ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Coupled Electrochemical Reactions at Bipolar Microelectrodes and Nanoelectrodes

View Author Information
Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
*Phone: 206-543-1767. E-mail: [email protected]
Cite this: Anal. Chem. 2012, 84, 3, 1609–1616
Publication Date (Web):January 9, 2012
https://doi.org/10.1021/ac2028672
Copyright © 2012 American Chemical Society

    Article Views

    3519

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Here we report the voltammetric study of coupled electrochemical reactions on microelectrodes and nanoelectrodes in a closed bipolar cell. We use steady-state cyclic voltammetry to discuss the overall voltammetric response of closed bipolar electrodes (BPEs) and understand its dependence on the concentration of redox species and electrode size. Much of the previous work in bipolar electroanalytical chemistry has focused on the use of an “open” cell with the BPE located in an open microchannel. A closed BPE, on the other hand, has two poles placed in separate compartments and has remained relatively unexplored in this field. In this work, we demonstrated that carbon-fiber microelectrodes when backfilled with an electrolyte to establish conductivity are closed BPEs. The coupling between the oxidation reaction, e.g., dopamine oxidation, on the carbon disk/cylinder and the reduction of oxygen on the interior fiber is likely to be responsible for the conductivity. We also demonstrated the ability to quantitatively measure voltammetric properties of both the cathodic and anodic poles in a closed bipolar cell from a single cyclic voltammetry (CV) scan. It was found that “secondary” reactions such as oxygen reduction play an important role in this process. We also described the fabrication and use of Pt bipolar nanoelectrodes which may serve as a useful platform for future advances in nanoscale bipolar electrochemistry.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Fabrication of Pt bipolar nanoelectrodes, a table summarizing half-wave potentials and diffusion coefficients of redox species used herein, voltammetric response of additional conventional and bipolar electrodes, and SEM images of pipet-based Pt nano-BPEs. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 119 publications.

    1. Eduardo Laborda, Javier López-Asanza, Angela Molina. Theoretical Framework and Guidelines for the Cyclic Voltammetry of Closed Bipolar Cells. Analytical Chemistry 2023, 95 (47) , 17311-17317. https://doi.org/10.1021/acs.analchem.3c03480
    2. Jeronimo Miranda, Nicholas Humphrey, Rowan Kinney, Riley O’Sullivan, Bradley Thomas, Ivan Elias Mondaca Medina, Ryan Freedman, Eli Fahrenkrug. On-Chip Optical Anodic Stripping with Closed Bipolar Cells and Cathodic Electrochemiluminescence Reporting. ACS Sensors 2021, 6 (11) , 4136-4144. https://doi.org/10.1021/acssensors.1c01664
    3. Yusei Satoh, Hanlin Ding, Hao Yang, Yi Deng, An-Ju Hsueh, Tetsuro Shimizu, Mu Qiao, Chengrui Ma, Koki Kariya, Toshiaki Kurihara, Hiroaki Suzuki. Wired Microfabricated Electrochemical Systems. Analytical Chemistry 2021, 93 (37) , 12655-12663. https://doi.org/10.1021/acs.analchem.1c02461
    4. Nicole L. Walker, Jeffrey E. Dick. Leakless, Bipolar Reference Electrodes: Fabrication, Performance, and Miniaturization. Analytical Chemistry 2021, 93 (29) , 10065-10074. https://doi.org/10.1021/acs.analchem.1c00675
