Medicine Research. The American Journal of Chinese Medicine 2015, 43 (07) , 1281-1310. https://doi.org/10.1142/S0192415X15500731
  81. Tobias J Demetrowitsch, Beate Petersen, Julia K Keppler, Andreas Koch, Stefan Schreiber, Matthias Laudes, Karin Schwarz. Validation of a two-step quality control approach for a large-scale human urine metabolomic study conducted in seven experimental batches with LC/QTOF-MS. Bioanalysis 2015, 7 (1) , 103-112. https://doi.org/10.4155/bio.14.270
  82. Abdul-Hamid M. Emwas. The Strengths and Weaknesses of NMR Spectroscopy and Mass Spectrometry with Particular Focus on Metabolomics Research. 2015, 161-193. https://doi.org/10.1007/978-1-4939-2377-9_13
  83. Xinjie Zhao, Lina Zhou, Peiyuan Yin, Guowang Xu. Liquid Chromatography-Mass Spectrometry of Biofluids and Extracts. 2015, 61-73. https://doi.org/10.1007/978-1-4939-2377-9_6
  84. Lucie Nováková, Lucie Havlíková, Hana Vlčková. Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC. TrAC Trends in Analytical Chemistry 2014, 63 , 55-64. https://doi.org/10.1016/j.trac.2014.08.004
  85. Christophe Junot, François Fenaille, Benoit Colsch, François Bécher. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrometry Reviews 2014, 33 (6) , 471-500. https://doi.org/10.1002/mas.21401
  86. Andrew J. Chetwynd, Arthur David, Elizabeth M. Hill, Alaa Abdul-Sada. Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno)metabolome. Journal of Mass Spectrometry 2014, 49 (10) , 1063-1069. https://doi.org/10.1002/jms.3426
  87. Jieyu Zhao, Chunxiu Hu, Jun Zeng, Yanni Zhao, Junjie Zhang, Yuwei Chang, Lili Li, Chunxia Zhao, Xin Lu, Guowang Xu. Study of polar metabolites in tobacco from different geographical origins by using capillary electrophoresis–mass spectrometry. Metabolomics 2014, 10 (5) , 805-815. https://doi.org/10.1007/s11306-014-0631-4
  88. Paul D. Rainville, Georgios Theodoridis, Robert S. Plumb, Ian D. Wilson. Advances in liquid chromatography coupled to mass spectrometry for metabolic phenotyping. TrAC Trends in Analytical Chemistry 2014, 61 , 181-191. https://doi.org/10.1016/j.trac.2014.06.005
  89. David Siegel, Hjalmar Permentier, Dirk-Jan Reijngoud, Rainer Bischoff. Chemical and technical challenges in the analysis of central carbon metabolites by liquid-chromatography mass spectrometry. Journal of Chromatography B 2014, 966 , 21-33. https://doi.org/10.1016/j.jchromb.2013.11.022
  90. J. Boelaert, R. t’Kindt, E. Schepers, L. Jorge, G. Glorieux, N. Neirynck, F. Lynen, P. Sandra, R. Vanholder, K. Sandra. State-of-the-art non-targeted metabolomics in the study of chronic kidney disease. Metabolomics 2014, 10 (3) , 425-442. https://doi.org/10.1007/s11306-013-0592-z
  91. Helen G. Gika, Georgios A. Theodoridis, Robert S. Plumb, Ian D. Wilson. Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics. Journal of Pharmaceutical and Biomedical Analysis 2014, 87 , 12-25. https://doi.org/10.1016/j.jpba.2013.06.032
  92. Aihua Zhang, Xiaohang Zhou, Hongwei Zhao, Yu Guan, Shiyu Zhou, Guang-li Yan, Zhonghua Ma, Qi Liu, Xijun Wang. Rapidly improved determination of metabolites from biological data sets using the high-efficient TransOmics tool. Mol. BioSyst. 2014, 10 (8) , 2160-2165. https://doi.org/10.1039/C4MB00222A
  93. Jörg Schumacher, Volker Behrends, Zhensheng Pan, Dan R. Brown, Franziska Heydenreich, Matthew R. Lewis, Mark H. Bennett, Banafsheh Razzaghi, Michal Komorowski, Mauricio Barahona, Michael P. H. Stumpf, Sivaramesh Wigneshweraraj, Jacob G. Bundy, Martin Buck, . Nitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC In Vivo. mBio 2013, 4 (6) https://doi.org/10.1128/mBio.00881-13
  94. Mounir Bouhifd, Thomas Hartung, Helena T. Hogberg, Andre Kleensang, Liang Zhao. Review: Toxicometabolomics. Journal of Applied Toxicology 2013, 33 (12) , 1365-1383. https://doi.org/10.1002/jat.2874
  95. Uri Hochberg, Asfaw Degu, David Toubiana, Tanya Gendler, Zoran Nikoloski, Shimon Rachmilevitch, Aaron Fait. Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biology 2013, 13 (1) https://doi.org/10.1186/1471-2229-13-184
  96. Anders H. Honoré, Michael Thorsen, Thomas Skov. Liquid chromatography–mass spectrometry for metabolic footprinting of co-cultures of lactic and propionic acid bacteria. Analytical and Bioanalytical Chemistry 2013, 405 (25) , 8151-8170. https://doi.org/10.1007/s00216-013-7269-3
  97. Georgios A. Theodoridis, Filippos Michopoulos, Helen G. Gika, Robert S. Plumb, Ian D. Wilson. Liquid Chromatographic Techniques in Metabolomics. 2013, 64-86. https://doi.org/10.1039/9781849737272-00064
  98. Julie Schappler, Serge Rudaz, Jean-Luc Veuthey, Davy Guillarme. Coupling UHPLC with MS: The Needs, Challenges, and Applications. 2013, 95-131. https://doi.org/10.1002/9781118533956.ch4
  99. Fang Lu, Min Cao, Bin Wu, Xu-zhao Li, Hong-yu Liu, Da-zhong Chen, Shu-min Liu. Urinary metabonomics study on toxicity biomarker discovery in rats treated with Xanthii Fructus. Journal of Ethnopharmacology 2013, 149 (1) , 311-320. https://doi.org/10.1016/j.jep.2013.06.040
  100. Julijana Ivanisevic, Zheng-Jiang Zhu, Lars Plate, Ralf Tautenhahn, Stephen Chen, Peter J. O’Brien, Caroline H. Johnson, Michael A. Marletta, Gary J. Patti, Gary Siuzdak. Toward ‘Omic Scale Metabolite Profiling: A Dual Separation–Mass Spectrometry Approach for Coverage of Lipid and Central Carbon Metabolism. Analytical Chemistry 2013, 85 (14) , 6876-6884. https://doi.org/10.1021/ac401140h
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect