ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Optimized Preprocessing of Ultra-Performance Liquid Chromatography/Mass Spectrometry Urinary Metabolic Profiles for Improved Information Recovery

View Author Information
Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom
Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland 97239, United States
§ Technologie Servier, 27 Rue Eugène Vignat, Orleans 45000, France
Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1014, United States
Cite this: Anal. Chem. 2011, 83, 15, 5864–5872
Publication Date (Web):April 28, 2011
https://doi.org/10.1021/ac201065j
Copyright © 2011 American Chemical Society

    Article Views

    5363

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Ultra-performance liquid chromatography coupled to mass spectrometry (UPLC/MS) has been used increasingly for measuring changes of low molecular weight metabolites in biofluids/tissues in response to biological challenges such as drug toxicity and disease processes. Typically samples show high variability in concentration, and the derived metabolic profiles have a heteroscedastic noise structure characterized by increasing variance as a function of increased signal intensity. These sources of experimental and instrumental noise substantially complicate information recovery when statistical tools are used. We apply and compare several preprocessing procedures and introduce a statistical error model to account for these bioanalytical complexities. In particular, the use of total intensity, median fold change, locally weighted scatter plot smoothing, and quantile normalizations to reduce extraneous variance induced by sample dilution were compared. We demonstrate that the UPLC/MS peak intensities of urine samples should respond linearly to variable sample dilution across the intensity range. While all four studied normalization methods performed reasonably well in reducing dilution-induced variation of urine samples in the absence of biological variation, the median fold change normalization is least compromised by the biologically relevant changes in mixture components and is thus preferable. Additionally, the application of a subsequent log-based transformation was successful in stabilizing the variance with respect to peak intensity, confirming the predominant influence of multiplicative noise in peak intensities from UPLC/MS-derived metabolic profile data sets. We demonstrate that variance-stabilizing transformation and normalization are critical preprocessing steps that can benefit greatly metabolic information recovery from such data sets when widely applied chemometric methods are used.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Two figures, showing box plots of log 2-fold change in peak intensities after various normalization techniques (LOESS, MFC, TI, and QN) and the impact of variance-stabilizing normalizations (LOESS, TI, and QN) on metabolic information recovery via PCA. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 216 publications.

    1. Carlos A. M. Silva, Barbara G. Graham, Kristofor Webb, M. Nurul Islam, Marisa Harton, Maria Angela de Mello Marques, Fernanda Marques de Carvalho, Roberta Olmo Pinheiro, John Spencer, Euzenir Nunes Sarno, Geraldo M. Batista Pereira, Maria Cristina Vidal Pessolani, Cristiana Santos de Macedo, John T. Belisle. Polyunsaturated Fatty Acid-Derived Lipid Mediators as Potential Biomarkers for Leprosy Among Individuals with Asymptomatic Mycobacterium leprae Infection. ACS Infectious Diseases 2023, 9 (8) , 1458-1469. https://doi.org/10.1021/acsinfecdis.2c00585
    2. Yao Yao, Hui Zhang, Lanyin Tu, Tiantian Yu, Baowei Chen, Peng Huang, Yumin Hu, Tiangang Luan. Normalization Approach by a Reference Material to Improve LC–MS-Based Metabolomic Data Comparability of Multibatch Samples. Analytical Chemistry 2023, 95 (2) , 1309-1317. https://doi.org/10.1021/acs.analchem.2c04188
    3. Rosa M. Alonso-Salces, Luis A. Berrueta, Beatriz Abad-García, Andrea Sasía-Arriba, Carlos Asensio-Regalado, Enrique Dapena, Blanca Gallo. Untargeted Metabolomic Liquid Chromatography High-Resolution Mass Spectrometry Fingerprinting of Apple Cultivars for the Identification of Biomarkers Related to Resistance to Rosy Apple Aphid. Journal of Agricultural and Food Chemistry 2022, 70 (41) , 13071-13081. https://doi.org/10.1021/acs.jafc.2c00738
    4. Tobias Boskamp, Rita Casadonte, Lena Hauberg-Lotte, Sören Deininger, Jörg Kriegsmann, Peter Maass. Cross-Normalization of MALDI Mass Spectrometry Imaging Data Improves Site-to-Site Reproducibility. Analytical Chemistry 2021, 93 (30) , 10584-10592. https://doi.org/10.1021/acs.analchem.1c01792
    5. Caroline J. Sands, María Gómez-Romero, Gonçalo Correia, Elena Chekmeneva, Stephane Camuzeaux, Chioma Izzi-Engbeaya, Waljit S. Dhillo, Zoltan Takats, Matthew R. Lewis. Representing the Metabolome with High Fidelity: Range and Response as Quality Control Factors in LC-MS-Based Global Profiling. Analytical Chemistry 2021, 93 (4) , 1924-1933. https://doi.org/10.1021/acs.analchem.0c03848
    6. Marine P. M. Letertre, Nyasha Munjoma, Kate Wolfer, Alexandros Pechlivanis, Julie A. K. McDonald, Rhiannon N. Hardwick, Nathan J. Cherrington, Muireann Coen, Jeremy K. Nicholson, Lesley Hoyles, Jonathan R. Swann, Ian D. Wilson. A Two-Way Interaction between Methotrexate and the Gut Microbiota of Male Sprague–Dawley Rats. Journal of Proteome Research 2020, 19 (8) , 3326-3339. https://doi.org/10.1021/acs.jproteome.0c00230
    7. Mengni Cui, Alessia Trimigno, Violetta Aru, Bekzod Khakimov, Søren Balling Engelsen. Human Faecal 1H NMR Metabolomics: Evaluation of Solvent and Sample Processing on Coverage and Reproducibility of Signature Metabolites. Analytical Chemistry 2020, 92 (14) , 9546-9555. https://doi.org/10.1021/acs.analchem.0c00606
    8. Carolina González-Riano, Danuta Dudzik, Antonia Garcia, Alberto Gil-de-la-Fuente, Ana Gradillas, Joanna Godzien, Ángeles López-Gonzálvez, Fernanda Rey-Stolle, David Rojo, Francisco J. Ruperez, Jorge Saiz, Coral Barbas. Recent Developments along the Analytical Process for Metabolomics Workflows. Analytical Chemistry 2020, 92 (1) , 203-226. https://doi.org/10.1021/acs.analchem.9b04553
    9. Patrick M. Wehrli, Wojciech Michno, Kaj Blennow, Henrik Zetterberg, Jörg Hanrieder. Chemometric Strategies for Sensitive Annotation and Validation of Anatomical Regions of Interest in Complex Imaging Mass Spectrometry Data. Journal of the American Society for Mass Spectrometry 2019, 30 (11) , 2278-2288. https://doi.org/10.1007/s13361-019-02327-y
    10. Gema Rodríguez-Moro, Nieves Abril, Rocío Jara-Biedma, Sara Ramírez-Acosta, José Luis Gómez-Ariza, Tamara García-Barrera. Metabolic Impairments Caused by a “Chemical Cocktail” of DDE and Selenium in Mice Using Direct Infusion Triple Quadrupole Time-of-Flight and Gas Chromatography–Mass Spectrometry. Chemical Research in Toxicology 2019, 32 (10) , 1940-1954. https://doi.org/10.1021/acs.chemrestox.9b00102
    11. Dominic Friston, Helen Laycock, Istvan Nagy, Elizabeth J. Want. Microdialysis Workflow for Metabotyping Superficial Pathologies: Application to Burn Injury. Analytical Chemistry 2019, 91 (10) , 6541-6548. https://doi.org/10.1021/acs.analchem.8b05615
    12. Shisheng Wang, Xiaolei Chen, Dan Du, Wen Zheng, Liqiang Hu, Hao Yang, Jingqiu Cheng, Meng Gong. MetaboGroupS: A Group Entropy-Based Web Platform for Evaluating Normalization Methods in Blood Metabolomics Data from Maintenance Hemodialysis Patients. Analytical Chemistry 2018, 90 (18) , 11124-11130. https://doi.org/10.1021/acs.analchem.8b03065
    13. Jocelyn Tillner, Vincen Wu, Emrys A. Jones, Steven D. Pringle, Tamas Karancsi, Andreas Dannhorn, Kirill Veselkov, James S. McKenzie, Zoltan Takats. Faster, More Reproducible DESI-MS for Biological Tissue Imaging. Journal of the American Society for Mass Spectrometry 2017, 28 (10) , 2090-2098. https://doi.org/10.1007/s13361-017-1714-z
    14. Jeramie D. Watrous, Mir Henglin, Brian Claggett, Kim A. Lehmann, Martin G. Larson, Susan Cheng, and Mohit Jain . Visualization, Quantification, and Alignment of Spectral Drift in Population Scale Untargeted Metabolomics Data. Analytical Chemistry 2017, 89 (3) , 1399-1404. https://doi.org/10.1021/acs.analchem.6b04337
    15. Beatriz Sanchon-Lopez and Jeremy R. Everett . New Methodology for Known Metabolite Identification in Metabonomics/Metabolomics: Topological Metabolite Identification Carbon Efficiency (tMICE). Journal of Proteome Research 2016, 15 (9) , 3405-3419. https://doi.org/10.1021/acs.jproteome.6b00631
    16. Kodjo Eloh, Nicola Sasanelli, Andrea Maxia, and Pierluigi Caboni . Untargeted Metabolomics of Tomato Plants after Root-Knot Nematode Infestation. Journal of Agricultural and Food Chemistry 2016, 64 (29) , 5963-5968. https://doi.org/10.1021/acs.jafc.6b02181
    17. Kodjo Eloh, Monica Demurtas, Manuel Giacomo Mura, Alessandro Deplano, Valentina Onnis, Nicola Sasanelli, Andrea Maxia, and Pierluigi Caboni . Potent Nematicidal Activity of Maleimide Derivatives on Meloidogyne incognita. Journal of Agricultural and Food Chemistry 2016, 64 (24) , 4876-4881. https://doi.org/10.1021/acs.jafc.6b02250
    18. Jocelyn Tillner, James S. McKenzie, Emrys A. Jones, Abigail V. M. Speller, James L. Walsh, Kirill A. Veselkov, Josephine Bunch, Zoltan Takats, and Ian S. Gilmore . Investigation of the Impact of Desorption Electrospray Ionization Sprayer Geometry on Its Performance in Imaging of Biological Tissue. Analytical Chemistry 2016, 88 (9) , 4808-4816. https://doi.org/10.1021/acs.analchem.6b00345
    19. Yaoyao Wang, Richard Caldwell, David A. Cowan, and Cristina Legido-Quigley . LC-MS-Based Metabolomics Discovers Purine Endogenous Associations with Low-Dose Salbutamol in Urine Collected for Antidoping Tests. Analytical Chemistry 2016, 88 (4) , 2243-2249. https://doi.org/10.1021/acs.analchem.5b03927
    20. Alexandros Pechlivanis, Konstantinos G. Papaioannou, George Tsalis, Ploutarchos Saraslanidis, Vassilis Mougios, and Georgios A. Theodoridis . Monitoring the Response of the Human Urinary Metabolome to Brief Maximal Exercise by a Combination of RP-UPLC-MS and 1H NMR Spectroscopy. Journal of Proteome Research 2015, 14 (11) , 4610-4622. https://doi.org/10.1021/acs.jproteome.5b00470
    21. Etienne A. Thévenot, Aurélie Roux, Ying Xu, Eric Ezan, and Christophe Junot . Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. Journal of Proteome Research 2015, 14 (8) , 3322-3335. https://doi.org/10.1021/acs.jproteome.5b00354
    22. Tao Huan and Liang Li . Counting Missing Values in a Metabolite-Intensity Data Set for Measuring the Analytical Performance of a Metabolomics Platform. Analytical Chemistry 2015, 87 (2) , 1306-1313. https://doi.org/10.1021/ac5039994
    23. William M. B. Edmands, Pietro Ferrari, and Augustin Scalbert . Normalization to Specific Gravity Prior to Analysis Improves Information Recovery from High Resolution Mass Spectrometry Metabolomic Profiles of Human Urine. Analytical Chemistry 2014, 86 (21) , 10925-10931. https://doi.org/10.1021/ac503190m
    24. Yiman Wu and Liang Li . Dansylation Metabolite Assay: A Simple and Rapid Method for Sample Amount Normalization in Metabolomics. Analytical Chemistry 2014, 86 (19) , 9428-9433. https://doi.org/10.1021/ac503359v
    25. Nicole Strittmatter, Monica Rebec, Emrys A. Jones, Ottmar Golf, Alireza Abdolrasouli, Julia Balog, Volker Behrends, Kirill A. Veselkov, and Zoltan Takats . Characterization and Identification of Clinically Relevant Microorganisms Using Rapid Evaporative Ionization Mass Spectrometry. Analytical Chemistry 2014, 86 (13) , 6555-6562. https://doi.org/10.1021/ac501075f
    26. Leslie P. Silva, Philip L. Lorenzi, Preeti Purwaha, Valeda Yong, David H. Hawke, and John N. Weinstein . Measurement of DNA Concentration as a Normalization Strategy for Metabolomic Data from Adherent Cell Lines. Analytical Chemistry 2013, 85 (20) , 9536-9542. https://doi.org/10.1021/ac401559v
    27. Tetsuo Kokubun and Lilla D’Costa . Direct and Unbiased Information Recovery from Liquid Chromatography–Mass Spectrometry Raw Data for Phenotype-Differentiating Metabolites Based on Screening Window Coefficient of Ion Currents. Analytical Chemistry 2013, 85 (18) , 8684-8691. https://doi.org/10.1021/ac401545b
    28. Yanhua Chen, Guoqing Shen, Ruiping Zhang, Jiuming He, Yi Zhang, Jing Xu, Wei Yang, Xiaoguang Chen, Yongmei Song, and Zeper Abliz . Combination of Injection Volume Calibration by Creatinine and MS Signals’ Normalization to Overcome Urine Variability in LC-MS-Based Metabolomics Studies. Analytical Chemistry 2013, 85 (16) , 7659-7665. https://doi.org/10.1021/ac401400b
    29. Jonathan R. Swann, Konstantina Spagou, Matthew Lewis, Jeremy K. Nicholson, Dana A. Glei, Teresa E. Seeman, Christopher L. Coe, Noreen Goldman, Carol D. Ryff, Maxine Weinstein, and Elaine Holmes . Microbial–Mammalian Cometabolites Dominate the Age-associated Urinary Metabolic Phenotype in Taiwanese and American Populations. Journal of Proteome Research 2013, 12 (7) , 3166-3180. https://doi.org/10.1021/pr4000152
    30. Yiman Wu and Liang Li . Determination of Total Concentration of Chemically Labeled Metabolites as a Means of Metabolome Sample Normalization and Sample Loading Optimization in Mass Spectrometry-Based Metabolomics. Analytical Chemistry 2012, 84 (24) , 10723-10731. https://doi.org/10.1021/ac3025625
    31. Jasmina Saric, Elizabeth J. Want, Urs Duthaler, Matthew Lewis, Jennifer Keiser, John P. Shockcor, Gordon A. Ross, Jeremy K. Nicholson, Elaine Holmes, and Marina F. M. Tavares . Systematic Evaluation of Extraction Methods for Multiplatform-Based Metabotyping: Application to the Fasciola hepatica Metabolome. Analytical Chemistry 2012, 84 (16) , 6963-6972. https://doi.org/10.1021/ac300586m
    32. Sabrina D. Lamour, Beak-San Choi, Hector C. Keun, Ingrid Müller, and Jasmina Saric . Metabolic Characterization of Leishmania major Infection in Activated and Nonactivated Macrophages.. Journal of Proteome Research 2012, 11 (8) , 4211-4222. https://doi.org/10.1021/pr3003358
    33. Judith M. Fonville, Claire Carter, Olivier Cloarec, Jeremy K. Nicholson, John C. Lindon, Josephine Bunch, and Elaine Holmes . Robust Data Processing and Normalization Strategy for MALDI Mass Spectrometric Imaging. Analytical Chemistry 2012, 84 (3) , 1310-1319. https://doi.org/10.1021/ac201767g
    34. Elia Mattarucchi and Claude Guillou . Comment on “Optimized Preprocessing of Ultra-Performance Liquid Chromatography/Mass Spectrometry Urinary Metabolic Profiles for Improved Information Recovery”. Analytical Chemistry 2011, 83 (24) , 9719-9720. https://doi.org/10.1021/ac202416r
    35. Kirill A. Veselkov, Lisa K. Vingara, Perrine Masson, Steven L. Robinette, Elizabeth Want, Jia V. Li, Richard H. Barton, Claire Boursier-Neyret, Bernard Walther, Timothy M. Ebbels, Istvan Pelczer, Elaine Holmes, John C. Lindon, and Jeremy K. Nicholson . Response to Comment on “Optimized Preprocessing of Ultra-Performance Liquid Chromatography/Mass Spectrometry Urinary Metabolic Profiles for Improved Information Recovery”. Analytical Chemistry 2011, 83 (24) , 9721-9722. https://doi.org/10.1021/ac202516e
    36. Liam H. Walsh, Aaron M. Walsh, Isabel Garcia-Perez, Fiona Crispie, Adele Costabile, Richard Ellis, Jim Finlayson, Laura A. Finnegan, Marcus J. Claesson, Elaine Holmes, Paul D. Cotter. Comparison of the relative impacts of acute consumption of an inulin-enriched diet, milk kefir or a commercial probiotic product on the human gut microbiome and metabolome. npj Science of Food 2023, 7 (1) https://doi.org/10.1038/s41538-023-00216-z
    37. Felix Royo, Hector Tames, Guillermo Bordanaba-Florit, Diana Cabrera, Maria Azparren-Angulo, Clara Garcia-Vallicrosa, Abelardo Margolles, Lorena Ruiz, Patricia Ruas-Madiedo, Juan M. Falcon-Perez, . Orally Administered Bifidobacterium adolescentis Diminishes Serum Glutamate Concentration in Mice. Microbiology Spectrum 2023, 11 (4) https://doi.org/10.1128/spectrum.05063-22
    38. Ross van de Wetering, Jan A. Vorster, Sophie Geyrhofer, Joanne E. Harvey, Robert A. Keyzers, Susan Schenk. Behavioral metabolomics: how behavioral data can guide metabolomics research on neuropsychiatric disorders. Metabolomics 2023, 19 (8) https://doi.org/10.1007/s11306-023-02034-6
    39. Alana C. Costa, Larissa B. Riça, Martinus van de Bilt, Flávia S. Zandonadi, Wagner F. Gattaz, Leda L. Talib, Alessandra Sussulini. Application of Lipidomics in Psychiatry: Plasma-Based Potential Biomarkers in Schizophrenia and Bipolar Disorder. Metabolites 2023, 13 (5) , 600. https://doi.org/10.3390/metabo13050600
    40. Seongyong Park, Mohammad Sohail Ibrahim, Abdul Wahab, Shujaat Khan. GMDM: A generalized multi-dimensional distribution overlap metric for data and model quality evaluation. Digital Signal Processing 2023, 134 , 103930. https://doi.org/10.1016/j.dsp.2023.103930
    41. Zodwa Dlamini, Rodney Hull. The Application of AI in Precision Oncology: Tailoring Diagnosis, Treatment, and the Monitoring of Disease Progression to the Patient. 2023, 1-25. https://doi.org/10.1007/978-3-031-21506-3_1
    42. Leos Uttl, Kamila Bechynska, Mona Ehlers, Vaclav Kadlec, Klara Navratilova, Zbynek Dzuman, Carsten Fauhl-Hassek, Jana Hajslova. Critical assessment of chemometric models employed for varietal authentication of wine based on UHPLC-HRMS data. Food Control 2023, 143 , 109336. https://doi.org/10.1016/j.foodcont.2022.109336
    43. Nicolas Drouin, Julien Boccard, Serge Rudaz, Víctor González‐Ruiz. Data Analysis Strategies in CE–MS for Metabolomics. 2022, 35-63. https://doi.org/10.1002/9783527833092.ch2
    44. Peishun Li, Boyang Ji, Hao Luo, Daniel Sundh, Mattias Lorentzon, Jens Nielsen. One-year supplementation with Lactobacillus reuteri ATCC PTA 6475 counteracts a degradation of gut microbiota in older women with low bone mineral density. npj Biofilms and Microbiomes 2022, 8 (1) https://doi.org/10.1038/s41522-022-00348-2
    45. Eric R. Kehoe, Bryna L. Fitzgerald, Barbara Graham, M. Nurul Islam, Kartikay Sharma, Gary P. Wormser, John T. Belisle, Michael J. Kirby. Biomarker selection and a prospective metabolite-based machine learning diagnostic for lyme disease. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-05451-0
    46. Maria Mercado-Gómez, Endika Prieto-Fernández, Naroa Goikoetxea-Usandizaga, Laura Vila-Vecilla, Mikel Azkargorta, Miren Bravo, Marina Serrano-Maciá, Leire Egia-Mendikute, Rubén Rodríguez-Agudo, Sofia Lachiondo-Ortega, So Young Lee, Alvaro Eguileor Giné, Clàudia Gil-Pitarch, Irene González-Recio, Jorge Simón, Petar Petrov, Ramiro Jover, Luis Alfonso Martínez-Cruz, June Ereño-Orbea, Teresa Cardoso Delgado, Felix Elortza, Jesús Jiménez-Barbero, Ruben Nogueiras, Vincent Prevot, Asis Palazon, María L. Martínez-Chantar. The spike of SARS-CoV-2 promotes metabolic rewiring in hepatocytes. Communications Biology 2022, 5 (1) https://doi.org/10.1038/s42003-022-03789-9
    47. Nicholas C. Penney, Derek K. T. Yeung, Isabel Garcia-Perez, Joram M. Posma, Aleksandra Kopytek, Bethany Garratt, Hutan Ashrafian, Gary Frost, Julian R. Marchesi, Sanjay Purkayastha, Lesley Hoyles, Ara Darzi, Elaine Holmes. Multi-omic phenotyping reveals host-microbe responses to bariatric surgery, glycaemic control and obesity. Communications Medicine 2022, 2 (1) https://doi.org/10.1038/s43856-022-00185-6
    48. Stephanie L. Bishop, Marija Drikic, Soren Wacker, Yuan Yao Chen, Anita L. Kozyrskyj, Ian A. Lewis. Moving beyond descriptive studies: harnessing metabolomics to elucidate the molecular mechanisms underpinning host-microbiome phenotypes. Mucosal Immunology 2022, 15 (6) , 1071-1084. https://doi.org/10.1038/s41385-022-00553-4
    49. Jie Kawakami, Stephen R Piccolo, John KS Kauwe, Steven W Graves. Gender differences contribute to variability of serum lipid biomarkers for Alzheimer's disease. Biomarkers in Medicine 2022, 16 (15) , 1089-1100. https://doi.org/10.2217/bmm-2022-0462
    50. Francois Brial, Lyamine Hedjazi, Kazuhiro Sonomura, Cynthia Al Hageh, Pierre Zalloua, Fumihiko Matsuda, Dominique Gauguier. Genetic Architecture of Untargeted Lipidomics in Cardiometabolic-Disease Patients Combines Strong Polygenic Control and Pleiotropy. Metabolites 2022, 12 (7) , 596. https://doi.org/10.3390/metabo12070596
    51. Wei Han, Liang Li. Evaluating and minimizing batch effects in metabolomics. Mass Spectrometry Reviews 2022, 41 (3) , 421-442. https://doi.org/10.1002/mas.21672
    52. Olof Gerdur Isberg, Valentina Giunchiglia, James S. McKenzie, Zoltan Takats, Jon Gunnlaugur Jonasson, Sigridur Klara Bodvarsdottir, Margret Thorsteinsdottir, Yuchen Xiang. Automated Cancer Diagnostics via Analysis of Optical and Chemical Images by Deep and Shallow Learning. Metabolites 2022, 12 (5) , 455. https://doi.org/10.3390/metabo12050455
    53. Rabelani Munyai, Maropeng Vellry Raletsena, David Mxolisi Modise. LC-MS Based Metabolomics Analysis of Potato (Solanum tuberosum L.) Cultivars Irrigated with Quicklime Treated Acid Mine Drainage Water. Metabolites 2022, 12 (3) , 221. https://doi.org/10.3390/metabo12030221
    54. Shouquan Wu, Minggui Wang, Miaomiao Zhang, Jian-Qing He. Metabolomics and microbiomes for discovering biomarkers of antituberculosis drugs-induced hepatotoxicity. Archives of Biochemistry and Biophysics 2022, 716 , 109118. https://doi.org/10.1016/j.abb.2022.109118
    55. Kevin Robards, Danielle Ryan. Analyses. 2022, 399-451. https://doi.org/10.1016/B978-0-12-822096-2.00008-6
    56. Seongyong Park, Jaeseok Lee, Shujaat Khan, Abdul Wahab, Minseok Kim. Machine Learning-Based Heavy Metal Ion Detection Using Surface-Enhanced Raman Spectroscopy. Sensors 2022, 22 (2) , 596. https://doi.org/10.3390/s22020596
    57. Taiyun Kim, Owen Tang, Stephen T. Vernon, Katharine A. Kott, Yen Chin Koay, John Park, David E. James, Stuart M. Grieve, Terence P. Speed, Pengyi Yang, Gemma A. Figtree, John F. O’Sullivan, Jean Yee Hwa Yang. A hierarchical approach to removal of unwanted variation for large-scale metabolomics data. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25210-5
    58. Seongyong Park, Jaeseok Lee, Shujaat Khan, Abdul Wahab, Minseok Kim. SERSNet: Surface-Enhanced Raman Spectroscopy Based Biomolecule Detection Using Deep Neural Network. Biosensors 2021, 11 (12) , 490. https://doi.org/10.3390/bios11120490
    59. Sebastiaan van Liempd, Diana Cabrera, Carolin Pilzner, Heike Kollmus, Klaus Schughart, Juan M. Falcón-Pérez. Impaired beta-oxidation increases vulnerability to influenza A infection. Journal of Biological Chemistry 2021, 297 (5) , 101298. https://doi.org/10.1016/j.jbc.2021.101298
    60. Olof Gerdur Isberg, Yuchen Xiang, Sigridur Klara Bodvarsdottir, Jon Gunnlaugur Jonasson, Margret Thorsteinsdottir, Zoltan Takats. The effect of sample age on the metabolic information extracted from formalin-fixed and paraffin embedded tissue samples using desorption electrospray ionization mass spectrometry imaging. Journal of Mass Spectrometry and Advances in the Clinical Lab 2021, 22 , 50-55. https://doi.org/10.1016/j.jmsacl.2021.10.004
    61. Tao Zhang, Can Chen, Kaizhou Xie, Jinyu Wang, Zhiming Pan. Current State of Metabolomics Research in Meat Quality Analysis and Authentication. Foods 2021, 10 (10) , 2388. https://doi.org/10.3390/foods10102388
    62. Genet Minale, Tongchai Saesong, Prapapan Temkitthawon, Neti Waranuch, Nitra Nuengchamnong, Krongkarn Chootip, Natakorn Kamkaew, Teeraporn Kongbangkerd, Jinutda Engsuwan, Kornkanok Ingkaninan. Characterization of Metabolites in Plasma, Urine and Feces of Healthy Participants after Taking Brahmi Essence for Twelve Weeks Using LC-ESI-QTOF-MS Metabolomic Approach. Molecules 2021, 26 (10) , 2944. https://doi.org/10.3390/molecules26102944
    63. Peishun Li, Daniel Sundh, Boyang Ji, Dimitra Lappa, Lingqun Ye, Jens Nielsen, Mattias Lorentzon. Metabolic Alterations in Older Women With Low Bone Mineral Density Supplemented With Lactobacillus reuteri. JBMR Plus 2021, 5 (4) https://doi.org/10.1002/jbm4.10478
    64. Wiley Barton, Owen Cronin, Isabel Garcia‐Perez, Ronan Whiston, Elaine Holmes, Trevor Woods, Catherine B. Molloy, Michael G. Molloy, Fergus Shanahan, Paul D. Cotter, Orla O’Sullivan. The effects of sustained fitness improvement on the gut microbiome: A longitudinal, repeated measures case‐study approach. Translational Sports Medicine 2021, 4 (2) , 174-192. https://doi.org/10.1002/tsm2.215
    65. Kataneh Aalaei, Bekzod Khakimov, Cristian De Gobba, Lilia Ahrné. Digestion patterns of proteins in pasteurized and ultra-high temperature milk using in vitro gastric models of adult and elderly. Journal of Food Engineering 2021, 292 , 110305. https://doi.org/10.1016/j.jfoodeng.2020.110305
    66. Michiel Bongaerts, Ramon Bonte, Serwet Demirdas, Edwin Jacobs, Esmee Oussoren, Ans van der Ploeg, Margreet Wagenmakers, Robert Hofstra, Henk Blom, Marcel Reinders, George Ruijter. Using Out-of-Batch Reference Populations to Improve Untargeted Metabolomics for Screening Inborn Errors of Metabolism. Metabolites 2021, 11 (1) , 8. https://doi.org/10.3390/metabo11010008
    67. N. Penney, W. Barton, J. M. Posma, A. Darzi, G. Frost, P. D. Cotter, E. Holmes, F. Shanahan, O. O’Sullivan, I. Garcia-Perez, . Investigating the Role of Diet and Exercise in Gut Microbe-Host Cometabolism. mSystems 2020, 5 (6) https://doi.org/10.1128/mSystems.00677-20
    68. Lee S. Nguyen, Edi Prifti, Farid Ichou, Monique Leban, Christian Funck-Brentano, Philippe Touraine, Joe-Elie Salem, Anne Bachelot. Effect of congenital adrenal hyperplasia treated by glucocorticoids on plasma metabolome: a machine-learning-based analysis. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-65897-y
    69. Anastasia Tzimou, Stefanos Nikolaidis, Olga Begou, Aikaterina Siopi, Olga Deda, Ioannis Taitzoglou, Georgios Theodoridis, Vassilis Mougios. Effects of Aging, Long-Term and Lifelong Exercise on the Urinary Metabolic Footprint of Rats. Metabolites 2020, 10 (12) , 481. https://doi.org/10.3390/metabo10120481
    70. Miao Yu, Georgia Dolios, Vladimir Yong-Gonzalez, Olle Björkqvist, Elena Colicino, Jonas Halfvarson, Lauren Petrick. Untargeted metabolomics profiling and hemoglobin normalization for archived newborn dried blood spots from a refrigerated biorepository. Journal of Pharmaceutical and Biomedical Analysis 2020, 191 , 113574. https://doi.org/10.1016/j.jpba.2020.113574
    71. Paula Cuevas-Delgado, Danuta Dudzik, Verónica Miguel, Santiago Lamas, Coral Barbas. Data-dependent normalization strategies for untargeted metabolomics—a case study. Analytical and Bioanalytical Chemistry 2020, 412 (24) , 6391-6405. https://doi.org/10.1007/s00216-020-02594-9
    72. Sandip Kumar Patel, Bhawana George, Vineeta Rai. Artificial Intelligence to Decode Cancer Mechanism: Beyond Patient Stratification for Precision Oncology. Frontiers in Pharmacology 2020, 11 https://doi.org/10.3389/fphar.2020.01177
    73. Natasa P. Kalogiouri, Reza Aalizadeh, Marilena E. Dasenaki, Nikolaos S. Thomaidis. Authentication of Greek PDO Kalamata Table Olives: A Novel Non-Target High Resolution Mass Spectrometric Approach. Molecules 2020, 25 (12) , 2919. https://doi.org/10.3390/molecules25122919
    74. Dorna Varshavi, Dorsa Varshavi, Nicola McCarthy, Kirill Veselkov, Hector C. Keun, Jeremy R. Everett. Metabolic characterization of colorectal cancer cells harbouring different KRAS mutations in codon 12, 13, 61 and 146 using human SW48 isogenic cell lines. Metabolomics 2020, 16 (4) https://doi.org/10.1007/s11306-020-01674-2
    75. Julian Pezzatti, Julien Boccard, Santiago Codesido, Yoric Gagnebin, Abhinav Joshi, Didier Picard, Víctor González-Ruiz, Serge Rudaz. Implementation of liquid chromatography–high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples: A tutorial. Analytica Chimica Acta 2020, 1105 , 28-44. https://doi.org/10.1016/j.aca.2019.12.062
    76. Bekzod Khakimov, Nabiollah Mobaraki, Alessia Trimigno, Violetta Aru, Søren Balling Engelsen. Signature Mapping (SigMa): An efficient approach for processing complex human urine 1H NMR metabolomics data. Analytica Chimica Acta 2020, 1108 , 142-151. https://doi.org/10.1016/j.aca.2020.02.025
    77. Jessica R. Allegretti, Zain Kassam, Benjamin H. Mullish, Austin Chiang, Madeline Carrellas, Jonathan Hurtado, Julian R. Marchesi, Julie A.K. McDonald, Alexandros Pechlivanis, Grace F. Barker, Jesús Miguéns Blanco, Isabel Garcia-Perez, Wing Fei Wong, Ylaine Gerardin, Michael Silverstein, Kevin Kennedy, Christopher Thompson. Effects of Fecal Microbiota Transplantation With Oral Capsules in Obese Patients. Clinical Gastroenterology and Hepatology 2020, 18 (4) , 855-863.e2. https://doi.org/10.1016/j.cgh.2019.07.006
    78. Julien Boccard, Serge Rudaz. Analysis of Metabolomics Data—A Chemometrics Perspective. 2020, 483-505. https://doi.org/10.1016/B978-0-12-409547-2.14593-7
    79. Julien Boccard, Víctor González-Ruiz, Santiago Codesido, Serge Rudaz. Mass spectrometry metabolomic data handling for biomarker discovery. 2020, 369-388. https://doi.org/10.1016/B978-0-12-818607-7.00021-9
    80. Tyler Cook, Yinfa Ma, Sanjeewa Gamagedara. Evaluation of statistical techniques to normalize mass spectrometry-based urinary metabolomics data. Journal of Pharmaceutical and Biomedical Analysis 2020, 177 , 112854. https://doi.org/10.1016/j.jpba.2019.112854
    81. Malena Manzi, Gabriel Riquelme, Nicolás Zabalegui, María Eugenia Monge. Improving diagnosis of genitourinary cancers: Biomarker discovery strategies through mass spectrometry-based metabolomics. Journal of Pharmaceutical and Biomedical Analysis 2020, 178 , 112905. https://doi.org/10.1016/j.jpba.2019.112905
    82. Amir Ata Saei, Christian Michel Beusch, Alexey Chernobrovkin, Pierre Sabatier, Bo Zhang, Ülkü Güler Tokat, Eleni Stergiou, Massimiliano Gaetani, Ákos Végvári, Roman A. Zubarev. ProTargetMiner as a proteome signature library of anticancer molecules for functional discovery. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-13582-8
    83. Xiaohui Wei, Nan Chen, Bin Tang, Xuan Luo, Weiwei You, Caihuan Ke. Untargeted metabolomic analysis of the carotenoid-based orange coloration in Haliotis gigantea using GC-TOF-MS. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-51117-9
    84. Pierre Zalloua, Hanane Kadar, Essa Hariri, Layal Abi Farraj, Francois Brial, Lyamine Hedjazi, Aurelie Le Lay, Alexandre Colleu, Justine Dubus, David Touboul, Fumihiko Matsuda, Mark Lathrop, Jeremy K. Nicholson, Marc-Emmanuel Dumas, Dominique Gauguier. Untargeted Mass Spectrometry Lipidomics identifies correlation between serum sphingomyelins and plasma cholesterol. Lipids in Health and Disease 2019, 18 (1) https://doi.org/10.1186/s12944-018-0948-5
    85. Jeremy R. Ash, Melaine A. Kuenemann, Daniel Rotroff, Alison Motsinger-Reif, Denis Fourches. Cheminformatics approach to exploring and modeling trait-associated metabolite profiles. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0366-3
    86. Kei Zaitsu, Saki Noda, Tomomi Ohara, Tasuku Murata, Shinji Funatsu, Koretsugu Ogata, Akira Ishii, Akira Iguchi. Optimal inter-batch normalization method for GC/MS/MS-based targeted metabolomics with special attention to centrifugal concentration. Analytical and Bioanalytical Chemistry 2019, 411 (26) , 6983-6994. https://doi.org/10.1007/s00216-019-02073-w
    87. Kristian Pirttilä, Pernilla Videhult Pierre, Jakob Haglöf, Mikael Engskog, Mikael Hedeland, Göran Laurell, Torbjörn Arvidsson, Curt Pettersson. An LCMS-based untargeted metabolomics protocol for cochlear perilymph: highlighting metabolic effects of hydrogen gas on the inner ear of noise exposed Guinea pigs. Metabolomics 2019, 15 (10) https://doi.org/10.1007/s11306-019-1595-1
    88. Federica Murgia, Ambra Iuculano, Cristina Peddes, Maria Laura Santoru, Laura Tronci, Monica Deiana, Luigi Atzori, Giovanni Monni. Metabolic fingerprinting of chorionic villous samples in normal pregnancy and chromosomal disorders. Prenatal Diagnosis 2019, 39 (10) , 848-858. https://doi.org/10.1002/pd.5461
    89. Munirah Alsaleh, Thomas A. Barbera, Ross H. Andrews, Paiboon Sithithaworn, Narong Khuntikeo, Watcharin Loilome, Puangrat Yongvanit, Isobel J. Cox, Richard R.A. Syms, Elaine Holmes, Simon D. Taylor–Robinson. Mass Spectrometry: A Guide for the Clinician. Journal of Clinical and Experimental Hepatology 2019, 9 (5) , 597-606. https://doi.org/10.1016/j.jceh.2019.04.053
    90. Kui Deng, Fan Zhang, Qilong Tan, Yue Huang, Wei Song, Zhiwei Rong, Zheng-Jiang Zhu, Kang Li, Zhenzi Li. WaveICA: A novel algorithm to remove batch effects for large-scale untargeted metabolomics data based on wavelet analysis. Analytica Chimica Acta 2019, 1061 , 60-69. https://doi.org/10.1016/j.aca.2019.02.010
    91. Jessica R. Allegretti, Zain Kassam, Madeline Carrellas, Benjamin H. Mullish, Julian R. Marchesi, Alexandros Pechlivanis, Mark Smith, Ylaine Gerardin, Sonia Timberlake, Daniel S. Pratt, Joshua R. Korzenik. Fecal Microbiota Transplantation in Patients With Primary Sclerosing Cholangitis: A Pilot Clinical Trial. American Journal of Gastroenterology 2019, 114 (7) , 1071-1079. https://doi.org/10.14309/ajg.0000000000000115
    92. Tanya Monaghan, Benjamin H Mullish, Jordan Patterson, Gane KS Wong, Julian R Marchesi, Huiping Xu, Tahseen Jilani, Dina Kao. Effective fecal microbiota transplantation for recurrent Clostridioides difficile infection in humans is associated with increased signalling in the bile acid-farnesoid X receptor-fibroblast growth factor pathway. Gut Microbes 2019, 10 (2) , 142-148. https://doi.org/10.1080/19490976.2018.1506667
    93. Lucía Olmo‐García, Karin Wendt, Nikolas Kessler, Aadil Bajoub, Alberto Fernández‐Gutiérrez, Carsten Baessmann, Alegría Carrasco‐Pancorbo. Exploring the Capability of LC‐MS and GC‐MS Multi‐Class Methods to Discriminate Virgin Olive Oils from Different Geographical Indications and to Identify Potential Origin Markers. European Journal of Lipid Science and Technology 2019, 121 (3) https://doi.org/10.1002/ejlt.201800336
    94. Simon Moosmang, Maria Pitscheider, Sonja Sturm, Christoph Seger, Herbert Tilg, Maria Halabalaki, Hermann Stuppner. Metabolomic analysis—Addressing NMR and LC-MS related problems in human feces sample preparation. Clinica Chimica Acta 2019, 489 , 169-176. https://doi.org/10.1016/j.cca.2017.10.029
    95. Marynka M. Ulaszewska, Christoph H. Weinert, Alessia Trimigno, Reto Portmann, Cristina Andres Lacueva, René Badertscher, Lorraine Brennan, Carl Brunius, Achim Bub, Francesco Capozzi, Marta Cialiè Rosso, Chiara E. Cordero, Hannelore Daniel, Stéphanie Durand, Bjoern Egert, Paola G. Ferrario, Edith J.M. Feskens, Pietro Franceschi, Mar Garcia‐Aloy, Franck Giacomoni, Pieter Giesbertz, Raúl González‐Domínguez, Kati Hanhineva, Lieselot Y. Hemeryck, Joachim Kopka, Sabine E. Kulling, Rafael Llorach, Claudine Manach, Fulvio Mattivi, Carole Migné, Linda H. Münger, Beate Ott, Gianfranco Picone, Grégory Pimentel, Estelle Pujos‐Guillot, Samantha Riccadonna, Manuela J. Rist, Caroline Rombouts, Josep Rubert, Thomas Skurk, Pedapati S. C. Sri Harsha, Lieven Van Meulebroek, Lynn Vanhaecke, Rosa Vázquez‐Fresno, David Wishart, Guy Vergères. Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. Molecular Nutrition & Food Research 2019, 63 (1) https://doi.org/10.1002/mnfr.201800384
    96. Joshua Heinemann. Machine Learning in Untargeted Metabolomics Experiments. 2019, 287-299. https://doi.org/10.1007/978-1-4939-8757-3_17
    97. David P. Marciano, Michael P. Snyder. Personalized Metabolomics. 2019, 447-456. https://doi.org/10.1007/978-1-4939-9236-2_27
    98. Dieter Galea, Ivan Laponogov, Kirill Veselkov. Data-Driven Visualizations in Metabolic Phenotyping. 2019, 309-328. https://doi.org/10.1016/B978-0-12-812293-8.00010-4
    99. Rui Climaco Pinto, Ibrahim Karaman, Julia C. Fussell, Evangelos Evangelou, Frank J. Kelly, Paul Elliott, Ioanna Tzoulaki. Applications of Metabolic Phenotyping in Epidemiology. 2019, 491-534. https://doi.org/10.1016/B978-0-12-812293-8.00017-7
    100. Marina Wright Muelas, Fernando Ortega, Rainer Breitling, Claus Bendtsen, Hans V. Westerhoff. Rational cell culture optimization enhances experimental reproducibility in cancer cells. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-21050-4
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect