Direct Quantification of MicroRNA at Low Picomolar Level in Sera of Glioma Patients Using a Competitive Hybridization Followed by Amplified Voltammetric DetectionClick to copy article linkArticle link copied!
Abstract
MicroRNAs (miRNAs), acting as oncogenes or tumor suppressors in humans, play a key role in regulating gene expression and are believed to be important for developing novel therapeutic treatments and clinical prognoses. Due to their short lengths (17–25 nucleotides) and extremely low concentrations (typically < picomolar) in biological samples, quantification of miRNAs has been challenging to conventional biochemical methods, such as Northern blotting, microarray, and quantitative polymerase chain reaction (qPCR). In this work, a biotinylated miRNA (biotin-miRNA) whose sequence is the same as that of a miRNA target is introduced into samples of interest and allowed to compete with the miRNA target for the oligonucleotide (ODN) probe preimmobilized onto an electrode. Voltammetric quantification of the miRNA target was accomplished after complexation of the biotin-miRNA with ferrocene (Fc)-capped gold nanoparticle/streptavidin conjugates. The Fc oxidation current was found to be inversely proportional to the concentration of target miRNA between 10 fM and 2.0 pM. The method is highly reproducible (relative standard deviation (RSD) < 5%), regenerable (at least 8 regeneration/assay cycles without discernible signal decrease), and selective (with sequence specificity down to a single nucleotide mismatch). The low detection levels (10 fM or 0.1 attomoles of miRNA in a 10 μL solution) allow the direct quantification of miRNA-182, a marker correlated to the progression of glioma in patients, to be performed in serum samples without sample pretreatment and RNA extraction and enrichment. The concentration of miRNA-182 in glioma patients was found to be 3.1 times as high as that in healthy persons, a conclusion in excellent agreement with a separate qPCR measurement of the expression level. The obviations of the requirement of an internal reference in qPCR, simplicity, and cost-effectiveness are other additional advantages of this method for detection of nucleic acids in clinical samples.
Cited By
This article is cited by 98 publications.
- Ying Wan, Huan Wang, Jinyu Ji, Kai Kang, Meng Yang, Yaqi Huang, Yan Su, Kefeng Ma, Longyi Zhu, Shengyuan Deng. Zippering DNA Tetrahedral Hyperlink for Ultrasensitive Electrochemical MicroRNA Detection. Analytical Chemistry 2020, 92
(22)
, 15137-15144. https://doi.org/10.1021/acs.analchem.0c03553
- Hanwen Lu, Tang Hailin, Xinyao Yi, Jianxiu Wang. Three-Dimensional DNA Nanomachine Combined with Toehold-Mediated Strand Displacement Reaction for Sensitive Electrochemical Detection of MiRNA. Langmuir 2020, 36
(36)
, 10708-10714. https://doi.org/10.1021/acs.langmuir.0c01415
- Qi Zhang, Jia Liu, Yueru Dong, Wei Li, Rongrong Xing, Yanyan Ma, Zhen Liu. Gold Nanoparticle-Decorated Ag@SiO2 Nanocomposite-Based Plasmonic Affinity Sandwich Assay of Circulating MicroRNAs in Human Serum. ACS Applied Nano Materials 2019, 2
(6)
, 3960-3970. https://doi.org/10.1021/acsanm.9b00855
- Jingrui Wang, Zhixuan Lu, Hailin Tang, Ling Wu, Zixiao Wang, Minghua Wu, Xinyao Yi, and Jianxiu Wang . Multiplexed Electrochemical Detection of MiRNAs from Sera of Glioma Patients at Different Stages via the Novel Conjugates of Conducting Magnetic Microbeads and Diblock Oligonucleotide-Modified Gold Nanoparticles. Analytical Chemistry 2017, 89
(20)
, 10834-10840. https://doi.org/10.1021/acs.analchem.7b02342
- Josip Ivica, Philip T. F. Williamson, and Maurits R. R. de Planque . Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore. Analytical Chemistry 2017, 89
(17)
, 8822-8829. https://doi.org/10.1021/acs.analchem.7b01246
- Mahmoud Labib, Edward H. Sargent, and Shana O. Kelley . Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chemical Reviews 2016, 116
(16)
, 9001-9090. https://doi.org/10.1021/acs.chemrev.6b00220
- Wei Wang, Tao Kong, Dong Zhang, Jinan Zhang, and Guosheng Cheng . Label-Free MicroRNA Detection Based on Fluorescence Quenching of Gold Nanoparticles with a Competitive Hybridization. Analytical Chemistry 2015, 87
(21)
, 10822-10829. https://doi.org/10.1021/acs.analchem.5b01930
- Wen Zhou, Xia Gao, Dingbin Liu, and Xiaoyuan Chen . Gold Nanoparticles for In Vitro Diagnostics. Chemical Reviews 2015, 115
(19)
, 10575-10636. https://doi.org/10.1021/acs.chemrev.5b00100
- Tanyu Wang, Emilie Viennois, Didier Merlin, and Gangli Wang . Microelectrode miRNA Sensors Enabled by Enzymeless Electrochemical Signal Amplification. Analytical Chemistry 2015, 87
(16)
, 8173-8180. https://doi.org/10.1021/acs.analchem.5b00780
- Fengye Li, Jing Peng, Qiong Zheng, Xiang Guo, Hao Tang, and Shouzhuo Yao . Carbon Nanotube-Polyamidoamine Dendrimer Hybrid-Modified Electrodes for Highly Sensitive Electrochemical Detection of MicroRNA24. Analytical Chemistry 2015, 87
(9)
, 4806-4813. https://doi.org/10.1021/acs.analchem.5b00093
- Fang-Fang Cheng, Ting-Ting He, Hai-Tiao Miao, Jian-Jun Shi, Li-Ping Jiang, and Jun-Jie Zhu . Electron Transfer Mediated Electrochemical Biosensor for MicroRNAs Detection Based on Metal Ion Functionalized Titanium Phosphate Nanospheres at Attomole Level. ACS Applied Materials & Interfaces 2015, 7
(4)
, 2979-2985. https://doi.org/10.1021/am508690x
- Mahmoud Labib, Nasrin Khan, and Maxim V. Berezovski . Protein Electrocatalysis for Direct Sensing of Circulating MicroRNAs. Analytical Chemistry 2015, 87
(2)
, 1395-1403. https://doi.org/10.1021/ac504331c
- Cuiyun Yang, Baoting Dou, Kai Shi, Yaqin Chai, Yun Xiang, and Ruo Yuan . Multiplexed and Amplified Electronic Sensor for the Detection of MicroRNAs from Cancer Cells. Analytical Chemistry 2014, 86
(23)
, 11913-11918. https://doi.org/10.1021/ac503860d
- Guichi Zhu, Li Liang, and Chun-yang Zhang . Quencher-Free Fluorescent Method for Homogeneously Sensitive Detection of MicroRNAs in Human Lung Tissues. Analytical Chemistry 2014, 86
(22)
, 11410-11416. https://doi.org/10.1021/ac503365z
- Osvaldo N. Oliveira, Jr., Rodrigo M. Iost, José R. Siqueira, Jr., Frank N. Crespilho, and Luciano Caseli . Nanomaterials for Diagnosis: Challenges and Applications in Smart Devices Based on Molecular Recognition. ACS Applied Materials & Interfaces 2014, 6
(17)
, 14745-14766. https://doi.org/10.1021/am5015056
- Pengbo Zhang, Jiangyan Zhang, Chengli Wang, Chenghui Liu, Hui Wang, and Zhengping Li . Highly Sensitive and Specific Multiplexed MicroRNA Quantification Using Size-Coded Ligation Chain Reaction. Analytical Chemistry 2014, 86
(2)
, 1076-1082. https://doi.org/10.1021/ac4026384
- Bin-Cheng Yin, Yu-Qiang Liu, and Bang-Ce Ye . Sensitive Detection of MicroRNA in Complex Biological Samples via Enzymatic Signal Amplification Using DNA Polymerase Coupled with Nicking Endonuclease. Analytical Chemistry 2013, 85
(23)
, 11487-11493. https://doi.org/10.1021/ac403302a
- Ying Li, Li Liang, and Chun-yang Zhang . Isothermally Sensitive Detection of Serum Circulating miRNAs for Lung Cancer Diagnosis. Analytical Chemistry 2013, 85
(23)
, 11174-11179. https://doi.org/10.1021/ac403462f
- Liang Wu, Xiaohua Zhang, Wei Liu, Erhu Xiong, and Jinhua Chen . Sensitive Electrochemical Aptasensor by Coupling “Signal-on’’ and “Signal-off’’ Strategies. Analytical Chemistry 2013, 85
(17)
, 8397-8402. https://doi.org/10.1021/ac401810t
- Haifeng Dong, Jianping Lei, Lin Ding, Yongqiang Wen, Huangxian Ju, and Xueji Zhang . MicroRNA: Function, Detection, and Bioanalysis. Chemical Reviews 2013, 113
(8)
, 6207-6233. https://doi.org/10.1021/cr300362f
- Gabriel BK. Sasa, Biaxun He, Chong Chen, Zetao Chen, Shuang Li, Cherie S. Tan. A Dual-Targeted Electrochemical Aptasensor for Neuroblastoma-related microRNAs Detection. Talanta 2024, 3 , 126772. https://doi.org/10.1016/j.talanta.2024.126772
- Ruyue Wei, Kaixian Wang, Xiaohan Liu, Mingwan Shi, Wei Pan, Na Li, Bo Tang. Stimuli-responsive probes for amplification-based imaging of miRNAs in living cells. Biosensors and Bioelectronics 2023, 239 , 115584. https://doi.org/10.1016/j.bios.2023.115584
- Dilek Eskiköy Bayraktepe, Ceren Yıldız, Zehra Yazan. The development of electrochemical DNA biosensor based on poly-l-methionine and bimetallic AuPt nanoparticles coating: Picomolar detection of Imatinib and Erlotinib. Talanta 2023, 257 , 124361. https://doi.org/10.1016/j.talanta.2023.124361
- Monalisha Ghosh Dastidar, Ulrike Schumann, Teng Lu, Yun Liu, David R. Nisbet, Riccardo Natoli, Krishnan Murugappan, Antonio Tricoli. A simple yet highly sensitive and selective aptasensor architecture for rapid and portable miRNA detection. Chemical Engineering Journal 2023, 454 , 140186. https://doi.org/10.1016/j.cej.2022.140186
- Riham Zayani, Amira Ben Hassine, Amal Rabti, Amal Raouafi, Noureddine Raouafi. Electrochemical and Optical Detection of MicroRNAs as Biomarkers for Cancer Diagnosis. 2023, 272-348. https://doi.org/10.2174/9789815079364123010016
- Anisa Kaur, Roaa Mahmoud, Anoja Megalathan, Sydney Pettit, Soma Dhakal. Multiplexed smFRET Nucleic Acid Sensing Using DNA Nanotweezers. Biosensors 2023, 13
(1)
, 119. https://doi.org/10.3390/bios13010119
- Sijia Chen, Yuhan He, Lin Liu, Jianxiu Wang, Xinyao Yi. DNA walking system integrated with enzymatic cleavage reaction for sensitive surface plasmon resonance detection of miRNA. Scientific Reports 2022, 12
(1)
https://doi.org/10.1038/s41598-022-20453-8
- Amira Ben Hassine, Riham Zayani, Mohamed Zouari, Noureddine Raouafi. Circulating miRNAs as biomarkers for noninvasive cancer diagnosis. 2022, 71-112. https://doi.org/10.1016/B978-0-12-822859-3.00021-3
- Yong Chang, Xiaohua Ma, Ting Sun, Lin Liu, Yuanqiang Hao. Electrochemical detection of kinase by converting homogeneous analysis into heterogeneous assay through avidin-biotin interaction. Talanta 2021, 234 , 122649. https://doi.org/10.1016/j.talanta.2021.122649
- Hamza Ali, Romée Harting, Ralph de Vries, Meedie Ali, Thomas Wurdinger, Myron G. Best. Blood-Based Biomarkers for Glioma in the Context of Gliomagenesis: A Systematic Review. Frontiers in Oncology 2021, 11 https://doi.org/10.3389/fonc.2021.665235
- Mahboobe Moazampour, Hamid R. Zare, Zahra Shekari. Femtomolar determination of an ovarian cancer biomarker (miR-200a) in blood plasma using a label free electrochemical biosensor based on
l
-cysteine functionalized ZnS quantum dots. Analytical Methods 2021, 13
(17)
, 2021-2029. https://doi.org/10.1039/D1AY00330E
- Daohong Wu, Hanwen Lu, Jingrui Wang, Ling Wu, Lin Liu, Xinyao Yi, Jianxiu Wang, Hailin Tang. Amplified electrochemical detection of circular RNA in breast cancer patients using ferrocene-capped gold nanoparticle/streptavidin conjugates. Microchemical Journal 2021, 164 , 106066. https://doi.org/10.1016/j.microc.2021.106066
- Daohong Wu, Yuhan He, Liujuan Tong, Jianxiu Wang, Lin Liu, Xinyao Yi, Shengqiang Hu. Electrochemical determination of caspase-3 using signal amplification by HeLa cells modified with silver nanoparticles. Microchimica Acta 2021, 188
(4)
https://doi.org/10.1007/s00604-021-04765-6
- Jianjian Zhuang, Haitao Wan, Xiaobo Zhang. Electrochemical detection of miRNA-100 in the sera of gastric cancer patients based on DSN-assisted amplification. Talanta 2021, 225 , 121981. https://doi.org/10.1016/j.talanta.2020.121981
- Raina M. Borum, Jesse V. Jokerst. Hybridizing clinical translatability with enzyme-free DNA signal amplifiers: recent advances in nucleic acid detection and imaging. Biomaterials Science 2021, 9
(2)
, 347-366. https://doi.org/10.1039/D0BM00931H
- Riham Zayani, Amal Rabti, Sami Ben Aoun, Noureddine Raouafi. Fluorescent and electrochemical bimodal bioplatform for femtomolar detection of microRNAs in blood sera. Sensors and Actuators B: Chemical 2021, 327 , 128950. https://doi.org/10.1016/j.snb.2020.128950
- Sharel P.E., Thomas S. Miller, Lingcong Meng, Patrick R. Unwin, Julie V. Macpherson. Quantitative trace level voltammetry in the presence of electrode fouling agents: Comparison of single-walled carbon nanotube network electrodes and screen-printed carbon electrodes. Journal of Electroanalytical Chemistry 2020, 872 , 114137. https://doi.org/10.1016/j.jelechem.2020.114137
- Ming La, Yintang Zhang, Yanping Gao, Mengke Li, Lin Liu, Yong Chang. Impedimetric Detection of MicroRNAs by the Signal Amplification of Streptavidin Induced In Situ Formation of Biotin Phenylalanine Nanoparticle Networks. Journal of The Electrochemical Society 2020, 167
(11)
, 117505. https://doi.org/10.1149/1945-7111/aba1a8
- Li Pan, Huaisheng Zhang, Jingjin Zhao, Ifedayo Victor Ogungbe, Shulin Zhao, Yi‐Ming Liu. A New One‐Pot Fluorescence Derivatization Strategy for Highly Sensitive MicroRNA Analysis. Chemistry – A European Journal 2020, 26
(25)
, 5639-5647. https://doi.org/10.1002/chem.201905639
- Abbas Sabahi, Razieh Salahandish, Ali Ghaffarinejad, Eskandar Omidinia. Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer. Talanta 2020, 209 , 120595. https://doi.org/10.1016/j.talanta.2019.120595
- Roger M. Pallares, Nguyen Thi Kim Thanh, Xiaodi Su. Sensing of circulating cancer biomarkers with metal nanoparticles. Nanoscale 2019, 11
(46)
, 22152-22171. https://doi.org/10.1039/C9NR03040A
- Shereen M. Azab, Heba K.A. Elhakim, Amany M. Fekry. The strategy of nanoparticles and the flavone chrysin to quantify miRNA-let 7a in zepto-molar level: Its application as tumor marker. Journal of Molecular Structure 2019, 1196 , 647-652. https://doi.org/10.1016/j.molstruc.2019.06.111
- Jiafu Chang, Haiyin Li, Feng Li. Diffusivity and intercalation of electroactive dyes-mediated truly ratiometric homogeneous electrochemical strategy for highly sensitive biosensing. Chemical Communications 2019, 55
(71)
, 10603-10606. https://doi.org/10.1039/C9CC05022A
- Krissana Khoothiam, Kiatnida Treerattrakoon, Tawin Iempridee, Patraporn Luksirikul, Tararaj Dharakul, Deanpen Japrung. Ultrasensitive detection of lung cancer-associated miRNAs by multiple primer-mediated rolling circle amplification coupled with a graphene oxide fluorescence-based (MPRCA-GO) sensor. The Analyst 2019, 144
(14)
, 4180-4187. https://doi.org/10.1039/C9AN00517J
- Roberta D’Agata, Giuseppe Spoto. Advanced methods for microRNA biosensing: a problem-solving perspective. Analytical and Bioanalytical Chemistry 2019, 411
(19)
, 4425-4444. https://doi.org/10.1007/s00216-019-01621-8
- Jiasheng Wang, Ni Hui. Electrochemical functionalization of polypyrrole nanowires for the development of ultrasensitive biosensors for detecting microRNA. Sensors and Actuators B: Chemical 2019, 281 , 478-485. https://doi.org/10.1016/j.snb.2018.10.131
- Philip Gillespie, Sylvain Ladame, Danny O'Hare. Molecular methods in electrochemical microRNA detection. The Analyst 2019, 144
(1)
, 114-129. https://doi.org/10.1039/C8AN01572D
- Hanwen Lu, Ling Wu, Jingrui Wang, Zixiao Wang, Xinyao Yi, Jianxiu Wang, Nan Wang. Voltammetric determination of the Alzheimer’s disease-related ApoE 4 gene from unamplified genomic DNA extracts by ferrocene-capped gold nanoparticles. Microchimica Acta 2018, 185
(12)
https://doi.org/10.1007/s00604-018-3087-9
- Zahra Aghili, Navid Nasirizadeh, Adeleh Divsalar, Shahram Shoeibi, Parichehreh Yaghmaei. A highly sensitive miR-195 nanobiosensor for early detection of Parkinson’s disease. Artificial Cells, Nanomedicine, and Biotechnology 2018, 46
(sup1)
, 32-40. https://doi.org/10.1080/21691401.2017.1411930
- Joon Young Lee, Byoung Yeon Won, Hyun Gyu Park. Label‐Free Multiplex DNA Detection Utilizing Projected Capacitive Touchscreen. Biotechnology Journal 2018, 13
(2)
https://doi.org/10.1002/biot.201700362
- Tugba Kilic, Arzum Erdem, Mehmet Ozsoz, Sandro Carrara. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques. Biosensors and Bioelectronics 2018, 99 , 525-546. https://doi.org/10.1016/j.bios.2017.08.007
- Leilei Liu, Yong Chang, Ning Xia, Peizhen Peng, Liping Zhang, Mengsha Jiang, Jiebin Zhang, Lin Liu. Simple, sensitive and label–free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification. Biosensors and Bioelectronics 2017, 94 , 235-242. https://doi.org/10.1016/j.bios.2017.02.041
- Arzum Erdem, Ece Eksin, Deniz Isin, Derya Polat. Graphene Oxide Modified Chemically Activated Graphite Electrodes for Detection of microRNA. Electroanalysis 2017, 29
(5)
, 1350-1358. https://doi.org/10.1002/elan.201600761
- M. Zouari, S. Campuzano, J.M. Pingarrón, N. Raouafi. Competitive RNA-RNA hybridization-based integrated nanostructured-disposable electrode for highly sensitive determination of miRNAs in cancer cells. Biosensors and Bioelectronics 2017, 91 , 40-45. https://doi.org/10.1016/j.bios.2016.12.033
- Xinyao Yi, Zhixuan Lu, Yu Kong, Zhuo Chen. Label-Free Electrochemical Detection of MicroRNAs via Intercalation of Hemin into the DNA/RNA Hybridization. International Journal of Electrochemical Science 2017, 12
(4)
, 2813-2821. https://doi.org/10.20964/2017.04.33
- Susana Campuzano, Paloma Yáñez-Sedeño, José Pingarrón. Electrochemical Genosensing of Circulating Biomarkers. Sensors 2017, 17
(4)
, 866. https://doi.org/10.3390/s17040866
- Susana Campuzano, María Pedrero, José M. Pingarrón. Electrochemical Nucleic Acid-Based Strategies for miRNAs Determination. 2017, 179-205. https://doi.org/10.1016/bs.coac.2017.05.005
- Hui Zhao, Feng Liu, Shilian Wu, Long Yang, Ya-Ping Zhang, Can-Peng Li. Ultrasensitive electrochemical detection of Dicer1 3′UTR for the fast analysis of alternative cleavage and polyadenylation. Nanoscale 2017, 9
(12)
, 4272-4282. https://doi.org/10.1039/C6NR09300K
- Chenggong Xu, Xu Wang, Hui Li, Cong Han, Jingfeng Wang, Yu Wang, Su Liu, Jiadong Huang. Branched RCA coupled with a NESA-based fluorescence assay for ultrasensitive detection of miRNA. New Journal of Chemistry 2017, 41
(13)
, 5355-5361. https://doi.org/10.1039/C7NJ00404D
- Zhixuan Lu, Hailin Tang, Daohong Wu, Yonghong Xia, Minghua Wu, Xinyao Yi, Hengfeng Li, Jianxiu Wang. Amplified voltammetric detection of miRNA from serum samples of glioma patients via combination of conducting magnetic microbeads and ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosensors and Bioelectronics 2016, 86 , 502-507. https://doi.org/10.1016/j.bios.2016.07.010
- Mostafa Azimzadeh, Mahdi Rahaie, Navid Nasirizadeh, Khadijeh Ashtari, Hossein Naderi-Manesh. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosensors and Bioelectronics 2016, 77 , 99-106. https://doi.org/10.1016/j.bios.2015.09.020
- Xin Yu, Zheng Li. Serum microRNAs as potential noninvasive biomarkers for glioma. Tumor Biology 2016, 37
(2)
, 1407-1410. https://doi.org/10.1007/s13277-015-4515-7
- Jing Zhang, Dong-Zhi Wu, Shu-Xian Cai, Mei Chen, Yao-Kun Xia, Fang Wu, Jing-Hua Chen. An immobilization-free electrochemical impedance biosensor based on duplex-specific nuclease assisted target recycling for amplified detection of microRNA. Biosensors and Bioelectronics 2016, 75 , 452-457. https://doi.org/10.1016/j.bios.2015.09.006
- Yusuke Sato, Hiroki Saito, Daisuke Aoki, Norio Teramae, Seiichi Nishizawa. Lysine linkage in abasic site-binding ligand–thiazole orange conjugates for improved binding affinity to orphan nucleobases in DNA/RNA hybrids. Chemical Communications 2016, 52
(100)
, 14446-14449. https://doi.org/10.1039/C6CC07236D
- Tugba Kilic, Merve Kaplan, Sibel Demiroglu, Arzum Erdem, Mehmet Ozsoz. Label-Free Electrochemical Detection of MicroRNA-122 in Real Samples by Graphene Modified Disposable Electrodes. Journal of The Electrochemical Society 2016, 163
(6)
, B227-B233. https://doi.org/10.1149/2.0481606jes
- Michela Visani, Giorgia Acquaviva, Sirio Fiorino, Maria Letizia Bacchi Reggiani, Michele Masetti, Enrico Franceschi, Adele Fornelli, Elio Jovine, Carlo Fabbri, Alba A Brandes, Giovanni Tallini, Annalisa Pession, Dario de Biase. Contribution of microRNA analysis to characterisation of pancreatic lesions: a review. Journal of Clinical Pathology 2015, 68
(11)
, 859-869. https://doi.org/10.1136/jclinpath-2015-203246
- Jingzhuan Wan, Xuhui Liu, Yonghua Zhang, Qiang Gao, Honglan Qi, Chengxiao Zhang. Sensitive impedimetric detection of microRNAs using a hairpin probe based on DNAzyme-functionalized gold nanoparticle tag-initiated deposition of an insulating film on gold electrode. Sensors and Actuators B: Chemical 2015, 213 , 409-416. https://doi.org/10.1016/j.snb.2015.02.123
- Mahmoud Labib, Maxim V. Berezovski. Electrochemical sensing of microRNAs: Avenues and paradigms. Biosensors and Bioelectronics 2015, 68 , 83-94. https://doi.org/10.1016/j.bios.2014.12.026
- Maria Chiara Giuffrida, Laura Maria Zanoli, Roberta D’Agata, Alessia Finotti, Roberto Gambari, Giuseppe Spoto. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices. Analytical and Bioanalytical Chemistry 2015, 407
(6)
, 1533-1543. https://doi.org/10.1007/s00216-014-8405-4
- Xueji Zhang, Haifeng Dong, Yaping Tian. miRNA Electrochemical Detection. 2015, 37-56. https://doi.org/10.1007/978-3-662-47293-4_4
- João Conde, Elazer R. Edelman, Natalie Artzi. Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: The jack-of-all-trades in cancer nanotheranostics?. Advanced Drug Delivery Reviews 2015, 81 , 169-183. https://doi.org/10.1016/j.addr.2014.09.003
- Jing Zhang, Dongzhi Wu, QiuXiang Chen, Mei Chen, Yaokun Xia, Shuxian Cai, Xi Zhang, Fang Wu, Jinghua Chen. Label-free microRNA detection based on terbium and duplex-specific nuclease assisted target recycling. The Analyst 2015, 140
(15)
, 5082-5089. https://doi.org/10.1039/C5AN01042J
- Michelle L. Kovarik. Analytical chemistry research at primarily undergraduate institutions: training tomorrow's investigators. Analytical Methods 2015, 7
(17)
, 6960-6966. https://doi.org/10.1039/C5AY00510H
- Zhaoyin Wang, Ling Si, Jianchun Bao, Zhihui Dai. A reusable microRNA sensor based on the electrocatalytic property of heteroduplex-templated copper nanoclusters. Chemical Communications 2015, 51
(29)
, 6305-6307. https://doi.org/10.1039/C5CC01081K
- Takahiro Kishikawa. Circulating RNAs as new biomarkers for detecting pancreatic cancer. World Journal of Gastroenterology 2015, 21
(28)
, 8527. https://doi.org/10.3748/wjg.v21.i28.8527
- Mo Wang, Huanshun Yin, Zhengliang Fu, Yunlong Guo, Xinxu Wang, Yunlei Zhou, Shiyun Ai. A label-free electrochemical biosensor for microRNA detection based on apoferritin-encapsulated Cu nanoparticles. Journal of Solid State Electrochemistry 2014, 18
(10)
, 2829-2835. https://doi.org/10.1007/s10008-014-2531-y
- Dimitry A. Chistiakov, Vladimir P. Chekhonin. Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumor Biology 2014, 35
(9)
, 8425-8438. https://doi.org/10.1007/s13277-014-2262-9
- Ning Xia, Liping Zhang. Nanomaterials-Based Sensing Strategies for Electrochemical Detection of MicroRNAs. Materials 2014, 7
(7)
, 5366-5384. https://doi.org/10.3390/ma7075366
- Rohit Mishra, Martin Hegner. Effect of non-specific species competition from total RNA on the static mode hybridization response of nanomechanical assays of oligonucleotides. Nanotechnology 2014, 25
(22)
, 225501. https://doi.org/10.1088/0957-4484/25/22/225501
- Fengye Li, Jing Peng, Jingjing Wang, Hao Tang, Liang Tan, Qingji Xie, Shouzhuo Yao. Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24. Biosensors and Bioelectronics 2014, 54 , 158-164. https://doi.org/10.1016/j.bios.2013.10.061
- Alan Kay Liang Teo, Cai Le Lim, Zhiqiang Gao. The development of electrochemical assays for microRNAs. Electrochimica Acta 2014, 126 , 19-30. https://doi.org/10.1016/j.electacta.2013.06.113
- Huanshun Yin, Mo Wang, Yunlei Zhou, Xiaoyan Zhang, Bing Sun, Guihua Wang, Shiyun Ai. Photoelectrochemical biosensing platform for microRNA detection based on in situ producing electron donor from apoferritin-encapsulated ascorbic acid. Biosensors and Bioelectronics 2014, 53 , 175-181. https://doi.org/10.1016/j.bios.2013.09.053
- Lin Liu, Ning Xia, Huiping Liu, Xiaojing Kang, Xiaoshuan Liu, Chan Xue, Xiaoling He. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Biosensors and Bioelectronics 2014, 53 , 399-405. https://doi.org/10.1016/j.bios.2013.10.026
- Ali Akbar Jamali, Mohammad Pourhassan-Moghaddam, Jafar Ezzati Nazhad Dolatabadi, Yadollah Omidi. Nanomaterials on the road to microRNA detection with optical and electrochemical nanobiosensors. TrAC Trends in Analytical Chemistry 2014, 55 , 24-42. https://doi.org/10.1016/j.trac.2013.10.008
- Martin Bartosik, Roman Hrstka, Emil Palecek, Borivoj Vojtesek. Magnetic bead-based hybridization assay for electrochemical detection of microRNA. Analytica Chimica Acta 2014, 813 , 35-40. https://doi.org/10.1016/j.aca.2014.01.023
- Renata de Lima, Leonardo Fernandes Fraceto. Genetic Studies on the Effects of Nanomaterials. 2014, 177-199. https://doi.org/10.1007/978-1-4614-8993-1_8
- Sanila H. Sarkar, Aamir Ahmad, Sandeep Mittal. The Therapeutic Role of MicroRNAs in Human Gliomas. 2014, 1-27. https://doi.org/10.1007/978-3-319-05134-5_1
- Susana Campuzano, María Pedrero, José M. Pingarrón. Electrochemical genosensors for the detection of cancer-related miRNAs. Analytical and Bioanalytical Chemistry 2014, 406
(1)
, 27-33. https://doi.org/10.1007/s00216-013-7459-z
- Bo Yao, Yichen Liu, Miyuki Tabata, Huangtianzhi Zhu, Yuji Miyahara. Sensitive detection of microRNA by chronocoulometry and rolling circle amplification on a gold electrode. Chem. Commun. 2014, 50
(68)
, 9704-9706. https://doi.org/10.1039/C4CC03330B
- Tao Sun, Xiangyu Kong, Yiqi Du, Zhaoshen Li. Aberrant MicroRNAs in Pancreatic Cancer: Researches and Clinical Implications. Gastroenterology Research and Practice 2014, 2014 , 1-11. https://doi.org/10.1155/2014/386561
- Xinyao Yi, Hongxing Han, Yu Zhang, Jianxiu Wang, Yi Zhang, Feimeng Zhou. Amplified voltammetric characterization of cleavage of the biotinylated peptide by BACE1 and screening of BACE1 inhibitors. Biosensors and Bioelectronics 2013, 50 , 224-228. https://doi.org/10.1016/j.bios.2013.06.047
- H.V. Tran, B. Piro, S. Reisberg, L.D. Tran, H.T. Duc, M.C. Pham. Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141. Biosensors and Bioelectronics 2013, 49 , 164-169. https://doi.org/10.1016/j.bios.2013.05.007
- Antonio Gnoni, Antonella Licchetta, Aldo Scarpa, Amalia Azzariti, Anna Brunetti, Gianni Simone, Patrizia Nardulli, Daniele Santini, Michele Aieta, Sabina Delcuratolo, Nicola Silvestris. Carcinogenesis of Pancreatic Adenocarcinoma: Precursor Lesions. International Journal of Molecular Sciences 2013, 14
(10)
, 19731-19762. https://doi.org/10.3390/ijms141019731
- Ning Xia, Liping Zhang, Guifang Wang, Qingqin Feng, Lin Liu. Label-free and sensitive strategy for microRNAs detection based on the formation of boronate ester bonds and the dual-amplification of gold nanoparticles. Biosensors and Bioelectronics 2013, 47 , 461-466. https://doi.org/10.1016/j.bios.2013.03.074
- Yiqi Du, Minghao Liu, Jun Gao, Zhaoshen Li. Aberrant MicroRNAs Expression Patterns in Pancreatic Cancer and Their Clinical Translation. Cancer Biotherapy and Radiopharmaceuticals 2013, 28
(5)
, 361-369. https://doi.org/10.1089/cbr.2012.1389
- Chunyan Yan, Cheng Jiang, Jianhui Jiang, Ruqin Yu. Simple, Colorimetric Detection of MicroRNA Based on Target Amplification and DNAzyme. Analytical Sciences 2013, 29
(6)
, 605-610. https://doi.org/10.2116/analsci.29.605
- Lin Liu, Jimin Du, Sujuan Li, Baiqing Yuan, Hongxing Han, Min Jing, Ning Xia. Amplified voltammetric detection of dopamine using ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosensors and Bioelectronics 2013, 41 , 730-735. https://doi.org/10.1016/j.bios.2012.09.061
- Chad L. Cowles, Xiaoshan Zhu. MicroRNA detection using magnetic separation and zinc-based nanolabels as signal transducers. Anal. Methods 2013, 5
(3)
, 801-804. https://doi.org/10.1039/C2AY25942G
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.