    5. Kira L. Rahn, Robbyn K. Anand. Recent Advancements in Bipolar Electrochemical Methods of Analysis. Analytical Chemistry 2021, 93 (1) , 103-123. https://doi.org/10.1021/acs.analchem.0c04524
    6. Todd J. Anderson, Peter A. Defnet, Bo Zhang. Electrochemiluminescence (ECL)-Based Electrochemical Imaging Using a Massive Array of Bipolar Ultramicroelectrodes. Analytical Chemistry 2020, 92 (9) , 6748-6755. https://doi.org/10.1021/acs.analchem.0c00921
    7. Kosuke Ino, Ryosuke Yaegaki, Kaoru Hiramoto, Yuji Nashimoto, Hitoshi Shiku. Closed Bipolar Electrode Array for On-Chip Analysis of Cellular Respiration by Cell Aggregates. ACS Sensors 2020, 5 (3) , 740-745. https://doi.org/10.1021/acssensors.9b02061
    8. Christian Stolze, Jan P. Meurer, Martin D. Hager, Ulrich S. Schubert. An Amperometric, Temperature-Independent, and Calibration-Free Method for the Real-Time State-of-Charge Monitoring of Redox Flow Battery Electrolytes. Chemistry of Materials 2019, 31 (15) , 5363-5369. https://doi.org/10.1021/acs.chemmater.9b02376
    9. Rabia Djoumer, Agnès Anne, Arnaud Chovin, Christophe Demaille, Corinne Dejous, Hamida Hallil, Jean-Luc Lachaud. Converting Any Faradaic Current Generated at an Electrode under Potentiostatic Control into a Remote Fluorescence Signal. Analytical Chemistry 2019, 91 (10) , 6775-6782. https://doi.org/10.1021/acs.analchem.9b00851
    10. Jia-Dong Zhang, Lei Lu, Xiu-Fang Zhu, Li-Jing Zhang, Shan Yun, Chuan-Song Duanmu, Lei He. Direct Observation of Oxidation Reaction via Closed Bipolar Electrode-Anodic Electrochemiluminescence Protocol: Structural Property and Sensing Applications. ACS Sensors 2018, 3 (11) , 2351-2358. https://doi.org/10.1021/acssensors.8b00736
    11. Samuel T. Barlow, Matthew Louie, Rui Hao, Peter A. Defnet, Bo Zhang. Electrodeposited Gold on Carbon-Fiber Microelectrodes for Enhancing Amperometric Detection of Dopamine Release from Pheochromocytoma Cells. Analytical Chemistry 2018, 90 (16) , 10049-10055. https://doi.org/10.1021/acs.analchem.8b02750
    12. Faleh AlTal, Jun Gao. Laser-Induced Bipolar Electrochemistry—On-Demand Formation of Bipolar Electrodes in a Solid Polymer Light-Emitting Electrochemical Cell. Journal of the American Chemical Society 2018, 140 (30) , 9737-9742. https://doi.org/10.1021/jacs.8b06052
    13. Rui Hao, Yunshan Fan, Chu Han, and Bo Zhang . Bipolar Electrochemistry on a Nanopore-Supported Platinum Nanoparticle Electrode. Analytical Chemistry 2017, 89 (23) , 12652-12658. https://doi.org/10.1021/acs.analchem.7b03300
    14. Rui Hao, Yunshan Fan, and Bo Zhang . Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface. Journal of the American Chemical Society 2017, 139 (35) , 12274-12282. https://doi.org/10.1021/jacs.7b06431
    15. Huanhuan Xing, Xiaowei Zhang, Qingfeng Zhai, Jing Li, and Erkang Wang . Bipolar Electrode Based Reversible Fluorescence Switch Using Prussian Blue/Au Nanoclusters Nanocomposite Film. Analytical Chemistry 2017, 89 (7) , 3867-3872. https://doi.org/10.1021/acs.analchem.7b00246
    16. Xiaowei Zhang, Qingfeng Zhai, Huanhuan Xing, Jing Li, and Erkang Wang . Bipolar Electrodes with 100% Current Efficiency for Sensors. ACS Sensors 2017, 2 (3) , 320-326. https://doi.org/10.1021/acssensors.7b00031
    17. Stephen M. Oja, Donald A. Robinson, Nicholas J. Vitti, Martin A. Edwards, Yuwen Liu, Henry S. White, and Bo Zhang . Observation of Multipeak Collision Behavior during the Electro-Oxidation of Single Ag Nanoparticles. Journal of the American Chemical Society 2017, 139 (2) , 708-718. https://doi.org/10.1021/jacs.6b11143
    18. Hajar Termebaf, Mohsen Shayan, and Abolfazl Kiani . Two-Step Bipolar Electrochemistry: Generation of Composition Gradient and Visual Screening of Electrocatalytic Activity. Langmuir 2015, 31 (48) , 13238-13246. https://doi.org/10.1021/acs.langmuir.5b02945
    19. Marissa Wood and Bo Zhang . Bipolar Electrochemical Method for Dynamic In Situ Control of Single Metal Nanowire Growth. ACS Nano 2015, 9 (3) , 2454-2464. https://doi.org/10.1021/acsnano.5b00139
    20. Mei-Sheng Wu, Zhen Liu, Hai-Wei Shi, Hong-Yuan Chen, and Jing-Juan Xu . Visual Electrochemiluminescence Detection of Cancer Biomarkers on a Closed Bipolar Electrode Array Chip. Analytical Chemistry 2015, 87 (1) , 530-537. https://doi.org/10.1021/ac502989f
    21. G. Loget and P. Schmuki . H2 Mapping on Pt-Loaded TiO2 Nanotube Gradient Arrays. Langmuir 2014, 30 (50) , 15356-15363. https://doi.org/10.1021/la504167c
    22. Stephen M. Oja and Bo Zhang . Imaging Transient Formation of Diffusion Layers with Fluorescence-Enabled Electrochemical Microscopy. Analytical Chemistry 2014, 86 (24) , 12299-12307. https://doi.org/10.1021/ac5035715
    23. Wenjing Qi, Jianping Lai, Wenyue Gao, Suping Li, Saima Hanif, and Guobao Xu . Wireless Electrochemiluminescence with Disposable Minidevice. Analytical Chemistry 2014, 86 (18) , 8927-8931. https://doi.org/10.1021/ac501833a
    24. Stephen M. Oja, Joshua P. Guerrette, Michelle R. David, and Bo Zhang . Fluorescence-Enabled Electrochemical Microscopy with Dihydroresorufin as a Fluorogenic Indicator. Analytical Chemistry 2014, 86 (12) , 6040-6048. https://doi.org/10.1021/ac501194j
    25. Xiaowei Zhang, Jing Li, Xiaofang Jia, Dongyue Li, and Erkang Wang . Full-Featured Electrochemiluminescence Sensing Platform Based on the Multichannel Closed Bipolar System. Analytical Chemistry 2014, 86 (11) , 5595-5599. https://doi.org/10.1021/ac501246k
    26. Najmeh Dorri, Paria Shahbazi, and Abolfazl Kiani . Self-Movement of Water Droplet at the Gradient Nanostructure of Cu Fabricated Using Bipolar Electrochemistry. Langmuir 2014, 30 (5) , 1376-1382. https://doi.org/10.1021/la403566b
    27. Matěj Velický, Kin Y. Tam, and Robert A.W. Dryfe . Mechanism of Ion Transfer in Supported Liquid Membrane Systems: Electrochemical Control over Membrane Distribution. Analytical Chemistry 2014, 86 (1) , 435-442. https://doi.org/10.1021/ac402328w
    28. Xiaowei Zhang, Chaogui Chen, Jing Li, Libing Zhang, and Erkang Wang . New Insight into a Microfluidic-Based Bipolar System for an Electrochemiluminescence Sensing Platform. Analytical Chemistry 2013, 85 (11) , 5335-5339. https://doi.org/10.1021/ac400805f
    29. Stephen E. Fosdick, Sean P. Berglund, C. Buddie Mullins, and Richard M. Crooks . Parallel Screening of Electrocatalyst Candidates Using Bipolar Electrochemistry. Analytical Chemistry 2013, 85 (4) , 2493-2499. https://doi.org/10.1021/ac303581b
    30. Joshua P. Guerrette, Stephen J. Percival, and Bo Zhang . Fluorescence Coupling for Direct Imaging of Electrocatalytic Heterogeneity. Journal of the American Chemical Society 2013, 135 (2) , 855-861. https://doi.org/10.1021/ja310401b
    31. Stephen M. Oja, Marissa Wood, and Bo Zhang . Nanoscale Electrochemistry. Analytical Chemistry 2013, 85 (2) , 473-486. https://doi.org/10.1021/ac3031702
    32. Jonathan T. Cox, Joshua P. Guerrette, and Bo Zhang . Steady-State Voltammetry of a Microelectrode in a Closed Bipolar Cell. Analytical Chemistry 2012, 84 (20) , 8797-8804. https://doi.org/10.1021/ac302219p
    33. Zahra Damirchi, Ali Firoozbakhtian, Morteza Hosseini, Mohammad Reza Ganjali. Ti3C2/Ni/Sm-based electrochemical glucose sensor for sweat analysis using bipolar electrochemistry. Microchimica Acta 2024, 191 (3) https://doi.org/10.1007/s00604-024-06209-3
    34. Nurul Asyikeen Ab Mutalib, An-Ju Hsueh, Yi Deng, Miho Suzuki, Chia-Chien Wu, Yusuke Shirato, Hiroaki Suzuki. Potential Modulation and Control of Redox Reactions at Bipolar Electrodes Using an Ion-Selective Membrane. Journal of The Electrochemical Society 2024, 171 (2) , 027502. https://doi.org/10.1149/1945-7111/ad1c5f
    35. Anna Dettlaff, Joshua Tully, Georgia Wood, Deep Chauhan, Ben Breeze, Lijiang Song, Julie V. Macpherson. A Closed Bipolar Electrochemical Cell for the Interrogation of BDD Single Particles: Electrochemical Advanced Oxidation. Electrochimica Acta 2024, 48 , 144035. https://doi.org/10.1016/j.electacta.2024.144035
    36. Nastaran Arab, Lida Fotouhi, Maryam Shokouhi, Masoud A. Mehrgardi, Andrea Salis. A multichannel closed bipolar platform to visual electrochemiluminescence sensing of caffeic acid as a model: Potential for multiplex detection. Analytica Chimica Acta 2024, 1287 , 342087. https://doi.org/10.1016/j.aca.2023.342087
    37. Hanna Sopha, Mahnaz Alijani, Marcela Sepúlveda, Jan M. Macak. Recent advances in TiO 2 nanotube layers – A mini review of the latest developments in nanotube preparation and applications in photocatalysis and microwave sensing. Nano Select 2023, 29 https://doi.org/10.1002/nano.202300140
    38. Daniel Kaufman, Hadar Ben-Yoav. The effect of ultraviolet photocatalytic oxidation on ferrocyanide electrochemical behavior—An important factor in mediator-based electrochemical sensors. Chemical Engineering Journal 2023, 469 , 143901. https://doi.org/10.1016/j.cej.2023.143901
    39. Eduardo Laborda, Angela Molina. Coupled electron transfer reactions in closed bipolar cells: The impact of asymmetric mass transport. Current Opinion in Electrochemistry 2023, 39 , 101287. https://doi.org/10.1016/j.coelec.2023.101287
    40. Nicole L. Walker, Jeffrey E. Dick. On the mechanism of the bipolar reference electrode. The Analyst 2023, 148 (9) , 2149-2158. https://doi.org/10.1039/D3AN00107E
    41. Haocheng Yin, Chao Tan, Shabnam Siddiqui, Prabhu U. Arumugam. Electrochemical Redox Cycling Behavior of Gold Nanoring Electrodes Microfabricated on a Silicon Micropillar. Micromachines 2023, 14 (4) , 726. https://doi.org/10.3390/mi14040726
    42. Xiang Qin, Jiao Gao, Hua‐Jiang Jin, Zhong‐Qiu Li, Xing‐Hua Xia. Closed Bipolar Electrode Array for Optical Reporting Reaction‐Coupled Electrochemical Sensing and Imaging. Chemistry – A European Journal 2023, 29 (8) https://doi.org/10.1002/chem.202202687
    43. Yu‐Ling Wang, Jun‐Tao Cao, Yan‐Ming Liu. Bipolar Electrochemistry – A Powerful Tool for Micro/Nano‐Electrochemistry. ChemistryOpen 2022, 11 (12) https://doi.org/10.1002/open.202200163
    44. Hitoshi Shiku. Bipolar Electrode Systems for Biosensing. Review of Polarography 2022, 68 (2) , 87-95. https://doi.org/10.5189/revpolarography.68.87
    45. Mani Arivazhagan, Govindhan Maduraiveeran. Gold-dispersed hierarchical flower-like copper oxide microelectrodes for the sensitive detection of glucose and lactic acid in human serum and urine. Biomaterials Science 2022, 10 (16) , 4538-4548. https://doi.org/10.1039/D2BM00527A
    46. R. L. Romano, L. P. Damaceno, D. V. Magalhães, P. Parmananda, H. Varela. Electrical coupling of individual electrocatalytic oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science 2022, 32 (8) https://doi.org/10.1063/5.0098339
    47. Jonathan R. Thompson, Richard M. Crooks. Enriching Cations Using Electric Field Gradients Generated by Bipolar Electrodes in the Absence of Buffer. ChemElectroChem 2022, 9 (10) https://doi.org/10.1002/celc.202200251
    48. Wei Lai, Yi Liang, Yan Su, Chunsun Zhang. Shared-cathode closed bipolar electrochemiluminescence cloth-based chip for multiplex detection. Analytica Chimica Acta 2022, 1206 , 339446. https://doi.org/10.1016/j.aca.2022.339446
    49. Guiren Xu, Ning Peng, Pan Wang, Yuan Xiao. Effect of Bipolar Electrochemical Process on Tunnel Etching Characteristics of Aluminum Foil. Journal of The Electrochemical Society 2022, 169 (3) , 033502. https://doi.org/10.1149/1945-7111/ac4e54
    50. Xiang Qin, Hua‐Jiang Jin, Xiuxiu Li, Jian Li, Jian‐Bin Pan, Kang Wang, Songqin Liu, Jing‐Juan Xu, Xing‐Hua Xia. Label‐Free Electrochemiluminescence Imaging of Single‐Cell Adhesions by Using Bipolar Nanoelectrode Array. Chemistry – A European Journal 2022, 28 (3) https://doi.org/10.1002/chem.202103964
    51. Meng Li, Haoran Li, Hua Su, Wei Wang. Visualizing electron transfer at semiconductor–metal interface by surface plasmon resonance imaging. Journal of Electroanalytical Chemistry 2022, 904 , 115918. https://doi.org/10.1016/j.jelechem.2021.115918
    52. Laurent Bouffier, Dodzi Zigah, Neso Sojic, Alexander Kuhn. Bipolar Electrochemistry. 2021, 1-53. https://doi.org/10.1002/9783527610426.bard030112
    53. Jonathan R. Thompson, Logan M. Wilder, Richard M. Crooks. Filtering and continuously separating microplastics from water using electric field gradients formed electrochemically in the absence of buffer. Chemical Science 2021, 12 (41) , 13744-13755. https://doi.org/10.1039/D1SC03192A
    54. Hanna Sopha, Jhonatan Rodriguez‐Pereira, Veronika Cicmancova, Jan M. Macak. Wireless Anodization of Ti in Closed Bipolar Cells. ChemElectroChem 2021, 8 (20) , 3827-3831. https://doi.org/10.1002/celc.202100799
    55. Todd J. Anderson, Peter A. Defnet, Robin A. Cheung, Bo Zhang. Electrocatalyst Screening on a Massive Array of Closed Bipolar Microelectrodes. Journal of The Electrochemical Society 2021, 168 (10) , 106502. https://doi.org/10.1149/1945-7111/ac2acc
    56. Laurent Bouffier, Dodzi Zigah, Neso Sojic, Alexander Kuhn. Bipolar (Bio)electroanalysis. Annual Review of Analytical Chemistry 2021, 14 (1) , 65-86. https://doi.org/10.1146/annurev-anchem-090820-093307
    57. Rabia Djoumer, Arnaud Chovin, Christophe Demaille, Corinne Dejous, Hamida Hallil. Real‐time Conversion of Electrochemical Currents into Fluorescence Signals Using 8‐Hydroxypyrene‐1,3,6‐trisulfonic Acid (HPTS) and Amplex Red as Fluorogenic Reporters. ChemElectroChem 2021, 8 (12) , 2298-2307. https://doi.org/10.1002/celc.202100517
    58. Abdulghani Ismail, Silvia Voci, Lucie Descamps, Arnaud Buhot, Neso Sojic, Loïc Leroy, Aurélie Bouchet‐Spinelli. Bipolar Electrochemiluminescence Imaging: A Way to Investigate the Passivation of Silicon Surfaces. ChemPhysChem 2021, 22 (11) , 1094-1100. https://doi.org/10.1002/cphc.202100112
    59. Shipra Solanki, Chandra M. Pandey, Rajinder K. Gupta, Bansi D. Malhotra. Nanobioelectrochemistry: Fundamentals and biosensor applications. 2021, 87-128. https://doi.org/10.1016/B978-0-12-820055-1.00004-6
    60. Ping Yu, Huan Wei, Peipei Zhong, Yifei Xue, Fei Wu, Yang Liu, Junjie Fei, Lanqun Mao. Single‐Carbon‐Fiber‐Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angewandte Chemie 2020, 132 (50) , 22841-22847. https://doi.org/10.1002/ange.202010195
    61. Ping Yu, Huan Wei, Peipei Zhong, Yifei Xue, Fei Wu, Yang Liu, Junjie Fei, Lanqun Mao. Single‐Carbon‐Fiber‐Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angewandte Chemie International Edition 2020, 59 (50) , 22652-22658. https://doi.org/10.1002/anie.202010195
    62. Jiadong Zhang, Weijian Yu, Xingyu Jiang, Ye Gao, Guiming Peng. Alternate reporting surfaces in closed bipolar electrode system: A strategy forelectrochemiluminescence sensing of both redox processes. Journal of Electroanalytical Chemistry 2020, 878 , 114705. https://doi.org/10.1016/j.jelechem.2020.114705
    63. Ru-Jia Yu, Yong-Xu Hu, Si-Min Lu, Su-Wen Xu, Yao Lin, Yi-Lun Ying, Yi-Tao Long. A Confined Nanopipette: From Fundamental to Application. 2020, 162-209. https://doi.org/10.1039/9781788013260-00162
    64. Jonathan R. Thompson, Collin D. Davies, Jan Clausmeyer, Richard M. Crooks. Cation‐Specific Electrokinetic Separations Using Prussian Blue Intercalation Reactions. ChemElectroChem 2020, 7 (19) , 4108-4117. https://doi.org/10.1002/celc.202001095
    65. Ewa Jaworska, Agata Michalska, Krzysztof Maksymiuk. Implementation of a Chloride‐selective Electrode Into a Closed Bipolar Electrode System with Fluorimetric Readout. Electroanalysis 2020, 32 (4) , 812-819. https://doi.org/10.1002/elan.201900650
    66. Kira L. Rahn, Tyler D. Rhoades, Robbyn K. Anand. Alternating Current Voltammetry at a Bipolar Electrode with Smartphone Luminescence Imaging for Point‐of‐Need Sensing. ChemElectroChem 2020, 7 (5) , 1172-1181. https://doi.org/10.1002/celc.202000079
    67. Peter A. Defnet, Bo Zhang. Detection of Transient Nanoparticle Collision Events Using Electrochemiluminescence on a Closed Bipolar Microelectrode. ChemElectroChem 2020, 7 (1) , 252-259. https://doi.org/10.1002/celc.201901734
    68. Alonso Gamero-Quijano, Grégoire Herzog, Micheál D. Scanlon. Aqueous surface chemistry of gold mesh electrodes in a closed bipolar electrochemical cell. Electrochimica Acta 2020, 330 , 135328. https://doi.org/10.1016/j.electacta.2019.135328
    69. Jan Vacek, Veronika Ostatná. Bioelektrochemie. 2020https://doi.org/10.5507/lf.20.24457635
    70. Carla Santana Santos, Felipe Conzuelo, Vera Eßmann, Mauro Bertotti, Wolfgang Schuhmann. Enhanced sensitivity of scanning bipolar electrochemical microscopy for O2 detection. Analytica Chimica Acta 2019, 1087 , 36-43. https://doi.org/10.1016/j.aca.2019.08.049
    71. Garrison M. Crouch, Christiana Oh, Kaiyu Fu, Paul W. Bohn. Tunable optical metamaterial-based sensors enabled by closed bipolar electrochemistry. The Analyst 2019, 144 (21) , 6240-6246. https://doi.org/10.1039/C9AN01137D
    72. Nashmil Karimian, Pegah Hashemi, Abbas Afkhami, Hasan Bagheri. The principles of bipolar electrochemistry and its electroanalysis applications. Current Opinion in Electrochemistry 2019, 17 , 30-37. https://doi.org/10.1016/j.coelec.2019.04.015
    73. Hong-Na LI, Dan YANG, Ao-Xue LIU, Guo-Hui LIU, Yu-Ping SHAN, Guo-Cheng YANG, Jin HE. Facile Fabrication of Gold Functionalized Nanopipette for Nanoscale Electrochemistry and Surface Enhanced Raman Spectroscopy. Chinese Journal of Analytical Chemistry 2019, 47 (8) , e19104-e19112. https://doi.org/10.1016/S1872-2040(19)61177-1
    74. Laurent Bouffier, Dragan Manojlovic, Alexander Kuhn, Neso Sojic. Advances in bipolar electrochemiluminescence for the detection of biorelevant molecular targets. Current Opinion in Electrochemistry 2019, 16 , 28-34. https://doi.org/10.1016/j.coelec.2019.04.004
    75. Alonso Gamero-Quijano, Andrés F. Molina-Osorio, Pekka Peljo, Micheál D. Scanlon. Closed bipolar electrochemistry in a four-electrode configuration. Physical Chemistry Chemical Physics 2019, 21 (19) , 9627-9640. https://doi.org/10.1039/C9CP00774A
    76. Kaiyu Fu, Wei Xu, Jiayun Hu, Arielle Lopez, Paul W. Bohn. Microscale and Nanoscale Electrophotonic Diagnostic Devices. Cold Spring Harbor Perspectives in Medicine 2019, 9 (5) , a034249. https://doi.org/10.1101/cshperspect.a034249
    77. Muzhen Xu, Yue Zhang, Kai Wang, Jinpeng Mao, Wenliang Ji, Wanling Qiu, Taotao Feng, Meining Zhang, Lanqun Mao. Nanoskiving fabrication of size-controlled Au nanowire electrodes for electroanalysis. The Analyst 2019, 144 (9) , 2914-2921. https://doi.org/10.1039/C9AN00122K
    78. Haocheng Yin, Chao Tan, Shabnam Siddiqui, Prabhu U. Arumugam. Electrochemical behavior of a gold nanoring electrode microfabricated on a silicon micropillar. Sensors and Actuators B: Chemical 2019, 281 , 392-398. https://doi.org/10.1016/j.snb.2018.10.097
    79. Jia-Dong Zhang, Nan Hao, Lei Lu, Shan Yun, Xiu-Fang Zhu, Kun Hong, Liang-Dong Feng. High-efficient preparation and screening of electrocatalysts using a closed bipolar electrode array system. Journal of Electroanalytical Chemistry 2019, 832 , 1-6. https://doi.org/10.1016/j.jelechem.2018.10.025
    80. Cuiling Liu, Dan Wang, Chunsun Zhang. A novel paperfluidic closed bipolar electrode-electrochemiluminescence sensing platform: Potential for multiplex detection at crossing-channel closed bipolar electrodes. Sensors and Actuators B: Chemical 2018, 270 , 341-352. https://doi.org/10.1016/j.snb.2018.04.180
    81. Ewa Jaworska, Agata Michalska, Krzysztof Maksymiuk. Fluorimetric readout of ion-selective electrode potential changes. Electrochimica Acta 2018, 284 , 321-327. https://doi.org/10.1016/j.electacta.2018.07.130
    82. Antonios P. Hadjixenis, Jan Hrbac, Mamas I. Prodromidis. Bipolar electrochemical detection of reducing compounds based on visual observation of a metal electrodeposited track at the onset driving voltage. Sensors and Actuators B: Chemical 2018, 268 , 529-534. https://doi.org/10.1016/j.snb.2018.04.066
    83. Kumi Y. Inoue, Miho Ikegawa, Takahiro Ito‐Sasaki, Shinichiro Takano, Hitoshi Shiku, Tomokazu Matsue. Simultaneous Multiplex Potentiostatic Electroanalysis with Liquid‐Junction‐Removed Reference Electrode System using a Closed Bipolar Electrode. ChemElectroChem 2018, 5 (16) , 2167-2170. https://doi.org/10.1002/celc.201800536
    84. Siti Masturah binti Fakhruddin, Kumi Y. Inoue, Ryoto Tsuga, Tomokazu Matsue. Closed bipolar electrode system for a liquid-junction-free reference electrode integrated in an amperometric probe sensor. Electrochemistry Communications 2018, 93 , 62-65. https://doi.org/10.1016/j.elecom.2018.06.006
    85. Tomoki Iwama, Kumi Y. Inoue, Hiroya Abe, Tomokazu Matsue. Chemical Imaging Using a Closed Bipolar Electrode Array. Chemistry Letters 2018, 47 (7) , 843-845. https://doi.org/10.1246/cl.180303
    86. Songyan Yu, Masoud Mehrgardi, Curtis Shannon. A bipolar electrochemical sensor with square wave excitation and ECL readout. Electrochemistry Communications 2018, 88 , 24-28. https://doi.org/10.1016/j.elecom.2018.01.013
    87. Xue Yu, Jiying Liang, Tiangang Yang, Mengjie Gong, Dongman Xi, Hongyun Liu. A resettable and reprogrammable keypad lock based on electrochromic Prussian blue films and biocatalysis of immobilized glucose oxidase in a bipolar electrode system. Biosensors and Bioelectronics 2018, 99 , 163-169. https://doi.org/10.1016/j.bios.2017.07.054
    88. . Chapter 2 Recent Advances in Bipolar Electrochemistry. 2017, 27-118. https://doi.org/10.1201/9781315270302-3
    89. Qing Zheng, Jie Zhang, Yifan Yang, Xiaofang Wang, Kejian Ding, Huibo Shao. Regulating the Intermolecular Hydrogen Bonding: The Reversible Assembly and Disassembly in the Diffusion Layer. Journal of The Electrochemical Society 2017, 164 (2) , H97-H103. https://doi.org/10.1149/2.0021704jes
    90. Xiaowei Zhang, Qingfeng Zhai, Li Xu, Jing Li, Erkang Wang. Paper-based electrochemiluminescence bipolar conductivity sensing mechanism: A critical supplement for the bipolar system. Journal of Electroanalytical Chemistry 2016, 781 , 15-19. https://doi.org/10.1016/j.jelechem.2016.07.009
    91. Jia-Dong Zhang, Wei-Wei Zhao, Jing-Juan Xu, Hong-Yuan Chen. Electrochemical behaviors in closed bipolar system with three-electrode driving mode. Journal of Electroanalytical Chemistry 2016, 781 , 56-61. https://doi.org/10.1016/j.jelechem.2016.10.017
    92. César A. C. Sequeira, David S. P. Cardoso, M. Lurdes F. Gameiro. Bipolar Electrochemistry, a Focal Point of Future Research. Chemical Engineering Communications 2016, 203 (8) , 1001-1008. https://doi.org/10.1080/00986445.2016.1147031
    93. Hai-Wei Shi, Wei Zhao, Zhen Liu, Xi-Cheng Liu, Mei-Sheng Wu, Jing-Juan Xu, Hong-Yuan Chen. Joint enhancement strategy applied in ECL biosensor based on closed bipolar electrodes for the detection of PSA. Talanta 2016, 154 , 169-174. https://doi.org/10.1016/j.talanta.2016.03.059
    94. Shinichiro Takano, Kumi Y. Inoue, Miho Ikegawa, Yasufumi Takahashi, Kosuke Ino, Hitoshi Shiku, Tomokazu Matsue. Liquid-junction-free system for substitutional stripping voltammetry using a closed bipolar electrode system. Electrochemistry Communications 2016, 66 , 34-37. https://doi.org/10.1016/j.elecom.2016.02.014
    95. Lei Wang, Wenjing Lian, Hongyun Liu. A Resettable Keypad Lock with Visible Readout Based on Closed Bipolar Electrochemistry and Electrochromic Poly(3‐methylthiophene) Films. Chemistry – A European Journal 2016, 22 (14) , 4825-4832. https://doi.org/10.1002/chem.201504812
    96. Gabriel Loget, Bruno Fabre. Light‐Driven Bipolar Electrochemical Logic Gates with Electrical or Optical Outputs. ChemElectroChem 2016, 3 (3) , 366-371. https://doi.org/10.1002/celc.201500345
    97. Stephen M. Oja, Bo Zhang. Electrogenerated Chemiluminescence Reporting on Closed Bipolar Microelectrodes and the Influence of Electrode Size. ChemElectroChem 2016, 3 (3) , 457-464. https://doi.org/10.1002/celc.201500352
    98. Michael Ongaro, Arianna Gambirasi, Paolo Ugo. Closed Bipolar Electrochemistry for the Low‐Potential Asymmetrical Functionalization of Micro‐ and Nanowires. ChemElectroChem 2016, 3 (3) , 450-456. https://doi.org/10.1002/celc.201500355
    99. Wei Xu, Chaoxiong Ma, Paul W. Bohn. Coupling of Independent Electrochemical Reactions and Fluorescence at Closed Bipolar Interdigitated Electrode Arrays. ChemElectroChem 2016, 3 (3) , 422-428. https://doi.org/10.1002/celc.201500366
    100. Anders Lundgren, Sara Munktell, Matthew Lacey, Mattias Berglin, Fredrik Björefors. Formation of Gold Nanoparticle Size and Density Gradients via Bipolar Electrochemistry. ChemElectroChem 2016, 3 (3) , 378-382. https://doi.org/10.1002/celc.201500413
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect