Versatile Capillary Column Temperature Control Using a Thermoelectric Array Based Platform
- David Collins
- ,
- Ekaterina Nesterenko
- ,
- Damian Connolly
- ,
- Mercedes Vasquez
- ,
- Mirek Macka
- ,
- Dermot Brabazon
- , and
- Brett Paull
Abstract

A new direct contact platform for capillary column precise temperature control based upon the use of individually controlled sequentially aligned Peltier thermoelectric units is presented. The platform provides rapid temperature control for capillary and microbore liquid chromatography columns and allows simultaneous temporal and spatial temperature programming. The operating temperature range of the platform was between 15 and 200 °C for each of 10 aligned Peltier units, with a ramp rate of approximately 400 °C/min. The system was evaluated for a number of nonstandard capillary based applications, such as the direct application of temperature gradients with both linear and nonlinear profiles, including both static column temperature gradients and temporal temperature gradients, and the formation of in-capillary monolithic stationary phases with gradient polymerization through precise temperature control.
Cited By
This article is cited by 25 publications.
- Marta Passamonti, Ischa L. Bremer, Suhas H. Nawada, Sinéad A. Currivan, Andrea F. G. Gargano, Peter J. Schoenmakers. Confinement of Monolithic Stationary Phases in Targeted Regions of 3D-Printed Titanium Devices Using Thermal Polymerization. Analytical Chemistry 2020, 92
(3)
, 2589-2596. https://doi.org/10.1021/acs.analchem.9b04298
- Michael
T. Rerick, Stephen R. Groskreutz, Stephen G. Weber. Multiplicative On-Column Solute Focusing Using Spatially Dependent Temperature Programming for Capillary HPLC. Analytical Chemistry 2019, 91
(4)
, 2854-2860. https://doi.org/10.1021/acs.analchem.8b04826
- Clifford Young, Alexandre V. Podtelejnikov, and Michael L. Nielsen . Improved Reversed Phase Chromatography of Hydrophilic Peptides from Spatial and Temporal Changes in Column Temperature. Journal of Proteome Research 2017, 16
(6)
, 2307-2317. https://doi.org/10.1021/acs.jproteome.6b01055
- Josef J. Heiland, Carsten Lotter, Volkmar Stein, Laura Mauritz, and Detlev Belder . Temperature Gradient Elution and Superheated Eluents in Chip-HPLC. Analytical Chemistry 2017, 89
(6)
, 3266-3271. https://doi.org/10.1021/acs.analchem.7b00142
- Mari E. Creese, Mathew J. Creese, Joe P. Foley, Hernan J. Cortes, Emily F. Hilder, Robert A. Shellie, and Michael C. Breadmore . Longitudinal On-Column Thermal Modulation for Comprehensive Two-Dimensional Liquid Chromatography. Analytical Chemistry 2017, 89
(2)
, 1123-1130. https://doi.org/10.1021/acs.analchem.6b03279
- Gert Desmet and Sebastiaan Eeltink . Fundamentals for LC Miniaturization. Analytical Chemistry 2013, 85
(2)
, 543-556. https://doi.org/10.1021/ac303317c
- Hamed Eghbali, Koen Sandra, Bart Tienpont, Sebastiaan Eeltink, Pat Sandra, and Gert Desmet . Exploring the Possibilities of Cryogenic Cooling in Liquid Chromatography for Biological Applications: A Proof of Principle. Analytical Chemistry 2012, 84
(4)
, 2031-2037. https://doi.org/10.1021/ac203252u
- Sandong YANG, Naijie LI, Zhou MA, Tao TANG, Tong LI. Research advances in nano liquid chromatography instrumentation. Chinese Journal of Chromatography 2021, 39
(10)
, 1065-1076. https://doi.org/10.3724/SP.J.1123.2021.06017
- Przemyslaw Mielczarek, Jerzy Silberring, Marek Smoluch. MINIATURIZATION IN MASS SPECTROMETRY. Mass Spectrometry Reviews 2020, 39
(5-6)
, 453-470. https://doi.org/10.1002/mas.21614
- Palanisamy MohanKumar, Veluru Jagadeesh Babu, Arjun Subramanian, Aishwarya Bandla, Nitish Thakor, Seeram Ramakrishna, He Wei. Thermoelectric Materials—Strategies for Improving Device Performance and Its Medical Applications. Sci 2019, 1
(2)
, 37. https://doi.org/10.3390/sci1020037
- Laura E. Blue, Edward G. Franklin, Justin M. Godinho, James P. Grinias, Kaitlin M. Grinias, Daniel B. Lunn, Stephanie M. Moore. Recent advances in capillary ultrahigh pressure liquid chromatography. Journal of Chromatography A 2017, 1523 , 17-39. https://doi.org/10.1016/j.chroma.2017.05.039
- Stephen R. Groskreutz, Anthony R. Horner, Stephen G. Weber. Development of a 1.0 mm inside diameter temperature-assisted focusing precolumn for use with 2.1 mm inside diameter columns. Journal of Chromatography A 2017, 1523 , 193-203. https://doi.org/10.1016/j.chroma.2017.07.015
- Jiří Urban, Tomáš Hájek, Frantisek Svec. Monolithic stationary phases with a longitudinal gradient of porosity. Journal of Separation Science 2017, 40
(8)
, 1703-1709. https://doi.org/10.1002/jssc.201700048
- Stephen R. Groskreutz, Stephen G. Weber. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment. Journal of Chromatography A 2016, 1474 , 95-108. https://doi.org/10.1016/j.chroma.2016.10.062
- Eugene V. Moskovets, Alexander R. Ivanov. Comparative studies of peak intensities and chromatographic separation of proteolytic digests, PTMs, and intact proteins obtained by nanoLC-ESI MS analysis at room and elevated temperatures. Analytical and Bioanalytical Chemistry 2016, 408
(15)
, 3953-3968. https://doi.org/10.1007/s00216-016-9386-2
- Carlos E.D. Nazario, Meire R. Silva, Maraíssa S. Franco, Fernando M. Lanças. Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview. Journal of Chromatography A 2015, 1421 , 18-37. https://doi.org/10.1016/j.chroma.2015.08.051
- Jelle De Vos, Sebastiaan Eeltink, Gert Desmet. Peak refocusing using subsequent retentive trapping and strong eluent remobilization in liquid chromatography: A theoretical optimization study. Journal of Chromatography A 2015, 1381 , 74-86. https://doi.org/10.1016/j.chroma.2014.12.082
- Stephen R. Groskreutz, Stephen G. Weber. Temperature-assisted on-column solute focusing: A general method to reduce pre-column dispersion in capillary high performance liquid chromatography. Journal of Chromatography A 2014, 1354 , 65-74. https://doi.org/10.1016/j.chroma.2014.05.056
- Sinéad Currivan, Pavel Jandera. Post-Polymerization Modifications of Polymeric Monolithic Columns: A Review. Chromatography 2014, 1
(1)
, 24-53. https://doi.org/10.3390/chromatography1010024
- S. Sandron, B. Heery, V. Gupta, D. A. Collins, E. P. Nesterenko, P. N. Nesterenko, M. Talebi, S. Beirne, F. Thompson, G. G. Wallace, D. Brabazon, F. Regan, B. Paull. 3D printed metal columns for capillary liquid chromatography. The Analyst 2014, 139
(24)
, 6343-6347. https://doi.org/10.1039/C4AN01476F
- David A. Collins, Ekaterina P. Nesterenko, Dermot Brabazon, Brett Paull. Fabrication of Bonded Monolithic Porous Layer Open Tubular (monoPLOT) Columns in Wide Bore Capillary by Laminar Flow Thermal Initiation. Chromatographia 2013, 76
(11-12)
, 581-589. https://doi.org/10.1007/s10337-013-2447-1
- Áine Moyna, Damian Connolly, Ekaterina Nesterenko, Pavel N. Nesterenko, Brett Paull. Iminodiacetic acid functionalised organopolymer monoliths: application to the separation of metal cations by capillary high-performance chelation ion chromatography. Analytical and Bioanalytical Chemistry 2013, 405
(7)
, 2207-2217. https://doi.org/10.1007/s00216-012-6361-4
- Áine Moyna, Damian Connolly, Ekaterina Nesterenko, Pavel N. Nesterenko, Brett Paull. Separation of selected transition metals by capillary chelation ion chromatography using acetyl-iminodiacetic acid modified capillary polymer monoliths. Journal of Chromatography A 2012, 1249 , 155-163. https://doi.org/10.1016/j.chroma.2012.06.026
- Jin-Gen Wu, Man-Chi Liu, Ming-Fei Tsai, Wei-Shun Yu, Jian-Zhang Chen, I-Chun Cheng, Pei-Chun Lin. Multi-layer thermoelectric-temperature-mapping microbial incubator designed for geo-biochemistry applications. Review of Scientific Instruments 2012, 83
(4)
https://doi.org/10.1063/1.4705748
- Sinéad Currivan, Damian Connolly, Brett Paull. Production of novel polymer monolithic columns, with stationary phase gradients, using cyclic olefin co-polymer (COC) optical filters. The Analyst 2012, 137
(11)
, 2559. https://doi.org/10.1039/c2an35316d