Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Direct Quantification of MicroRNA at Low Picomolar Level in Sera of Glioma Patients Using a Competitive Hybridization Followed by Amplified Voltammetric Detection
My Activity
    Article

    Direct Quantification of MicroRNA at Low Picomolar Level in Sera of Glioma Patients Using a Competitive Hybridization Followed by Amplified Voltammetric Detection
    Click to copy article linkArticle link copied!

    View Author Information
    College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, People’s Republic of China 410083
    Cancer Research Institute, Central South University, Changsha, Hunan, People’s Republic of China 410013
    § Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, United States
    Other Access Options

    Analytical Chemistry

    Cite this: Anal. Chem. 2012, 84, 15, 6400–6406
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac203368h
    Published June 26, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    MicroRNAs (miRNAs), acting as oncogenes or tumor suppressors in humans, play a key role in regulating gene expression and are believed to be important for developing novel therapeutic treatments and clinical prognoses. Due to their short lengths (17–25 nucleotides) and extremely low concentrations (typically < picomolar) in biological samples, quantification of miRNAs has been challenging to conventional biochemical methods, such as Northern blotting, microarray, and quantitative polymerase chain reaction (qPCR). In this work, a biotinylated miRNA (biotin-miRNA) whose sequence is the same as that of a miRNA target is introduced into samples of interest and allowed to compete with the miRNA target for the oligonucleotide (ODN) probe preimmobilized onto an electrode. Voltammetric quantification of the miRNA target was accomplished after complexation of the biotin-miRNA with ferrocene (Fc)-capped gold nanoparticle/streptavidin conjugates. The Fc oxidation current was found to be inversely proportional to the concentration of target miRNA between 10 fM and 2.0 pM. The method is highly reproducible (relative standard deviation (RSD) < 5%), regenerable (at least 8 regeneration/assay cycles without discernible signal decrease), and selective (with sequence specificity down to a single nucleotide mismatch). The low detection levels (10 fM or 0.1 attomoles of miRNA in a 10 μL solution) allow the direct quantification of miRNA-182, a marker correlated to the progression of glioma in patients, to be performed in serum samples without sample pretreatment and RNA extraction and enrichment. The concentration of miRNA-182 in glioma patients was found to be 3.1 times as high as that in healthy persons, a conclusion in excellent agreement with a separate qPCR measurement of the expression level. The obviations of the requirement of an internal reference in qPCR, simplicity, and cost-effectiveness are other additional advantages of this method for detection of nucleic acids in clinical samples.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 98 publications.

    1. Ying Wan, Huan Wang, Jinyu Ji, Kai Kang, Meng Yang, Yaqi Huang, Yan Su, Kefeng Ma, Longyi Zhu, Shengyuan Deng. Zippering DNA Tetrahedral Hyperlink for Ultrasensitive Electrochemical MicroRNA Detection. Analytical Chemistry 2020, 92 (22) , 15137-15144. https://doi.org/10.1021/acs.analchem.0c03553
    2. Hanwen Lu, Tang Hailin, Xinyao Yi, Jianxiu Wang. Three-Dimensional DNA Nanomachine Combined with Toehold-Mediated Strand Displacement Reaction for Sensitive Electrochemical Detection of MiRNA. Langmuir 2020, 36 (36) , 10708-10714. https://doi.org/10.1021/acs.langmuir.0c01415
    3. Qi Zhang, Jia Liu, Yueru Dong, Wei Li, Rongrong Xing, Yanyan Ma, Zhen Liu. Gold Nanoparticle-Decorated Ag@SiO2 Nanocomposite-Based Plasmonic Affinity Sandwich Assay of Circulating MicroRNAs in Human Serum. ACS Applied Nano Materials 2019, 2 (6) , 3960-3970. https://doi.org/10.1021/acsanm.9b00855
    4. Jingrui Wang, Zhixuan Lu, Hailin Tang, Ling Wu, Zixiao Wang, Minghua Wu, Xinyao Yi, and Jianxiu Wang . Multiplexed Electrochemical Detection of MiRNAs from Sera of Glioma Patients at Different Stages via the Novel Conjugates of Conducting Magnetic Microbeads and Diblock Oligonucleotide-Modified Gold Nanoparticles. Analytical Chemistry 2017, 89 (20) , 10834-10840. https://doi.org/10.1021/acs.analchem.7b02342
    5. Josip Ivica, Philip T. F. Williamson, and Maurits R. R. de Planque . Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore. Analytical Chemistry 2017, 89 (17) , 8822-8829. https://doi.org/10.1021/acs.analchem.7b01246
    6. Mahmoud Labib, Edward H. Sargent, and Shana O. Kelley . Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chemical Reviews 2016, 116 (16) , 9001-9090. https://doi.org/10.1021/acs.chemrev.6b00220
    7. Wei Wang, Tao Kong, Dong Zhang, Jinan Zhang, and Guosheng Cheng . Label-Free MicroRNA Detection Based on Fluorescence Quenching of Gold Nanoparticles with a Competitive Hybridization. Analytical Chemistry 2015, 87 (21) , 10822-10829. https://doi.org/10.1021/acs.analchem.5b01930
    8. Wen Zhou, Xia Gao, Dingbin Liu, and Xiaoyuan Chen . Gold Nanoparticles for In Vitro Diagnostics. Chemical Reviews 2015, 115 (19) , 10575-10636. https://doi.org/10.1021/acs.chemrev.5b00100
    9. Tanyu Wang, Emilie Viennois, Didier Merlin, and Gangli Wang . Microelectrode miRNA Sensors Enabled by Enzymeless Electrochemical Signal Amplification. Analytical Chemistry 2015, 87 (16) , 8173-8180. https://doi.org/10.1021/acs.analchem.5b00780
    10. Fengye Li, Jing Peng, Qiong Zheng, Xiang Guo, Hao Tang, and Shouzhuo Yao . Carbon Nanotube-Polyamidoamine Dendrimer Hybrid-Modified Electrodes for Highly Sensitive Electrochemical Detection of MicroRNA24. Analytical Chemistry 2015, 87 (9) , 4806-4813. https://doi.org/10.1021/acs.analchem.5b00093
    11. Fang-Fang Cheng, Ting-Ting He, Hai-Tiao Miao, Jian-Jun Shi, Li-Ping Jiang, and Jun-Jie Zhu . Electron Transfer Mediated Electrochemical Biosensor for MicroRNAs Detection Based on Metal Ion Functionalized Titanium Phosphate Nanospheres at Attomole Level. ACS Applied Materials & Interfaces 2015, 7 (4) , 2979-2985. https://doi.org/10.1021/am508690x
    12. Mahmoud Labib, Nasrin Khan, and Maxim V. Berezovski . Protein Electrocatalysis for Direct Sensing of Circulating MicroRNAs. Analytical Chemistry 2015, 87 (2) , 1395-1403. https://doi.org/10.1021/ac504331c
    13. Cuiyun Yang, Baoting Dou, Kai Shi, Yaqin Chai, Yun Xiang, and Ruo Yuan . Multiplexed and Amplified Electronic Sensor for the Detection of MicroRNAs from Cancer Cells. Analytical Chemistry 2014, 86 (23) , 11913-11918. https://doi.org/10.1021/ac503860d
    14. Guichi Zhu, Li Liang, and Chun-yang Zhang . Quencher-Free Fluorescent Method for Homogeneously Sensitive Detection of MicroRNAs in Human Lung Tissues. Analytical Chemistry 2014, 86 (22) , 11410-11416. https://doi.org/10.1021/ac503365z
    15. Osvaldo N. Oliveira, Jr., Rodrigo M. Iost, José R. Siqueira, Jr., Frank N. Crespilho, and Luciano Caseli . Nanomaterials for Diagnosis: Challenges and Applications in Smart Devices Based on Molecular Recognition. ACS Applied Materials & Interfaces 2014, 6 (17) , 14745-14766. https://doi.org/10.1021/am5015056
    16. Pengbo Zhang, Jiangyan Zhang, Chengli Wang, Chenghui Liu, Hui Wang, and Zhengping Li . Highly Sensitive and Specific Multiplexed MicroRNA Quantification Using Size-Coded Ligation Chain Reaction. Analytical Chemistry 2014, 86 (2) , 1076-1082. https://doi.org/10.1021/ac4026384
    17. Bin-Cheng Yin, Yu-Qiang Liu, and Bang-Ce Ye . Sensitive Detection of MicroRNA in Complex Biological Samples via Enzymatic Signal Amplification Using DNA Polymerase Coupled with Nicking Endonuclease. Analytical Chemistry 2013, 85 (23) , 11487-11493. https://doi.org/10.1021/ac403302a
    18. Ying Li, Li Liang, and Chun-yang Zhang . Isothermally Sensitive Detection of Serum Circulating miRNAs for Lung Cancer Diagnosis. Analytical Chemistry 2013, 85 (23) , 11174-11179. https://doi.org/10.1021/ac403462f
    19. Liang Wu, Xiaohua Zhang, Wei Liu, Erhu Xiong, and Jinhua Chen . Sensitive Electrochemical Aptasensor by Coupling “Signal-on’’ and “Signal-off’’ Strategies. Analytical Chemistry 2013, 85 (17) , 8397-8402. https://doi.org/10.1021/ac401810t
    20. Haifeng Dong, Jianping Lei, Lin Ding, Yongqiang Wen, Huangxian Ju, and Xueji Zhang . MicroRNA: Function, Detection, and Bioanalysis. Chemical Reviews 2013, 113 (8) , 6207-6233. https://doi.org/10.1021/cr300362f
    21. Gabriel BK. Sasa, Biaxun He, Chong Chen, Zetao Chen, Shuang Li, Cherie S. Tan. A Dual-Targeted Electrochemical Aptasensor for Neuroblastoma-related microRNAs Detection. Talanta 2024, 3 , 126772. https://doi.org/10.1016/j.talanta.2024.126772
    22. Ruyue Wei, Kaixian Wang, Xiaohan Liu, Mingwan Shi, Wei Pan, Na Li, Bo Tang. Stimuli-responsive probes for amplification-based imaging of miRNAs in living cells. Biosensors and Bioelectronics 2023, 239 , 115584. https://doi.org/10.1016/j.bios.2023.115584
    23. Dilek Eskiköy Bayraktepe, Ceren Yıldız, Zehra Yazan. The development of electrochemical DNA biosensor based on poly-l-methionine and bimetallic AuPt nanoparticles coating: Picomolar detection of Imatinib and Erlotinib. Talanta 2023, 257 , 124361. https://doi.org/10.1016/j.talanta.2023.124361
    24. Monalisha Ghosh Dastidar, Ulrike Schumann, Teng Lu, Yun Liu, David R. Nisbet, Riccardo Natoli, Krishnan Murugappan, Antonio Tricoli. A simple yet highly sensitive and selective aptasensor architecture for rapid and portable miRNA detection. Chemical Engineering Journal 2023, 454 , 140186. https://doi.org/10.1016/j.cej.2022.140186
    25. Riham Zayani, Amira Ben Hassine, Amal Rabti, Amal Raouafi, Noureddine Raouafi. Electrochemical and Optical Detection of MicroRNAs as Biomarkers for Cancer Diagnosis. 2023, 272-348. https://doi.org/10.2174/9789815079364123010016
    26. Anisa Kaur, Roaa Mahmoud, Anoja Megalathan, Sydney Pettit, Soma Dhakal. Multiplexed smFRET Nucleic Acid Sensing Using DNA Nanotweezers. Biosensors 2023, 13 (1) , 119. https://doi.org/10.3390/bios13010119
    27. Sijia Chen, Yuhan He, Lin Liu, Jianxiu Wang, Xinyao Yi. DNA walking system integrated with enzymatic cleavage reaction for sensitive surface plasmon resonance detection of miRNA. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-20453-8
    28. Amira Ben Hassine, Riham Zayani, Mohamed Zouari, Noureddine Raouafi. Circulating miRNAs as biomarkers for noninvasive cancer diagnosis. 2022, 71-112. https://doi.org/10.1016/B978-0-12-822859-3.00021-3
    29. Yong Chang, Xiaohua Ma, Ting Sun, Lin Liu, Yuanqiang Hao. Electrochemical detection of kinase by converting homogeneous analysis into heterogeneous assay through avidin-biotin interaction. Talanta 2021, 234 , 122649. https://doi.org/10.1016/j.talanta.2021.122649
    30. Hamza Ali, Romée Harting, Ralph de Vries, Meedie Ali, Thomas Wurdinger, Myron G. Best. Blood-Based Biomarkers for Glioma in the Context of Gliomagenesis: A Systematic Review. Frontiers in Oncology 2021, 11 https://doi.org/10.3389/fonc.2021.665235
    31. Mahboobe Moazampour, Hamid R. Zare, Zahra Shekari. Femtomolar determination of an ovarian cancer biomarker (miR-200a) in blood plasma using a label free electrochemical biosensor based on l -cysteine functionalized ZnS quantum dots. Analytical Methods 2021, 13 (17) , 2021-2029. https://doi.org/10.1039/D1AY00330E
    32. Daohong Wu, Hanwen Lu, Jingrui Wang, Ling Wu, Lin Liu, Xinyao Yi, Jianxiu Wang, Hailin Tang. Amplified electrochemical detection of circular RNA in breast cancer patients using ferrocene-capped gold nanoparticle/streptavidin conjugates. Microchemical Journal 2021, 164 , 106066. https://doi.org/10.1016/j.microc.2021.106066
    33. Daohong Wu, Yuhan He, Liujuan Tong, Jianxiu Wang, Lin Liu, Xinyao Yi, Shengqiang Hu. Electrochemical determination of caspase-3 using signal amplification by HeLa cells modified with silver nanoparticles. Microchimica Acta 2021, 188 (4) https://doi.org/10.1007/s00604-021-04765-6
    34. Jianjian Zhuang, Haitao Wan, Xiaobo Zhang. Electrochemical detection of miRNA-100 in the sera of gastric cancer patients based on DSN-assisted amplification. Talanta 2021, 225 , 121981. https://doi.org/10.1016/j.talanta.2020.121981
    35. Raina M. Borum, Jesse V. Jokerst. Hybridizing clinical translatability with enzyme-free DNA signal amplifiers: recent advances in nucleic acid detection and imaging. Biomaterials Science 2021, 9 (2) , 347-366. https://doi.org/10.1039/D0BM00931H
    36. Riham Zayani, Amal Rabti, Sami Ben Aoun, Noureddine Raouafi. Fluorescent and electrochemical bimodal bioplatform for femtomolar detection of microRNAs in blood sera. Sensors and Actuators B: Chemical 2021, 327 , 128950. https://doi.org/10.1016/j.snb.2020.128950
    37. Sharel P.E., Thomas S. Miller, Lingcong Meng, Patrick R. Unwin, Julie V. Macpherson. Quantitative trace level voltammetry in the presence of electrode fouling agents: Comparison of single-walled carbon nanotube network electrodes and screen-printed carbon electrodes. Journal of Electroanalytical Chemistry 2020, 872 , 114137. https://doi.org/10.1016/j.jelechem.2020.114137
    38. Ming La, Yintang Zhang, Yanping Gao, Mengke Li, Lin Liu, Yong Chang. Impedimetric Detection of MicroRNAs by the Signal Amplification of Streptavidin Induced In Situ Formation of Biotin Phenylalanine Nanoparticle Networks. Journal of The Electrochemical Society 2020, 167 (11) , 117505. https://doi.org/10.1149/1945-7111/aba1a8
    39. Li Pan, Huaisheng Zhang, Jingjin Zhao, Ifedayo Victor Ogungbe, Shulin Zhao, Yi‐Ming Liu. A New One‐Pot Fluorescence Derivatization Strategy for Highly Sensitive MicroRNA Analysis. Chemistry – A European Journal 2020, 26 (25) , 5639-5647. https://doi.org/10.1002/chem.201905639
    40. Abbas Sabahi, Razieh Salahandish, Ali Ghaffarinejad, Eskandar Omidinia. Electrochemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer. Talanta 2020, 209 , 120595. https://doi.org/10.1016/j.talanta.2019.120595
    41. Roger M. Pallares, Nguyen Thi Kim Thanh, Xiaodi Su. Sensing of circulating cancer biomarkers with metal nanoparticles. Nanoscale 2019, 11 (46) , 22152-22171. https://doi.org/10.1039/C9NR03040A
    42. Shereen M. Azab, Heba K.A. Elhakim, Amany M. Fekry. The strategy of nanoparticles and the flavone chrysin to quantify miRNA-let 7a in zepto-molar level: Its application as tumor marker. Journal of Molecular Structure 2019, 1196 , 647-652. https://doi.org/10.1016/j.molstruc.2019.06.111
    43. Jiafu Chang, Haiyin Li, Feng Li. Diffusivity and intercalation of electroactive dyes-mediated truly ratiometric homogeneous electrochemical strategy for highly sensitive biosensing. Chemical Communications 2019, 55 (71) , 10603-10606. https://doi.org/10.1039/C9CC05022A
    44. Krissana Khoothiam, Kiatnida Treerattrakoon, Tawin Iempridee, Patraporn Luksirikul, Tararaj Dharakul, Deanpen Japrung. Ultrasensitive detection of lung cancer-associated miRNAs by multiple primer-mediated rolling circle amplification coupled with a graphene oxide fluorescence-based (MPRCA-GO) sensor. The Analyst 2019, 144 (14) , 4180-4187. https://doi.org/10.1039/C9AN00517J
    45. Roberta D’Agata, Giuseppe Spoto. Advanced methods for microRNA biosensing: a problem-solving perspective. Analytical and Bioanalytical Chemistry 2019, 411 (19) , 4425-4444. https://doi.org/10.1007/s00216-019-01621-8
    46. Jiasheng Wang, Ni Hui. Electrochemical functionalization of polypyrrole nanowires for the development of ultrasensitive biosensors for detecting microRNA. Sensors and Actuators B: Chemical 2019, 281 , 478-485. https://doi.org/10.1016/j.snb.2018.10.131
    47. Philip Gillespie, Sylvain Ladame, Danny O'Hare. Molecular methods in electrochemical microRNA detection. The Analyst 2019, 144 (1) , 114-129. https://doi.org/10.1039/C8AN01572D
    48. Hanwen Lu, Ling Wu, Jingrui Wang, Zixiao Wang, Xinyao Yi, Jianxiu Wang, Nan Wang. Voltammetric determination of the Alzheimer’s disease-related ApoE 4 gene from unamplified genomic DNA extracts by ferrocene-capped gold nanoparticles. Microchimica Acta 2018, 185 (12) https://doi.org/10.1007/s00604-018-3087-9
    49. Zahra Aghili, Navid Nasirizadeh, Adeleh Divsalar, Shahram Shoeibi, Parichehreh Yaghmaei. A highly sensitive miR-195 nanobiosensor for early detection of Parkinson’s disease. Artificial Cells, Nanomedicine, and Biotechnology 2018, 46 (sup1) , 32-40. https://doi.org/10.1080/21691401.2017.1411930
    50. Joon Young Lee, Byoung Yeon Won, Hyun Gyu Park. Label‐Free Multiplex DNA Detection Utilizing Projected Capacitive Touchscreen. Biotechnology Journal 2018, 13 (2) https://doi.org/10.1002/biot.201700362
    51. Tugba Kilic, Arzum Erdem, Mehmet Ozsoz, Sandro Carrara. microRNA biosensors: Opportunities and challenges among conventional and commercially available techniques. Biosensors and Bioelectronics 2018, 99 , 525-546. https://doi.org/10.1016/j.bios.2017.08.007
    52. Leilei Liu, Yong Chang, Ning Xia, Peizhen Peng, Liping Zhang, Mengsha Jiang, Jiebin Zhang, Lin Liu. Simple, sensitive and label–free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification. Biosensors and Bioelectronics 2017, 94 , 235-242. https://doi.org/10.1016/j.bios.2017.02.041
    53. Arzum Erdem, Ece Eksin, Deniz Isin, Derya Polat. Graphene Oxide Modified Chemically Activated Graphite Electrodes for Detection of microRNA. Electroanalysis 2017, 29 (5) , 1350-1358. https://doi.org/10.1002/elan.201600761
    54. M. Zouari, S. Campuzano, J.M. Pingarrón, N. Raouafi. Competitive RNA-RNA hybridization-based integrated nanostructured-disposable electrode for highly sensitive determination of miRNAs in cancer cells. Biosensors and Bioelectronics 2017, 91 , 40-45. https://doi.org/10.1016/j.bios.2016.12.033
    55. Xinyao Yi, Zhixuan Lu, Yu Kong, Zhuo Chen. Label-Free Electrochemical Detection of MicroRNAs via Intercalation of Hemin into the DNA/RNA Hybridization. International Journal of Electrochemical Science 2017, 12 (4) , 2813-2821. https://doi.org/10.20964/2017.04.33
    56. Susana Campuzano, Paloma Yáñez-Sedeño, José Pingarrón. Electrochemical Genosensing of Circulating Biomarkers. Sensors 2017, 17 (4) , 866. https://doi.org/10.3390/s17040866
    57. Susana Campuzano, María Pedrero, José M. Pingarrón. Electrochemical Nucleic Acid-Based Strategies for miRNAs Determination. 2017, 179-205. https://doi.org/10.1016/bs.coac.2017.05.005
    58. Hui Zhao, Feng Liu, Shilian Wu, Long Yang, Ya-Ping Zhang, Can-Peng Li. Ultrasensitive electrochemical detection of Dicer1 3′UTR for the fast analysis of alternative cleavage and polyadenylation. Nanoscale 2017, 9 (12) , 4272-4282. https://doi.org/10.1039/C6NR09300K
    59. Chenggong Xu, Xu Wang, Hui Li, Cong Han, Jingfeng Wang, Yu Wang, Su Liu, Jiadong Huang. Branched RCA coupled with a NESA-based fluorescence assay for ultrasensitive detection of miRNA. New Journal of Chemistry 2017, 41 (13) , 5355-5361. https://doi.org/10.1039/C7NJ00404D
    60. Zhixuan Lu, Hailin Tang, Daohong Wu, Yonghong Xia, Minghua Wu, Xinyao Yi, Hengfeng Li, Jianxiu Wang. Amplified voltammetric detection of miRNA from serum samples of glioma patients via combination of conducting magnetic microbeads and ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosensors and Bioelectronics 2016, 86 , 502-507. https://doi.org/10.1016/j.bios.2016.07.010
    61. Mostafa Azimzadeh, Mahdi Rahaie, Navid Nasirizadeh, Khadijeh Ashtari, Hossein Naderi-Manesh. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosensors and Bioelectronics 2016, 77 , 99-106. https://doi.org/10.1016/j.bios.2015.09.020
    62. Xin Yu, Zheng Li. Serum microRNAs as potential noninvasive biomarkers for glioma. Tumor Biology 2016, 37 (2) , 1407-1410. https://doi.org/10.1007/s13277-015-4515-7
    63. Jing Zhang, Dong-Zhi Wu, Shu-Xian Cai, Mei Chen, Yao-Kun Xia, Fang Wu, Jing-Hua Chen. An immobilization-free electrochemical impedance biosensor based on duplex-specific nuclease assisted target recycling for amplified detection of microRNA. Biosensors and Bioelectronics 2016, 75 , 452-457. https://doi.org/10.1016/j.bios.2015.09.006
    64. Yusuke Sato, Hiroki Saito, Daisuke Aoki, Norio Teramae, Seiichi Nishizawa. Lysine linkage in abasic site-binding ligand–thiazole orange conjugates for improved binding affinity to orphan nucleobases in DNA/RNA hybrids. Chemical Communications 2016, 52 (100) , 14446-14449. https://doi.org/10.1039/C6CC07236D
    65. Tugba Kilic, Merve Kaplan, Sibel Demiroglu, Arzum Erdem, Mehmet Ozsoz. Label-Free Electrochemical Detection of MicroRNA-122 in Real Samples by Graphene Modified Disposable Electrodes. Journal of The Electrochemical Society 2016, 163 (6) , B227-B233. https://doi.org/10.1149/2.0481606jes
    66. Michela Visani, Giorgia Acquaviva, Sirio Fiorino, Maria Letizia Bacchi Reggiani, Michele Masetti, Enrico Franceschi, Adele Fornelli, Elio Jovine, Carlo Fabbri, Alba A Brandes, Giovanni Tallini, Annalisa Pession, Dario de Biase. Contribution of microRNA analysis to characterisation of pancreatic lesions: a review. Journal of Clinical Pathology 2015, 68 (11) , 859-869. https://doi.org/10.1136/jclinpath-2015-203246
    67. Jingzhuan Wan, Xuhui Liu, Yonghua Zhang, Qiang Gao, Honglan Qi, Chengxiao Zhang. Sensitive impedimetric detection of microRNAs using a hairpin probe based on DNAzyme-functionalized gold nanoparticle tag-initiated deposition of an insulating film on gold electrode. Sensors and Actuators B: Chemical 2015, 213 , 409-416. https://doi.org/10.1016/j.snb.2015.02.123
    68. Mahmoud Labib, Maxim V. Berezovski. Electrochemical sensing of microRNAs: Avenues and paradigms. Biosensors and Bioelectronics 2015, 68 , 83-94. https://doi.org/10.1016/j.bios.2014.12.026
    69. Maria Chiara Giuffrida, Laura Maria Zanoli, Roberta D’Agata, Alessia Finotti, Roberto Gambari, Giuseppe Spoto. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices. Analytical and Bioanalytical Chemistry 2015, 407 (6) , 1533-1543. https://doi.org/10.1007/s00216-014-8405-4
    70. Xueji Zhang, Haifeng Dong, Yaping Tian. miRNA Electrochemical Detection. 2015, 37-56. https://doi.org/10.1007/978-3-662-47293-4_4
    71. João Conde, Elazer R. Edelman, Natalie Artzi. Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: The jack-of-all-trades in cancer nanotheranostics?. Advanced Drug Delivery Reviews 2015, 81 , 169-183. https://doi.org/10.1016/j.addr.2014.09.003
    72. Jing Zhang, Dongzhi Wu, QiuXiang Chen, Mei Chen, Yaokun Xia, Shuxian Cai, Xi Zhang, Fang Wu, Jinghua Chen. Label-free microRNA detection based on terbium and duplex-specific nuclease assisted target recycling. The Analyst 2015, 140 (15) , 5082-5089. https://doi.org/10.1039/C5AN01042J
    73. Michelle L. Kovarik. Analytical chemistry research at primarily undergraduate institutions: training tomorrow's investigators. Analytical Methods 2015, 7 (17) , 6960-6966. https://doi.org/10.1039/C5AY00510H
    74. Zhaoyin Wang, Ling Si, Jianchun Bao, Zhihui Dai. A reusable microRNA sensor based on the electrocatalytic property of heteroduplex-templated copper nanoclusters. Chemical Communications 2015, 51 (29) , 6305-6307. https://doi.org/10.1039/C5CC01081K
    75. Takahiro Kishikawa. Circulating RNAs as new biomarkers for detecting pancreatic cancer. World Journal of Gastroenterology 2015, 21 (28) , 8527. https://doi.org/10.3748/wjg.v21.i28.8527
    76. Mo Wang, Huanshun Yin, Zhengliang Fu, Yunlong Guo, Xinxu Wang, Yunlei Zhou, Shiyun Ai. A label-free electrochemical biosensor for microRNA detection based on apoferritin-encapsulated Cu nanoparticles. Journal of Solid State Electrochemistry 2014, 18 (10) , 2829-2835. https://doi.org/10.1007/s10008-014-2531-y
    77. Dimitry A. Chistiakov, Vladimir P. Chekhonin. Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumor Biology 2014, 35 (9) , 8425-8438. https://doi.org/10.1007/s13277-014-2262-9
    78. Ning Xia, Liping Zhang. Nanomaterials-Based Sensing Strategies for Electrochemical Detection of MicroRNAs. Materials 2014, 7 (7) , 5366-5384. https://doi.org/10.3390/ma7075366
    79. Rohit Mishra, Martin Hegner. Effect of non-specific species competition from total RNA on the static mode hybridization response of nanomechanical assays of oligonucleotides. Nanotechnology 2014, 25 (22) , 225501. https://doi.org/10.1088/0957-4484/25/22/225501
    80. Fengye Li, Jing Peng, Jingjing Wang, Hao Tang, Liang Tan, Qingji Xie, Shouzhuo Yao. Carbon nanotube-based label-free electrochemical biosensor for sensitive detection of miRNA-24. Biosensors and Bioelectronics 2014, 54 , 158-164. https://doi.org/10.1016/j.bios.2013.10.061
    81. Alan Kay Liang Teo, Cai Le Lim, Zhiqiang Gao. The development of electrochemical assays for microRNAs. Electrochimica Acta 2014, 126 , 19-30. https://doi.org/10.1016/j.electacta.2013.06.113
    82. Huanshun Yin, Mo Wang, Yunlei Zhou, Xiaoyan Zhang, Bing Sun, Guihua Wang, Shiyun Ai. Photoelectrochemical biosensing platform for microRNA detection based on in situ producing electron donor from apoferritin-encapsulated ascorbic acid. Biosensors and Bioelectronics 2014, 53 , 175-181. https://doi.org/10.1016/j.bios.2013.09.053
    83. Lin Liu, Ning Xia, Huiping Liu, Xiaojing Kang, Xiaoshuan Liu, Chan Xue, Xiaoling He. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Biosensors and Bioelectronics 2014, 53 , 399-405. https://doi.org/10.1016/j.bios.2013.10.026
    84. Ali Akbar Jamali, Mohammad Pourhassan-Moghaddam, Jafar Ezzati Nazhad Dolatabadi, Yadollah Omidi. Nanomaterials on the road to microRNA detection with optical and electrochemical nanobiosensors. TrAC Trends in Analytical Chemistry 2014, 55 , 24-42. https://doi.org/10.1016/j.trac.2013.10.008
    85. Martin Bartosik, Roman Hrstka, Emil Palecek, Borivoj Vojtesek. Magnetic bead-based hybridization assay for electrochemical detection of microRNA. Analytica Chimica Acta 2014, 813 , 35-40. https://doi.org/10.1016/j.aca.2014.01.023
    86. Renata de Lima, Leonardo Fernandes Fraceto. Genetic Studies on the Effects of Nanomaterials. 2014, 177-199. https://doi.org/10.1007/978-1-4614-8993-1_8
    87. Sanila H. Sarkar, Aamir Ahmad, Sandeep Mittal. The Therapeutic Role of MicroRNAs in Human Gliomas. 2014, 1-27. https://doi.org/10.1007/978-3-319-05134-5_1
    88. Susana Campuzano, María Pedrero, José M. Pingarrón. Electrochemical genosensors for the detection of cancer-related miRNAs. Analytical and Bioanalytical Chemistry 2014, 406 (1) , 27-33. https://doi.org/10.1007/s00216-013-7459-z
    89. Bo Yao, Yichen Liu, Miyuki Tabata, Huangtianzhi Zhu, Yuji Miyahara. Sensitive detection of microRNA by chronocoulometry and rolling circle amplification on a gold electrode. Chem. Commun. 2014, 50 (68) , 9704-9706. https://doi.org/10.1039/C4CC03330B
    90. Tao Sun, Xiangyu Kong, Yiqi Du, Zhaoshen Li. Aberrant MicroRNAs in Pancreatic Cancer: Researches and Clinical Implications. Gastroenterology Research and Practice 2014, 2014 , 1-11. https://doi.org/10.1155/2014/386561
    91. Xinyao Yi, Hongxing Han, Yu Zhang, Jianxiu Wang, Yi Zhang, Feimeng Zhou. Amplified voltammetric characterization of cleavage of the biotinylated peptide by BACE1 and screening of BACE1 inhibitors. Biosensors and Bioelectronics 2013, 50 , 224-228. https://doi.org/10.1016/j.bios.2013.06.047
    92. H.V. Tran, B. Piro, S. Reisberg, L.D. Tran, H.T. Duc, M.C. Pham. Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141. Biosensors and Bioelectronics 2013, 49 , 164-169. https://doi.org/10.1016/j.bios.2013.05.007
    93. Antonio Gnoni, Antonella Licchetta, Aldo Scarpa, Amalia Azzariti, Anna Brunetti, Gianni Simone, Patrizia Nardulli, Daniele Santini, Michele Aieta, Sabina Delcuratolo, Nicola Silvestris. Carcinogenesis of Pancreatic Adenocarcinoma: Precursor Lesions. International Journal of Molecular Sciences 2013, 14 (10) , 19731-19762. https://doi.org/10.3390/ijms141019731
    94. Ning Xia, Liping Zhang, Guifang Wang, Qingqin Feng, Lin Liu. Label-free and sensitive strategy for microRNAs detection based on the formation of boronate ester bonds and the dual-amplification of gold nanoparticles. Biosensors and Bioelectronics 2013, 47 , 461-466. https://doi.org/10.1016/j.bios.2013.03.074
    95. Yiqi Du, Minghao Liu, Jun Gao, Zhaoshen Li. Aberrant MicroRNAs Expression Patterns in Pancreatic Cancer and Their Clinical Translation. Cancer Biotherapy and Radiopharmaceuticals 2013, 28 (5) , 361-369. https://doi.org/10.1089/cbr.2012.1389
    96. Chunyan Yan, Cheng Jiang, Jianhui Jiang, Ruqin Yu. Simple, Colorimetric Detection of MicroRNA Based on Target Amplification and DNAzyme. Analytical Sciences 2013, 29 (6) , 605-610. https://doi.org/10.2116/analsci.29.605
    97. Lin Liu, Jimin Du, Sujuan Li, Baiqing Yuan, Hongxing Han, Min Jing, Ning Xia. Amplified voltammetric detection of dopamine using ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosensors and Bioelectronics 2013, 41 , 730-735. https://doi.org/10.1016/j.bios.2012.09.061
    98. Chad L. Cowles, Xiaoshan Zhu. MicroRNA detection using magnetic separation and zinc-based nanolabels as signal transducers. Anal. Methods 2013, 5 (3) , 801-804. https://doi.org/10.1039/C2AY25942G

    Analytical Chemistry

    Cite this: Anal. Chem. 2012, 84, 15, 6400–6406
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac203368h
    Published June 26, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    2415

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.